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ABSTRACT
On conjectural grounds we present an equation that provides a very good
approximation for the critical tempera;ure of the fully-anisotropic homogeneous
quenched bond-random q-state Potts ferromagnet in triangular and honeycomb lattices.
Almost all the exact particular results presently known for the square, triangular
and honeycomb lattices are recovered; the numerical discrepancy is quite small for
the few exceptions. Some predictions that we believe to be exact are made explicite

as well.
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1. INTRODUCTION

A certain effort is presently being devoted to the study of random models, in

particular the quenched bond-random q-state Potts model (characterized by the

Hamiltoniané#&) = —q z Ji' 5 where oy = 1, 2, . « « , q for all sites)
1,j J 03 03
in regular lattices (see Southern and Thorpe 1979, Tsallis 1981a,1983, de Magalhdes
et al 1982 and references therein; for an excellent review see Wu 1982). The
discussion of this class of models being very complex only a few exact facts are
known so far. In particular, the exact critical points for the pure model as well
as the limiting critical slopes for the bond-dilute model have already been
established for some two—dimensional lattices (Baxter et al 1978, Burkhardt and
Southern 1978, Hintermann et al 1978, Southern and Thorpe 1979, Tsallis 1982, Wu and
Stanley 1982).

In the present paper we are concerned with a very general ferromagnetic model
in which we associate arbitrary (and independent) probability laws for the coupling
constants along the three crystalline axes of the triangular and honeycomb lattices.
We focus on the critical temperatures Tc of these two cases. By following along
the conjectural lines of Tsallis 1981 (a quite detailed discussion of the square
lattice case) and Tsallis 1983 (a preliminary discussion of the triangular lattice
case), we propose relatively simple equations for Tc’ which presumably are
excellent approximations as they recover a considerable amount of exact particular
results.

This paper is organized as follows: in Section II we introduce a convenient

formalism and in Sections III and IV we discuss the triangular and honeycomb cases,

respectively

IT. FORMALISM
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In this section we present convenlent nomenclature and relations that will be
used further on. Let us first introduce (Domb 1974) a bond variable, referred to as

thermal transmissivity (Tsallis and Levy 1980,1981 and references therein; see also

Yeomans and Stinchcombe 1980), through the definition

—qJ /Ky T —qJ/k,T
t=[l-e B/ 4+ (q - 1)e B er0,17. (1)

If we consider two bonds with coupling constants J1 and J2 we obtain, for the

equivalent transmissivity ts of a series array,

= 2
ty = tt,, (2)
and, for the transmissivity tp of a parallel array,
tp = [t; +ty, +(q - 2)tlt2]/[l + (q - l)tltzl' (3)
The latter can be rewritten in a series-—-like form as follows
D _ .D,D
t, = £ty (4)
where
) = (- e/l 4 (q - Dl (4= 1,2,p), (5)

and where D stands for "dual.”

If J 1is a random variable and P(J) the associated distribution law, then
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the distribution law for t, mnotated Q(t), 1is given by
k. T k. T o
QCe) = B p—B gp Arlezbr, (6)
(1-0)[1+(g-1t] q
The corresponding law QD(tD) in the tD—variable is given by
D
D, D 1-t
Q () = i+ Q( D) (7)
[t+(qg-1t]? 1 +(qg-1t

The distribution law Qs(t) associated with a series array of two bonds with

distribution laws Ql(t) and QZ(t) is given by

Q. (t) f de, J dt, Q1(t1)Q(c2)6.(t—t1t2)

I

J (de7/t7) Q(e7)Qp(t/t7) = Q1 @ Q- ®)

This product (from now on referred to as series-product or s—product) recovers, for

q=1, that introduced in Tsallis 1981lb. Furthermore, it recovers, for

Q;(t) = § (t - ts) (i=1,2), Eq. (2). We can verify that the s—product is closed
(i.e., it preserves the norm), commutative, associative, admits neutral element
(namely & (t - 1)), but not inverse, i.e., its structure is that of an abelian
monoid (semigroup with neutral element); as a matter of fact it is easy to prove
(through the transformation t = e=X) that it is isomorphic to the convolution
product.

If our array is a parallel one the associated law Qp(t) is given by
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t1+t2+(q—2)t1t2 7
Qp(t) = J dt f de, Q1(t1)Q2(t2)§[:t - J

1f(Q-!)t4t2

=vf g e laDe "Q1(t')Q2[ e
[1+(g-2)t"~(g-1)rt']? 1+(q-2)t '~ (q-1)tt"

(9)

Q, ® Q

This product (from now on referred to as parallel-product or p-product) has the same

structure as the s—product, the neutral element now being ¢§ (t); it recovers
algorithm (3) and the p-product introduced in Tsallis 198lb as particular cases. It

is straightforward to prove that

Q@ 9° =A@ Q. (10)

thus generalizing Eq. (4) and exhibiting the isomorphism between the s— and
p-products.

It is clear that algorithms (8) and (9) allow the calcula-ion of any two-rooted
graph (or array) sequentially reductible by series and parallel operations (e.g.,
that of Fig. 1).

Before closing this section, let us introduce (Tsallis 198la, Alcaraz and
Tsallis 1981, and Tsallis and de Magalh3es 1981) anéther convenient variable

through
s(t) =2 In[l + (¢ - 1)t]/In qe [O0,1]. (11)

It satisfies the following remarkable property:
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sP(t) = s(tP) = 1 - s(v), C o (12)

i.e., s transforms, under duality, like a probability; this fact plays an

important role in the conjecture we shall present later on. Note also that s
coincides with t in the limit q——>1. The distribution law R(s) 1in the

g-variable is related to Q(t) through

R(s) = [q5ln q/(q = 1)) Q [(q® - 1)/(q - 1)]. (13)

Futhermore, the distribution law associated with sP is given by

RP(s”) = R(1 - sP). (14)

IIT. TRIANGULAR LATTICE

Let us consider a triangular lattice to the bonds of which we associate g-state
Potts ferromagnetic interactions. The corresponding coupling constants J along

the three crystalline axes are respectively and independently distributed according
to the laws Pk(J) (k=1,2,3). Through Eqs. (6) and (13) these laws univocally
determine {Qk(t)} and {Rk(s)}. This quite general model presents a phase
transition at a temperature Tc which is still unknown (excepting for some
particular cases described later on). Before stating our proposal for this
quantity, let us briefly consider the pure case (i.e., Qk(t) =8 (t - tk)), The
transmissivities tA and tYD respectively associated with the three-rooted

graphs in Figs. 2(a) and -2(b) can be calculated by using the break-collapse method

(Tsallis and Levy 1981), and are given by
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t.t o+t t +t .t +(g-3)t t t
12 273 371 17273
tA (tl,tz,t3) = =

1+(q-1) t1t2t3

D D.D.D
Eyp(Ersty,t3) = EEoEs. 16
It is easy to verify that the equation
= 7
tA tYD (17

provides the exact critical point (Baxter et al 1978, Burkhardt and Southern 1978,
Hintermann 2t al 1978). This is essentially a compact way of performing the
standard duality and star-triangle transformations.

Let us now go back to the general case where we replace, in Fig. 2(a), {tk}
by {Q(t)} and, in Fig. 2(b), {t)} by {Qg(tg)}. The distributions Q, (t)

and QYD(tD) respectively associated with the triangle and star graphs are given by

3
QA(t) = JJJ [kI—_I1dthk(tk)] S[t - tA(tl,tz,t3)], (18)

and

3
Qyp(t?) = J” [kgldt{iqguﬁns (2~ egpced,eD,eDg. (19)

These distributions univocally determine, through use of definitions (1) and (11)

and inversion of Eqs. (6) and (13), PA J), PYD(JD), R, (s) and RYD(SD) [JD

A
D : e
and t~ satisfy Eq. (1)]. Note that (&) Qyp 1is in general different from (QY)D
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where  Qy  is obtained by associating, with the star graph, {Q} instead of
) D D D.
{Qi}i (b) Qp =Q; ® @ ® Q33 (c) the particular case Qz(t) = § (t)
= _D@ D= D. (d)
(square lattice) leads to QA Q ® Q; and Qyp = Q] Q, (Ql ® Q) s
{ = - = _ D @© D\D
the particular case Qq(t) = 6 (t - 1) leads to Q, = Q@ Q, = (Q Q,)
Dy _ D
and  Qyp(t )y = 8 (t7).
By conjecturally extending Eq. (17) we propose, for the critical temperature

T, of the general model, the equation

s>, = <>y, | (20)

where
1 1
s>, = fo ds s RA (s) = JO dt {1n[l + (q - 1)t]/1n q} Qp (v) '
o —qJ/kBTc
=1 - J dJ {1n[l + (q - 1)e 1/1n q} L J3), (21)
o)
and
S - 1d DD Dy _ 1 D D D
<s vp = s's RYD(S ) = . dt” {1n[l + (q - 1)t /1n q} QYD(t ) ‘.
D
oo -qJ [k, T
=1 - J aJP {In[1 + (q - 1)e B C]/ln q} PYD(JD). (22)

We shall exhibit that Eq. (20) recovers almost all the exact particular results
presently known; it fails however with respect to the pure Potts limiting slope for
the bond-dilute model. The exact asymptotic behavior in the pure percolation limit

of the bond-dilute model is recovered, and this is so because, in Eq. (20), we have
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averaged the s~variable (instead of t, for instance); sce Levy et al 1980, Tsallis
1981(a), de Magalhdes et al 1982.

Let us first consider the gq-->»1 1limit (hence s=t): we verify that Eq. (20)

leads to

3 3
] <t - <t>g -1 =0, (23)
21 % k=1 %

where

1
<t>Qk = {o dt, £, Q (t) (k=1,2,3). (24)

Consequently Eq. (20) satisfies the Kasteleyn and Fortuin 1969 theorem [the gq-—>1

—Jk/kBT
Potts ferromagnet is isomorphic to bond percolation with tk =1-e (see
Eq. (1))] as Eq. (23) precisely reproduces the form of the bond percolatioh critical

exact equation (Sykes and Essam 1963)

3
Lp - Tp -1=o0. (25)
For the particular case Q(t) = S(t - t;) (k=1,2,3), Eq. (20) clearly leads,

for all q, to the exact Eq. (17). Furthermore we consider the following

generalized bond-dilute model:

where the laws P, (J) satisfy, besides the norm condition
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[}
J dJp, (J) =1, (27)
o
the restriction
E —
lim I dJp, (J) = 0 (28)
e-—>0 ‘o
(i.e., ?k(J) does not grow, in the limit J-->0, as 1/J or faster). It is

clear that this model must lead in the limit Tc——>0 and for all q, to the bond
percolation Eq. (25). This is precisely what Eq. (20) provides, the asymptotic

behavior being

3
) 3
P 0np, — 1
k=1 & k=1 F
PSS -qJ, /k,T
q_‘l z - qk B c
n (1 - p.p.)p J dJ (J, e . (29)
Ing 1454k L R k'k 'k
For the particular isotropic case p, = p and ?k(Jk) =6 (Jp —J), Vk, this
equation provides -
. “qJ/kBTC(p)/d
e = -
, P p=p_ 1n q/p.(q - 1), (30)

where pC denotes the bond percolation critical probability. Eq. (30) is known to

be exact (Southern and Thorpe 1979). As a matter of fact we believe that Eq. (29)

is exact for the generalized bond-dilute model (see Tsallis 198la for a similar

situation in the square lattice). A different situation is found at the opposite

limit (maximum T_, hence pp-->1,% k) of the model determined by Eq. (26). In

the case Pi(J) =38 (J - Jy) the limiting T_ 1is exact, but its asymptotic
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behavior is wrong for all q#l, as can be exhibited for the particular isotropic
case mentioned above. The error is however very small for 1 < q < 4 (we recall
that for q > 4 the transition is a first order one (Baxter 1973)). Eq. (20)

provides

[
1.2472... (1.2472... ; 0% error) for gq=1
1.1925... (1.1877... ; 0.407 error) for g=2
[(L/T (1)) [T (p)/dp] |y = (31)
1.1634... (1.1506... , 1.11% error) for q=3

1.1447... (1.1246... ; 1.79%Z error) for q=4

\

where, between parenthesis, we have indicated the exact results (Southern and Thorpe
1979) as well as the discrepancies.

These discrepancies being quite small, we can consider Eq. (20) to be an
approximation for Tc good enough for a great variety of purposes. 1In particular
it leads, for the isotropic bond-dilute model, to

3 1n[1 + (q - 1)e3] = 1n q, (32)

3p In[l + (q - 1)t] - p
which, for q=2, recovers the renormalization group result presented in
de Magalhdes et al 1982 (Eq. (11) therein); let us stress that Eq. (32) is exact in
EgEE_critical point and derivative in the p-*)pC limit but only in the critical
point in the p--21 1limit.
Before concluding this section, let us mention that Eq. (20) generalizes the

Tsallis 198la proposal for the square lattice. Indeed if we consider the particular

case P4(J) = 6§ (J) Eq. (20) can be rewritten as
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<s> = <s>,D D, (33)
F1® By P, ® P
heace,
<sd, = <sd>,D , (34)
P Py
henc,,
<s>Pl + <S>P2 =1, | (35)

which precisely is Eq. (13) in Tsallis 1981(a). It is worthwhile to recall that,
with respect to Tc’ Eq. (35) exactly satisfies (a) the Kasteleyn and Fortuin 1969
theorem in the limit q-->1, (b) the equal probability model (see Fisch 1978), (c)
the bond-dilute model in the Tc——>0 limit (both the limit and the asymptotic
behavior), (d) the bond-dilute model in the pure Potts limit (only the limit; it

slightly fails in the asymptotic behavior for gq#l).

IV. HONEYCOMB LATTICE

The honeycomb lattice being the dual of the triangular lattice, this section
closely follows the preceeding one. Now the laws Pk(J) (k=1,2,3) are to be
associated with the three crystalline directions of a honeycomb lattice. The

transmissivities ty and tpp Trespectively corresponding to Figs. 2(c) and 2(d)

are given by

ty(ty,ty,t3) = tytoty (36)
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D + tgtg + tgt? + (q-3)t?tgtg
t)) = (37)

DDD
1+ (q- ‘l)t1t;2t3

It is easy to verify that the pure Potts model [Pk(J) =8 (J - Jk);v\k] exact
critical point (Baxter et al 1978, Burkhardt and Southern 1978, Hintermann et al
1978) is now provided by the equation

t (38)

Y=tAD-

For general laws {Pk(J)}, Eqs. (36) and (37) are respectively extended into

3
op(e) = [ [ [ 17 aeQueed1 6 [e = eyCep,ep,es)] (39)
k=1
3
Q,pt?) = I Jf [ aepQX(eD] & [t =t p(e]tn.t]. (40)
k=1

Npte that (a) QY = Q1 () Q2© Q3; (b) the particular case Q3(t) = §(t - 1)
(square lattice) leads to QY =Q ® Q2 and QAD = Q?@ Qg; (c) the
particular case Qi(t) = § (t) 1leads to Qy = & (t) and

D D
Qpp = ® B = (¢, ® o)’

The proposal for Tc will now be

<>y = <s>, o, (41)

where



(B

[ , re / ,
{edy = J ds s K (s) = } du {1nf) 4 (g - 1)iu}/in q} Qu(t)
[0} (¢}
e -qJ /Ry T,
=1 “[ dJ {in[l + (q - 1)e 1/1n q} PY(J)’ (42)
[o]
and
! pop D 1 b D D
<s> AD = ‘( ds”s R A (s ) = ] dt” {In[l + (@ - 1)t"]/1n q} Q Ap(t )
(o]
D, .
[~ ~qJ " /k,T
=1 - | a1? {In[l + (g - De BCi/in g1 P AD(JD) (43)
o}
(the definitious of the quantities RY’ PY’ RA,D and PZ&D are self explanatory

within the adopted notation).

particular results presently knowu; it fails however with respect to the pure Potts

limiting slope for the bond-dilute mod-1. The a-->L 1limit provides
) : :
L <t>Q <t>Q - 1 <t>Q -1=20, (44)
i<j i 3 k=1 k

which precisely reproduces the forw of the bond pe

L]
e
O
-y
-r
R
(o]
0
-t
pein
-t
[N
o
i
|2
0]
e
b
o]
Ra
T
o
o
oY
Y
[,
O
fal

(Sykes and Essam 1963),

3
y i .
p;P; ~ pp — 1 =0, (45}
iy B ek

and therefore the Kasteleyn and Fortuin 1969 theorem is sztisfied.

if we consider the model characterized by Eq. (26), Eq. (41) leads, in the
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« 'qu/kBTc

i % [(q = 1)/1n q] iJElh(pi + Py = PyP;)P [0 43, By (I e (46)
Firs

For the particular isotropic case P =P and ?k(Jk) = 6(Jk -J) (#k), this
equation provides the exact result (Southern and Thorpe 1979), namely Eq. (30), P,
now being the critical probability corresponding to the honeycomb lattice. As for

the triangular lattice case, we believe that Eq. (46) is exact for the gencralizod

bond-dilute model. This is not so for the opposite limit (maximum Tc hence

p,-->L¥k) of this model. In particular for the case ?%(J) =6 (J - J) the
limiting TC is exact, but not the asymptotic behavior for q # 1. For the

particular isotropic case we obtain, from Eq. (41),

1.7770... (1.7770C... { Z error) for g=i

1.5968... (1.5782... ; 1.37% error) for g=2

(L/T_(1)] [dT.(p)/dp} |__, = (47)
¢ ¢ p=i <1.5142... (1.4659... ; 3.30% error) for gq=3

1.4609... (1.3863... ; 5.39% error) for g=4

\ )

where, between parentheses, we have indicated the exact results (Southern and Thorpe
1979) as well as the discrepancies. It is straightforward to obtain, from Eq. (41),
the whole critical line:

3

3p2(l—p) In[l + (q~l)t2] + p~ 1nfl + 3(q—1)t2 + (q—l)(q*Z)t3] = 1n q. (48)
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This cquation recovers, for q=2, the renormalization group result presented in
de Mazalhdces et al 1982 (Eq. (14) therein); let us stress that Eq. (48) is exact in
both critical point and derivative in the p--—)pc limit, but only in the critical

point in the p-->1 limit.

The square lattice result (Eq. (35)) can be reobtained by taking

Q3(t) = §(t - 1) in Eq. (41).

V. CONCLUSION

The fully-anisotropic homogeneous quenched bond-random gq-state Potts
ferromzznet is a fairly general model, and its criticél temperature Tc is unknown
for all lattices with dimensionality higher than one. However a certain amount of
particular exact results are already available for some lattices such as the
triangular and honeycomb ones. Following along the conjectural lines of Tsallis
1981(a) we propose equations for Tc (Eq. (20) for the triangular lattice and
Eq. (41) for the honeycomb; both equations contain the Tsallis 1981(a) proposal for
the square lattice as particular case) which are believed to provide numerically
excellent approximations (at least for 1 < q < 4; they are exact for q=1).
They both satisfy the Kasteleyn and Fortuin 1969 theofem, which is herein expressed
in a quite general form (the q-—>1 1limit of the quenched bond-random Potts
ferromagnet is isomorphic to bond percolation). They both recover the exact Tc
for the anisotropic (arbitrary non-negative Jl’ J2 and J3) pure Potts model and
the exact percolation critical surface (in the P, - py - p3 space) in the T ~->0
limit of a generalized bond-dilute model (characterized by Eq. (26)). Furthermore,
they provide new particular assymptotic behaviors (Ed. (29) for the triangular

lattice, and Eq. (46) for the honeycomb one), which are possibly exact. Finally,

for the standard isotropic bond-dilute model, they provide simple analytical



CaN L is/SANLUS ctrs—-17

eyu tions (Eq. (32) for the triangulac lattice and Eq. (48) for the honcycoubh oune),
whicli although not exact (in the p"’)pc limit both the critical point and
asynptotic behavior are exact, but in the p-->1 1limit only the critical point is
exact, the corresponding asymptotic behavior presenting a numerically small
failure), can be useful for several purposes as long as the exact equations remain
unknown; the biggest estimated error (in the t-variable) they introduce presumably
occurs midway between p = P and p=1 and increases from O0% for q=1 to about
1% for the triangular lattice (0.5% for the honeycomb lattice) for q=4.

It is with pleasure that we acknowledge the hospitality of Professors H. E.
Stanley, W. Klein, S. Redner and other members of the Center for Polymer Studies at
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1. INTRODUCTION

A certain effort is presently being devoted to the study of random models, in

particular the quenched bond-random q-state Potts model (characterized by the

Hamiltoniané#&) = —q z Ji' 5 where oy = 1, 2, . « « , q for all sites)
1,j J 03 03
in regular lattices (see Southern and Thorpe 1979, Tsallis 1981a,1983, de Magalhdes
et al 1982 and references therein; for an excellent review see Wu 1982). The
discussion of this class of models being very complex only a few exact facts are
known so far. In particular, the exact critical points for the pure model as well
as the limiting critical slopes for the bond-dilute model have already been
established for some two—dimensional lattices (Baxter et al 1978, Burkhardt and
Southern 1978, Hintermann et al 1978, Southern and Thorpe 1979, Tsallis 1982, Wu and
Stanley 1982).

In the present paper we are concerned with a very general ferromagnetic model
in which we associate arbitrary (and independent) probability laws for the coupling
constants along the three crystalline axes of the triangular and honeycomb lattices.
We focus on the critical temperatures Tc of these two cases. By following along
the conjectural lines of Tsallis 1981 (a quite detailed discussion of the square
lattice case) and Tsallis 1983 (a preliminary discussion of the triangular lattice
case), we propose relatively simple equations for Tc’ which presumably are
excellent approximations as they recover a considerable amount of exact particular
results.

This paper is organized as follows: in Section II we introduce a convenient

formalism and in Sections III and IV we discuss the triangular and honeycomb cases,

respectively
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