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ABSTRACT

The critical frontier of the nearest-neighbour g-state
Potts ferromagnet in the fully anisotropic 3-12 lattice is
conjectured through a star-triangle transformation. It re-
covers all the available exact results concerning particular
cases, namely: (1) anisotropic square lattice for all q;(ii)
anisotropic triangular and honeycomb lattices for all q;
(iii) anisotropic Kagomé and diced lattices for q=2; (iv)
isotropic 3-12 and Asanoha lattices for g=2. It provides
proposals for several other planar lattices, in particular
for the anisotropic Kagomé (and diced) one for q#2, where
it slightly differs from the Wu 1979 conjecture (which also
satisfies the cases (i) and (iii)).The bond percolation crit
ical probabilities on the 3-12 and Kagomé lattices are de-

termined to be respectively pc=0.739830... and p.=0.522372...



The critical frontier (CF) associated with the Ising fer
romagnet 1s presently known for a great number of isotropic
and anisotropic planar lattices (Domb 1960, Syozi 1972 and ref-
erences therein). It is clearly desirable to extend this knowl
edge to the g-state Potts (1952) ferromagnet (whose Hamiltonian
is given by A*P = -q Z Ji.é Ojumere Jij>0; oi=1gL...,q. Yi,
and (i,j) run over all couples of sites compatible with the
strict planarity of the lattice). Only the CF associated with
anisotropic square, triangular and honeycomb lattices are up to
now well established (Potts 1952, Baxter 1973, Kim and Joseph
1975, Baxter et al 1978, Burkhardt and Southern 1978, Hintermann
et al 1978) for all values of q, including q=1 which, through
the well known Kasteleyn and Fortuin 1969 isomorphism,corresponds
to bond percolation (the ¢>0 limit is physically interestingas
well, as it corresponds to tree-like percolation and random
resistor network; see Stephen 1976 and Lubensky 1978).Further-
more Wu(1l979) worked out, on conjectural grounds, a proposal
for the anisotropic Kagomé lattice (and its dual, namely the
diced lattice). As far as we know no other exact proposals ex-
ist for any other planar lattice (we restrict ourselves to two
-body Potts interactions).

Herein we intend to conjecture, by using a star-triangle
transformation, the CF associated with the fully anisotropic 3
-12 lattice (and its dual , namely the Asanoha or Hemp-
-Leaf lattice) represented in Fig. l.a. Our proposal recovers
the exact results corresponding to the anisotropic square, tri
angular and honeycomb lattices for all values of q and,for q=2

(spin - %f Ising model), those associated with the anisotro-



pic Kagomé and diced lattices (Kano and Naya 1953, Domb 1960
and Syozi 1972) as well as with the isotropic 3-12 and Asanoha
lattices (Syozi 1972). It provides also, as particular cases
and for all values of q, conjectural CF's for several other lattices.
However a rather surprising fact is verified: the present Kagomé
lattice proposal (slightly) differs from Wu's 1979 one (ex~-
cepting for q=2 and the asymptotic behaviour in the limit
g+ 0); for let us say the isotropic gq=1 case (bond percolation
model) we obtain for the critical probability p.= 0.522372 ...
whereas Wu conjectures p.= 0.524430... (0.4% discrepancy). If
one takes into account the apparent simplicity of both conjec-
tural arguments, this fact was a priori unexpected; let us an
ticipate that, at our present stage of knowledge, the problem
remains open.

Let us now associate with any arbitrary lattice bond
(with coupling constant Jy) a convenient variable (hereafter

referred to as thermal transmissivity; Tsallis and Levy 1980

and 1981, Levy et al 1980, Tsallis 1981) introduced through

_—qJv/k, T
¢ = l-e B (1)

1+ (q-1) e W r/kgT

Two bonds (with transmissivities t; and t,) in a series or par
allel array yield an equivalent transmissivity vrespectively

given by
tg=t] ty (2)

t1+t2+(q-2)t1t2
tp= (3)




hence
D_.D D '
th =ty 1 (3")
where we have introduced the dual transmissivity (see Tsallis

and Levy 1981 and references therein)

1-t
T

1

(r=1,2,p) (4)

D
ty

1+(g-1)t,
(for details on Potts duality see Wu 1977, Alcaraz and Tsallis

1982 and references therein). The well established CF's can be

written as follows:

(q—l)tlt24-tl+-t2= 1 (square) (5)
therefore, if ty= t,=t,
t:.____.l_—_— : (5')
/q +1

(q—2)t1t2t3+ t1t2+ t1t3+ t2t3= 1 (honeycomb) (6)

therefore, if t1=t2=t35 t,
( 1
if q<4
2 cos [%f arc cos (é% - 1)]
t=h(q)={ (6)
1
if q>4

1/3 /3
\ [%—-ln/(-‘;— -1)2~1] +[—%— -1-4 /(3 -1)2—1]

2
(q —3q+l)tlt2t3+(q—1)(t1t2+t1t3+t2t3)+t1+t2+t3=1. (triangular) (7)



therefore, if t{=t,=t; = t,

t = 1-h(q) (7")
1+(q-1)h(q)

Remark that t3=1 in Eq.(6) or tz=0 in Eq.(7) recover Eq. (5) and
that t. < tg (r=1,2,3) transform Eq.(6) into Eq.(7) and vice-
versa; note also that the discriminant associated with Eq.(6')
vanishes at g=4, which is precisely (Baxter 1973, Straley and
Fisher 1973 and Kim and Joseph 1975) the value separating, for
two-dimensional systems, the first order phase transitions (q> 4)
from the higher order ones (q<4).

Let us now consider the anisotropic 3-12 lattice TrTepro-
duced in Fig. l.a and perform on each single triangle the two-~
rooted graphs star-triangle transformation . indicated in Fig.
2; this transformation implies (through Eqs. (2) and (3); see

also Syozi 1972, Tsallis and Levy 1981 and de Magalhaes etal

1982)
£(uysuy,uz)= Vv, Vs (8)
f(uz;ul,u3)= vy Vs (9)
f(us;ul,u2)= vy Y, (10)
where

Uuj+uruz+(gq-2)uquyus
f(uysu,,uz) 2 (11)
1+(gq-1)ujuyuz




Eqs. (8-10) immediately imply
1/2
vy = [ fu,ysuqsug)f(ugsug,uy)/f(ugsug,uz)] (12)
- 1/2
vy, = [ f(ugsuy,uz)fluziuy,up)/£(uz;uy.uzl] (13)
_ ~1/2
Ve = [ f(ulguz,us)f(uz;ul,us)/f(u3;u1,u2)J (14)

Through this transformation  the 3-12 lattice becomes a honey
comb one with transmissivities tlvi, t,v5 and tsvé (where we
have used again Eq.(2)); consequently, through Eq.(6), its CF
is given by
_ 2,22 2,2 2,,2 2.2 _

(q 2)t1t2t3v1v2v3+t1tzvlv2+tltsvlv3+ t,tVoVsa 1 (15)
This equation (together with Eqs. (12-14) and definition (11))
univoquely determines the CF of the 3-12 lattice indicated in
Fig. l.a. Naturally the particular case u1=u2=u3=1 (hence
v1=v2=v3=1) reproduces Eq. (6). Other interesting particular

cases are the following ones:

a) t1=t2=t35 t and uy=u,=u =u whose CF (see Fig. 3) is

2 73
given by
u+tu?+ (q-2)u’
t = h(q) (15")
1+(q-1)u?

which, for t=u and q=1, yields the 3-12 lattice bond

percolation critical probability

p.= 0.739830... (15")

and, for g=2, recovers the exact (isotropic) result (Syozi 1972},



b) t3=1 (see Fig. 1b; noted L1 lattice) whose CF is given
by
(q—Z)tltzvivévg*-tltzvivé+-(tlvi+tzvi)vé= 1 (16)

therefore, if t1=t25t and u1=u2=u35u (see Fig.3),

(q-2)t2| uru’*(g-2)u’ ]3+(t2+2t)[:U+u2+(q_2)u3 ]i 1
- 1+(gq-1)u? 1+(g-1)u?
(16 ")

c) t2=t3=1 and t15t (see Fig. l.c; noted L2 lattice)

whose CF 1is given by

2

_ 2.2 2 (12 4oy 2 2.2 2
(q 2)tv1v2V3+tvl(v2+v3)+vzv3 1 (17)

therefore, if u1=u2=u35u (see Fig.3),

2 3 3 2 3 2
(q-2)t| —u*u +(q-2)u f(2t+ 1) u+u“+(q-2)u -1
[ 1+(q-1)u® ] [ 1+(q-1)u® ]

a7z
d) ti=t,=t.=1 (see Fig. 1.d; Kagomé lattice) whose CF is
given by
_ 2,22, 2.2 2.2, 2 2 _
(g Z)V1V2v3+v Vy¥VIVeHvovy = 1 18)

1°'2 "1°3

therefore, if u1=u2=u35u (see Fig.3),

wrut(q-2)u’ . (g (18")
1+(q-1)u’



This equation yields, for q=1, the bond percolation critical

probability

pCEu(q=l)= %ﬁ{l+4sin[-%% arcsin(1l- %; sin f%)]}=0.522372

(18")
Eq. (18) recovers, for gq=2, the Kano and Naya 1953(see also Domb 1960 and

Syozi 1972) results,

In Table 1 we have indicated the present main results
for isotropic lattices (those associated with the square and honey
comb lattices have been included for comparison, as well as
those calculated from the Wu 1979 Kagomé lattice conjecture).In
the 1limit q~»0 all the present planar lattices provide tlfbl - L/q
as recently conjectured (Tsallis and de Magalhaes 1981); dual
lattices satisfy LD=1/L. In the 1imit gq=+ < we obtain in all the
present cases t n K/qa; dual lattices satistKD=]/K muiaD=]n-u.

If we consider the convenient variable (Tsallis 1981)

Knr1+(q-1)t]
Lnq

(19)

(it satisfies s(tD)= 1-s5(t)) we can verify (values within pa-
renthesis in Table 1; see also Fig. 4.a) the quasi-universali
ty (s practically independs from q for 1<q<4) recently proposed
(Tsallis and de Magalhaes 1981) for planar lattices. Another

interesting variable is

Yq/L if q=0
yz 4t (20)

-t K/ if q»

(this is essentially that appearing in Fig. 5 of Wu 1979, and

. . D . .
satisfies y = q/y); for a given lattice, y exhibits an almnec+



linearity as a function of vq (see Fig. 4b).

Let us conclude by saying that a simple two-rooted graphs
star-triangle transformation has enabled the <conjectural formu-
lation of the critical frontier (Eq.(15)) associated with the
fully anisotropic nearest-neighbour 3-12 lattice g-state Potts
ferromagnet. A considerable amount of new results (Egs. (15" -
18"), Figs. 3 and 4 and Table 1) follow which can be useful as
reference or similar purposes. The question concerning the
slight discrepancy (excepting for g=2 and g~ 0) between the present
proposal for the Kagomé lattice (and its dual) and that conjec
tured by Wu 1979 remains open as no clear cut arguments have

been found favoring one or the other. In any case it is clear

that both are excellent numerical approximations even if at
least one of them is necessarily wrong.

It is with pleasure that I acknowledge useful discussions

with A.C.N. de Magalhaes, E.M.F. Curado and P.M, Oliveira.



REFERENCES

Alcaraz F.C. and Tsallis C. 1982, J. Phys. A: Math. Gen.l5, 587-98

Baxter R.J. 1973, J. Phys. C: Solid St. Phys. 6, L445-8

Baxter R.J., Temperley H.N.V. and Ashley S.E. 1978, Proc. R.
Soc. A358, 535-59

Burkhardt T.W. and Southern B.W. 1978, J. Phys. A: Math. Gen.
11, L247-51

Domb C. 1960, Adv. Phys. 9, 149-361

Hintermann A., Kunz H. and Wu F.Y. 1978, J. Stat. Phys. 19,
623-32

Kano XK. and Naya S. 1953, Prog. Theor. Phys. 10, 158-72

Kasteleyn P.W. and Fortuin C.M. 1969, J. Phys. Soc. Japan (suppl.)
26, 11-4

Kim D. and Joseph R.I. 1975, J. Phys. C: Solid St. Phys. 7,
L167-9

Levy S.V.F., Tsallis C. and Curado E.M.F. 1980, Phys. Rev. BZ1,
2991-8

Lubensky T.C. 1978, "La Matiére Mal Condensée', Les Houches, ed.
R. Balian, R. Maynard and G. Toulouse (North Holland)

de Magalhes A.C.N., Schwachheim G. and Tsallis C., to be publi-
shed

Potts R.B. 1952, Proc. Cam. Phil. Soc. 48, 106-9

Stephen M.J. 1976, Phys. Lett. 56A, 149-50

Straley J.P. and Fisher M.E. 1973, J. Phys. A.: Math. Gen. 6,
1310- 26

Syozi I. 1972, "Phase Transitions and Critical Phenomena", ed.

C. Domb and M.S. Green, Vol.l (London: Academic Press)



- 10 -

Tsallis C. 1981, J. Phys. C.: Solid St. Phys. 14, L85 - 91
Tsallis C. and Levy S.V.F. 1980, J. Phys., C: Solid St. Phys. 13,

465-70

1981+, . Phys. Rev. Lett., 950-3

Tsallis C. and de Magalhaes A.C.N. 1981, J. Physigue/Lettres
42, 1227-31

Wu F.Y. 1977, J. Math. Phys. 18, 611-2

Wu F.Y. 1979, J. Phys. C.: Solid St. Phys. 12, 1L645-50



- 11 -

CAPTION FOR FIGURES AND TABLE

Fig. 1 - The anisotropic 3-12 lattice (a) and relevant parti-

Fig.

Fig.

2

3

cular cases namely the Ll(b), Lz(c) and Kagomé (d)
lattices, obtained by contracting respectively 1, 2
and 3 t-bonds; the transmissivities {t,} and {u,}
(r=1,2,3) are related to the Potts coupling con-
stants through Eq.(1). The dual are indicated as well
(dashed lines): Asanoha or Hemp-leaf (a), L?(b),Lg(c)
and diced (d); the performance of the transformation
tr-+tg and ur-+u¥ (Eq.(4)) into Eq.(15) yields the
CF associated with the anisotropic Asanoha lattice.
Two-rooted graphs star-triangle transformation which
provides Eq.(8) (with definition (11)); (o) and (e)
respectively represent the roots (terminal sites) and
nodes (internal sites) (for details see Tsallis and
Levy 1981 and references therein).
Para(P)-ferro(F)magnetic critical frontiers associ-
ated with partially "anisotropic'" 3-12 (Eq.(ls')),Ll
(Eq.(16')) and LZ(Eq.(17')) lattices; = the various
isotropic particular cases are indicated (by z=w
we refer to a linear chain of "bonds'", each of thenm
being an array of infinite parallel t-bonds; this
structure has an infinite coordination number z). If
q=1 the abcissa and ordinate directly represent the correspond
ing bond occupancy probabilities; otherwise s(t) and s(u) are
respectively related to t and u through Eq.(18). If q is nor

much below 1 neither much above 4, the present CF's are,in agree
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ment with Tsallis and de Magalhaes 1981 proposal, quasi
universal (one and the same, within the graphical width
and for a given lattice, for 1£qg4).

Fig. 4 - Critical point, as a function of the number of states
q, associated with the present isotropic lattices (HC=
=honeycomb; KG= Kagomé€; SQ-= square; DC= diced; TR=tri-
angular; AS = Asanoha); we recall that q>4 (qg4) im-
plies first (higher) order phase transition. The ordi-
nate s(t)(ordinate y(t)) in (a) (in(b)) is related to t through
Eq. (19) {Eq.(20)) and has been chosen in order to exhibit
the quasi-universality (quasi-linearity) mentioned 1in
the caption of Fig.3 (the paper by Wu 1979). Although
not obvious graphically, 1im s(t(q)) =1/2 for all pla-
nar lattices; furthermoreq_>0 s(q;lattice] + s[q;duallat

tice]= y[ q;lattice | y[ q; dual lattice] /q = 1.

TABLE 1 - g=1, 2, 3 and 4 critical transmissivities (relatedto
the Potts coupling constants through Eq. (1)) associated
with the present lattices (the square, honeycomb and
Wu 1979 Kagomé values are included for comparison).For
the q+ 0 (q= ) limit, where t~ 1-LvVq (t~ K/q%) ,we have

indicated L (o and K); we recall that LLD= KKD=cx+aD%L

All the values within parentheses are those of s(t)

(Eq.(19)); remark that 1lim s(t)=t= P and that
q>1

lim s(t(q)) =1-a. (a) Baxter et al 1978, Burkhardt and

g+

Southern 1978 and Hintermann et al 1978 and references

therein; (b) Syozi 1972 and references therein.
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lattice q-0 q=1 q=2 q=3 q=4 q >
L o K
square(?) ] 1/2 0.41421(P)| o, 36603 0.33333 1/2; 1
(1/72) (1/72) (1/2) (1/2) (1/2) (1/2)
(b) )
noneycomb () 1/v3 | 0.65270 | 0.57735 0.53209 1/2 1/3; 1
(1/2) | (0.65270) | (0.65750) | (0.65968) | (0.66096) (2/3)
312 v3/5 0.73983 | 0.67070(P)| 0.62711 0.59527 1/3;1.38
(Fig. T.a) (1/2) | (0.73983) | (0.74045) | (0.73985) | (0.73905) (2/3)
L, 9/20 0.68371 | 0.60583 0.55804 0.52377 1/230.46
(Fig. 1.b) (1/2) | (0.68371) | (0.68332) | (0.68228) | (0.68125) (1/2)
L, 3/5 0.60902 | 0.52439 0.47453 0.43972 1/250.60
(Fig. 1.c) (1/2) | (0.60902) | (0.60823) | (0.60745) | (0.60680) (1/2)
Kagomé V3/2 0.52237 | 0.43542(P) 0.38645 0.3532]1 1/230.68
(Fig. 1.d) (1/2) (0.52237) | (0.52147) | (0.52122) | (0.52119) (1/2)
Kagomeé /3/2 0.52443 | 0.43542(P) 0.38476 0.35021 1725 1
(Wu 1979) (1/2) (0.52443) | (0.52147) | (0.51948) | (0.51803) (1/2)

Table 1




