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ABSTRACT

By using the real space Renormalization Group method
proposed by Reynolds, Klein and Stanley we treat bond perco-
lation on d-dimensional cubic lattices and obtain (through
various extrapolation methods): a) P. = 1/2 (exact), vp =
1.351 + 0.012 (-0.020) and ap = -0,700 + 0,040 (-0.024) for
the first-neighbour square lattice; b) P, = 0.252 + 0.003
(-0.007) for the first-and second-neighbour square lattice;
c) P, = 0.2526 + 0.0013 , vp = 0.840 + 0.020 and ap = =0.520
+ 0.060 for the first-neighbour cubic lattice; d) Pe = 0.149

+ 0.010 , vp = 0.667 + 0.030 and ap = -0.67-+ 0.12 for the

first neighbour 4-dimensional hypercubic lattice.

Whenever comparison is possible these figures agree
fairly well with other available results. We also discuss the
"magnetic" scaling power Yy for the square lattice. The in-
fluence, on P and vp, of the symmetry of the cluster and
of the "direction" of percolation is exhibited through several

bidimensional examples.



1. INTRODUCTION

During the last years, the percolation problem (for
reviews see Shante and Kirkpatrick (1971) and Essam (1972) )
has received a great deal of attention mainly because of its
applications to a variety of physical phenomena, its similarity
to thermal phase transitions and its relationship (established
by Kasteleyn. and Fortuin (1969)) with the critical behaviour
of the one-component limit of the Ashkin - Teller - Potts mo-
del.The Renormalization Group (RG) approaches introduced for
cooperative thermodynamic systems (Ma (1973), Wilson and Kogut
(1974), Fisher (1974), Niemeyer and Van Leeuwen (1974) and
Wallace and Zia (1978)) have been applied to bond and site
percolation problems. Harris et al (1975, 1976) and Dasgupta
(1976) made a RG € - expansion (e = 6-d). Young and Stinchcombe
(1975), Stinchcombe and Watson (1976), Kirkpatrick (1977) ,
Marland and Stinchcombe (1977) have directly renormalized the
occupancy probabilities. In particular, Reynolds et al (1977)
(hereafter referred to as RKS) have proposed a simple and
efficient position space Renormalization Group for the site
and bond percolation problems. Some aspects of this treatment
have been analysed in the case of site percolation on a square
lattice (Tsallis and Schwachheim (1979)). On the other hand,
Bernasconi (1978) have formulated an approach for the conduct-
ivity of bond-disordered conductance lattices which contains,

as a particular case, the RKS bond probability renormalization.



Very recently, Reynolds et al (1978) have also applied their
method (RKS) to the site percolation problem on a square lattice
using a sequence of increasingly large finite cells and, by
convenient extrapolations, have calculated with a rather high
degree of accuracy the critical concentration Pc and the
"thermal"” yp and "magnetic" Yy scaling powers*. Finally, the
influence of the "direction" of percolation through a given
finite RG cluster has been investigated by Sarychev (1977) for

site percolation on square lattice.

In the present work we treat, through the RKS approach,
the bond percolation problem on d-dimensional cubic lattices.
Let us summarize this approach. We must first of all make a
partition of the lattice into cells or clusters (whose size
will be characterized by a length b) which shall be renormal -
ized into (usually of the same type) smaller cells( character-
ized by a length b'). The expansion or rescaling factor is
clearly given by b'/b. The macroscopic process shall be simula-
ted, at the finite size cells level, by the (relatively arbitra-
ry) adoption of the "entries" and "exits" (which we will indicate
by arrows, see Table 2) of each cluster. This choice clearly
defines the "direction" of percolation. Next we associate to
the bigger (smaller) cluster . a polynomial Rb(p) (R'b.(p')) ’
where by p we denote the independent bond occupancy

probability . Finally, the RG is defined by

Rl (1) = Ry (p) S (1

-1
* We recall that v = o =2=(d = - ~d = H2 -
b =Yg 1 % /yp),vp (2y, )/yp,np 2

Bp = (d - yh)/yp , Gp = yh/(d - yh).



where p' plays the role of renormalized . occupancy probabi-
lity. The non-trivial fixed point p*(b,b') gives an approxima-
tion for the critical probability p, Wwe are looking for.
Furthermore, the critical exponent vp is approximated, at this
level, by (see, for example, Niemeyer and Van Leeuwen (1974)

and RKS (1977))

2
v (b,b') = (2)
p in)_(b,b")
p
dR (p) /dAR' ,(p )
where A (b,b') = —9R' = L o
p dp dp dp
p* (b,b") p* (b, b")

is the eimgenvalue of the linearized transformation (1) in the
neighbourhood of p*(b,b'). Of course, we expect that
= i * ' = : ' ]
P, lim p*(b,b') and vp lim vp(b,b ) ¥ b'.
b b
By introducing a "ghost" site (Kasteleyn and Fortuin (1969)), the
scaling power Yy, can be calculated in a similar way (see

Reynolds et al (1978)).

In section 2 we discuss the bond percolation on square
lattices (pc' Vor Yh for the first-neighbour case and, as uni-
versality is expected to hold, only P for the first-and
second-neighbour case). In section 3 we present the results
(pc and vp) for cubic and hypercubic first-neighbour bond perco-
lation. 1In section 4 we analyze, through some examples, the
influence of the symmetry of the cluster and of the "direction"

of percolation.



2. SQUARE LATTICE

In this section we apply the above procedure to the
square lattice. Let us first of all consider only first-neigh-
bour bonds. We shall adopt the family of (self-dual) clusters
obtained by straightforward generalization of the H-shaped
("Wheatstone bridge", see also Bernasconi (1978)) cluster in-

troduced by RKS. The associated polynomials may be written as

follows
Ny
. . . n, —i
R (p) = ZO a Ppta-p P (3)
l:
where
Ab‘ + Ab = : ¥i, ¥ b (4)

il (nb-i)l

The degree n, of the polynomial is equal to the number of (re-

b
levant*) bonds of the cluster and the coefficient Ab(l)

is the
number of percolating configurations with i wunblocked bonds
(for a given b). Relation (4) holds because of the self-duality
of the chosen family of clusters, and implies that all the
Rb(p) are centro-symmetric with respect to the point (1/2,1/2).
Hence they are particularly suitable for the first-neighbour
square lattice, as the fixed point p*(b,b') is egqual to the

exact value P. = 1/2 for any choice of b and b'. For instance,

we may verify the above properties on the following example

( [ - shaped cluster):

*
For example, the cluster in Fig. 2 has 16 bonds, but only 14
"relevant" ones.



R (p) = p!? + 13 p*2(1-p) + 78 p*'(l-p)? + 283 p'°(1-p)? +
+ 677 p? (1-p)"* + 1078 p®(1-p)° + 1089 p’(1-p)® +
+ 627 p®(1-p)7 + 209 p°(1-p)® + 38 p*(1-p)°® + 3 p3(l-p)!°=
= 18 p!? - 117 p!? + 298 p!! ~ 352 p!® + 149 p® + 39 p® -
- 10 p? - 37 p® + 2 p5 + 8 p* + 3 p? (5)

We were able to establish this kind of closed forms only for
b & 4 (see Table 1); bigger values (5&bg 15) were treated by
a Monte Carlo method, which essentially consists in presenting

every coefficient of the polynomial (3) in the following form

n |
(1) _ . @) b-
A = 1, l (6)
il (nb - 1i).
Where rb(l) can be interpreted as the probability that a

cluster (of size b) with i randomly distributed unblocked

bonds (hence (n, -i) blocked bonds) percolates. The Monte Carlo

b

approximation is introduced at the level where rb(i) is replaced
by the frequency of percolating configurations satisfying the
conditions we have just described. We have worked, for all values
of b (and not only for the first-neighbour square lattice we
are discussing here, but also for the first-and second-neigh -
bour square and simple cubic lattices we shall present later)
around N n > 10%, where by Ny

Monte Carlo runs. Whenever comparison between Mohte Carlce and

we denote the total number of

closed form results was possible the agreement was very good.



In Fig. 1 we have plotted vp(b,l) against b-l. We observe that
for b 24 the numbers woscillate randomly around their mean value
1.351 (2/3 of the points belong to the interval [1.347; 1.365]).

Our best proposal is given by 1.351 i 8'8%3 , which leads to

+ 0.040

ap=-0.700 - 0.024

In what concerns the "magnetic" scaling power Y, Ve
have performed the calculations only for b,b' g4 (yh(3,2)=2.060;
yh(4,2) = 2058; yh(4,3) = 2.056; see Table 1 for yh(b,l)). By
different kinds of extrapolation we arrive to the result 2.0 t 0.1,
which compares to other available results (around 1.9; see Table
1) . BHowever we must recognize that the central value 2.0 is
probably wrong (for instance, it leads to Bp = np = 6;1 = 0, which

are certainly very hard to believe from the physical analysis of

this particular case).

Let us turn our attention to the first-and second-
neighbour square lattice within the assumption that there is an
unique occupancy probability p. We have used a family of
clusters which generalizes the previous one (see, for example,
in Fig. 2 the case b = 2). We have obtained closed forms for
bg3 and Monte Carlo forms for b =4,5, For illustration, let

us present two examples:

= 3 2
R (P =p° + 3 p*(1-p) + 3p(1-p)? = p® -~ 3p2 + 3Ip (7)
R, (® =p'*+ 14 p'*(1-p) + 91 p*?(1-p) 2+ 364 p!! (1-p) ? + 1001 p’°(1-p)* +

2

+2002 p°(1-p) 5 + 3001 p®(1-p) ® + 3412 p”(1-p) 7 + 2919 p®(1-p)® +



+ 1810 p®(1-p)? + 743 p* (1-p)1° + 164 p*(1-p)*! + 14 p*(1-p)'? =

=4 pl'* - 48 p!3 + 259 p!2 - 824 p!! + 1696 p*° - 2312 p® + 2007 p°® ~

- 908 p’ - 66 p° + 320 p° - 137 p* - 4 p® + 14 p? (8)
See Table 1 for the closed form values of p*(b,1l). We also
obtained p*(4,1) = 0.2734, p*(5,1) = 0.2696, p*(3,2) = 0.2688,
p*(4,2) = 0.2652, p*(4,3) = 0.2614, p*(5,2) = 0.2624, p*(5,3)
= 0.2589 and p*(5,4) = 0.2563. Through two different extra-
polation methods (one of them consists in plotting p*(b,1)
against b—5©p (see, for example, Reynolds et al (1978) and

also Section 3); and the second is a variant adapted to

+ 0.003
- 0.007 °

As universality is expected to hold, we have calculated

b' 3> 2) we arrive to our best proposal P, = 0.252

neither vp nor vy, . For comparison, we recall that the esti-
mates for the corresponding value for the site problem are
0.410 + 0.010 and 0.387 + 0.014 (see Essam, 1972), which are

greater than our bond result, as required by theory.

3. CUBIC AND HYPERCUBIC LATTICES

Let us first examine the bond percolation on first-
-neighbour simple cubic lattice. The family of clusters we have
chosen are the straightfarward generalization for d=3 of the
corresponding family we used in the previous section (for exam

ple, b=2 corresponds to ) . We have established a closed

form of Rb(p) only for b=2 (which is exactly the same as that

presented in equation (16) of Bernasconi (1978)).



We treated 3<bsg 7 with a Monte Carlo method. The plot of
vp(b,l) versus b-l shown in Fig. 1 did not allow us to
obtain a reliable estimate of vp. In Fig. 3 we plot p*
(b,1) against b—¥4) as suggested by the finite-size relation
(Fisher (1971), Sur et al (1976)):

p, - p*(b,1) ~ b_l/vp
The best fit of our data (corresponding to a linear correlation
close to 0.9994) was obtained with the following values:
p. = 0.2526 + 0.0013 and vp = 0.840 + 0.020 which compare
well with other available results (see Table 1l). Let us add
that, in the fitting process, Pe remains almost unchanged for
a rather wide range of vp (0.79 sx&)s 0.89). For the case b=2

we have also established the scaling factor Yy (see Table 1).

Let us now turn our attention onto the four-dimension-
al first-neighbour simple hypercubic lattice. Once more the
chosen family of clusters is of the same type of those used for

d=2,3. The unique closed form we established is for b=2:

R, (p) =-1862 p?® + 38416 p”’ + 374204 p?® + 2285136 p®® - 9794464 p** +
+ 31250840 p?°® - 76787640 p?? + 148188216 p?! - 226831310 p?° +
+ 275829488 p'® - 264550124 p'® + 196352600 p'’ ~ 108377337 p'® +
+ 40698288 p'® - 7838992 p'* - 631312 p? + 525580 p'2 + 93736 p!! -
- 77264 p'° ~ 3144 p® + 3694 p® + 2296 p’ - 376 p°® - 264 p° - 28 p* +



The fixed point p*(2,1) and vp(2,l) are indicated in Table 1.
In spite of the fact we have not studied bigger values of b,
it is possible to estimate P. in the following way. Let us

first define the ratio f_ = pc/p*(z,l) for different dimensiomn

d
alities. Hence f2 = 0.5/0.5=1 and f3:v 0.2526/0.2085=1.2115.
A linear extrapolation leads to f4 = 1.4230, and as we know

p*(2,1) for d=4 we can immediately obtain our first estimate

P, = 0.1443. Furthermore, we have used another type of extra-

c
polation, namely: let us define the ratio 9q = Pg (site)/pc
(bond) , hence g, = 0.5935/0.5 = 1.187 (the value 0.5935 has
been taken from Reynolds et al (1978)) and g3 2 0.312/0.2526 =
1.2352 (the value 0.312 has been taken from Kirkpatrick (1976)).
A linear extrapolation leads to gy = 1.2833, hence (by using
P. (site; d=4) = 0.198 from Kirkpatrick (1976)) pc(bond):0J543,
which is quite close to our first estimate. Finally, our propo-
sal will be the mean value P, = 0.149 + 0.010. The simple proce-
dure we have adopted here is not, of course, expected to be
trustful for more than, let us say, one "step" in dimension
(from d=3 to d=4 in our case); it can not take into account ,
for instance, that d - » implies 99 1, as expected from gene-
ral theory. The value of vp has been determined by the same
kind of procedure. By defining h

d
Z1.031/0.840 = 1.2274, hence h

= ~1.4 .
\)p(2,l)/\)p (h2_l 28/1.351

Z1.0570, h 2 1.3978) we have

3 4
obtained vp = 0.667 + 0.030, which compares fairiy well with

Kirkpatrick's result (see Table 1) for site percolation.



4. SYMMETRY OF THE CLUSTER AND DIRECTION OF PERCOLATION

In order to investigate how the symmetry of the basic
cell influences the results, we have calculated, for the square
lattice, P, and vp using the "assymmetric" clusters shown in
Table 2 (the first four examples). We observe that the graphs
associated to the first and third cells are dual one of the
other (as well as the second and fourth ones among them) and,
consequently, their renormalized probabilities satisfy the rela-

tion

R (p) + R (1-p) =1 (10)
D

from which follows that

* * =
p*(b,1) + p* (b ,1) =1 (11)
and
vp(b,l) " 1ln b
= e— (12)
v (b, 1) 1n b
P D’ D

where the indice D refers to "dual".

Note that a "vertical" percolation in the third cell
(giving a renormalized probability bond p&) corresponds to an
"horizontal" one in the first cell (with a renormalized probabi-
lity bond p'H and vice-versa (the same happens for the fourth

and second cells).
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All the first four clusters violate the full w/2 rotational
symmetry of the square lattice. Comparing the results for the
first and second (or the third and fourth) clusters, we verify
that p*(b,1) and vp(b,l) approach to the expected values as b
increases. This, of course, happens because the lack of symme-

try becomes more "diluted" in larger cells.

Let us conclude this point by saying that a compa-
rison of Tables 1 and 2 shows that the results get sensibly
worse when we use clusters which do not preserve the total

symmetry of the lattice.

In the last three examples of Table 2, we have cons-
tructed a renormalization group by use of a "biased" percolation.
The values of p*(b,1l) and vp(b,l) for b = 2,3 indicated in Table
2 are considerably worse than the previous ones (see Table 1 for

d = 2) and they exhibit a slower convergence to the known results.



5. CONCLUSION

Let us conclude by saying that the RKS proposal for
RG proved to be very efficient for bond percolation. In parti-
cular, the generalized H-shaped clusters are, because of their
self-duality, extremely well adapted to the first—-neighbour
square lattice, as they lead to the exact result P, = 1/2 for
any order, and they present a fast convergence in what concerns
vp.

All our numerical results (d = 2 with or without in-
clusion of second neighbours, d = 3 and 4 = 4) for pC and vp
(hence ap) compare fairly well with other available results ,
with the unique exception of Yy for d = 2 (we obtained Yh =z 2
instead of Yh 2 1.9 which is the most commonly accepted value).

This discrepancy is not surprising as we did not try to increase

the number of points of the series in order to see what happens.

To the best of our knowledge our proposals Po = 0.252

+ 0.003
- 0.007

P, = 0.149 + 0.010 for the simple d = 4 hypercubic lattice are

for the first-and second-neighbour square lattice and

the first ones available in literature (this is not the case for
site percolation; see, for example, Essam (1972) and Kirkpatrick
(1976)). Also let us add that the former value is strangely

close to our proposal for simple cubic lattice pc=0'2526i0'0013'

Finally we exhibited, through several examples, that
clusters which do not entirely respect the symmetry of the

lattice or inconvenient "directions" of percolation on them may
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seriously deteriorate the numerical values as well as the quick-

ness of the convergence process, though they present the correct

tendencies in all the cases.

CAPTION FOR FIGURES AND TABLES:

Fig. 1
Fig. 2
Fig. 3

The approximative critical exponent vp(b,l) as a
function of the inverse renormalization expansion
parameter for simple square and cubic lattices.
("E" means that the particular point has been
obtained from a closed form expression; the others

were obtained through a Monte Carlo method).

An example (b=2) ol the renormalization clusters
we used to discuss the bond percolation in the

first-and second-neighbour square lattice.

The approximative critical probability pXb,1l) for
the simple cubic lattice as a function of b_l/vp
with vp = 0.840. ("E" means that the particular
point has been obtained from a closed form ex-
pression; the others were obtained through a

Monte Carlo method).



Table 1

Table 2
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Results obtained for the bond percolation on the
first-and-second neighbour square, simple cubic
and simple hypercubic lattices (z = coordination
nunmber) . The values we obtained by Monte Carlo
method are not quoted here. (*) These values coin
cide with those obtained by Bernasconi (1978).

(t) These values were derived by us through use
of scaling laws and values established (for other
critical exponents) by the quoted authors.

(a) Dunn et al (1975)

(b) Reynolds et al (1978)

{c}) Klein et al (preprint)

(d) Sykes and Essam (1964)

(e) Vyssotsky et al (1961)

(£) XKirkpatrick (1976)

Results obtained, through closed forms, for the
bond percolation on the first-neighbour square
lattice; the first four clusters do not completely
preserve the symmetry of the lattice, and the last
three ones refer to a biased "direction" of per-

colation.
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TABLE 1

' L;ttl ce Subject P, Vp Yy
1/2* 1.428 1.907
* *
bo 1 1/2 1.380 1.963
1/2 1.363 1.982
d=2
Our best proposal 1/2 (exact) 1.35 T 0.012 2.0 + 0.1
z = 4 - 0.020 hs
1.34 + 0.02'@ 1.89 + 0.02@& (M
1.35 + 0.015® | 1.898 + 0.003%)
Other proposals 1/2 (exact) - (b)(c)
In/'3 -3 3547
1n(3/2)
0.2874 - -
bt = 1
z = 8
+ 0,003 _ _
O}lj.‘ best. prqppsal O‘. 252 _ 0.007
bt = 1 0.2085* 1.031* 2.739
a=3
Our best proposal 0.2526 + 0,0013 | 0.840 + 0.020 -
zZ =6 -
Other proposals 0.247 + 0.005 ) 0.82 + 0.05®  [2.54 + 0.13(@ (P
0.254 +0.013® 0.86 + 0.03'F)  |2.55 + 0.17(5) ()
bt = 1 0.1014 0.932 -
a=4
z =8 Our best proposal 0.149 + 0.010 0.667 + 0.030 -

Other proposals

0.66 + 0.04F) (P
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