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We discuss two algorithms for the computation of
approximate solutions of a generalization of the so-called Benjamin-
Bona-Mahony equation, which is a model proposed to describe
unidirectional propagation of long water waves.

Both schemes discussed are quadratically convergent
with respect to At in the H! - norm. They use the Galerkin method
for the space variable in such a way that the global truncation error
has the same order as the error for the interpolation with the Galerkin
basis.

Estimates are obtained for the study of the
discretization that also yield an existence proof for the exact problem.

Results of some numerical experiments are presented.
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1. INTRODUCTION

The equation

u, +u_+uMu_-u =0 (1.1)

was suggested in [_1 ] as a model for uni-directional propaga-
tion of long water waves. Such an equation was proposed as an

alternative for the Korteweg-de Vries equation

U 4+ U4 o+ uu o+ u =0 (1.2)

which supposedly describes the same phenomenum.

In this paper, we discuss two numerical schemes

for the study of

9
- f(u) - = .
LT v ( § Ut g(x,t) (1.3)
which generalizes (1.1). These schemes modify the ones proposed
in [[27] for (1.1), and have the advantage of dealing with
matrices that are independent of the time variable, thus a-
chieving great computational savings. Part of the results dis-

cussed here were announced in [3,4].

We consider the problem of finding a solution

of (1.3) subjected +to the conditions



u(x,0) uo(x) s (1.1

u(l,t), (1.5)

i

u(0,t)

for 0 < x <1 and 0 < t < T, with T > 0 preassigned.

In (1.3), & > 0 in an arbitrary constant and
we assume that f and g are as smooth as needed,the precise

assumptions being described below. We also require that

g(0,t) = g(l,t). (1.8)

We shall stick to the notation used in[ 5 ] .
By 1 and L2 we shall mean Hk(o,l) and L%?(0,1), respective-
ly, while Hg shall stand for the subspace of Hk formed by

the functions v such that

j J
I woe = & v, (1.7)
dx] dxj

for j =0,1, ... 5, k=1, with k > 1.

The rectangle [0,I] x [0,T] will be denoted
by QT and <+s+> will represent the inner product in H® = LZ2.
If f,g e H'; we shall write

(flg) = <f,g> + §<f_,g,> . (1.8)

The norms in L2 and HS will be denoted by



|-|L2 and |' Hk

, respectively.

We shall consider the weak form of (1.3),

which with the above notation appears as

(utlw) = <EQu), w >+ <gyw> (1.3")

for any w in H! . A weak solution t = u(s+,t)

must belong to Hé and satisfy (1.3') a.e. in [0,T], u, assumed

to belong also to H!.

2. DESCRIPTION OF THE ALGORITHM

Let r,2 and N be positive integers such
that 0 <P < g - 1, and denote 1/N by h. Consider the

r+l

L. q
b

n c of functions w that colncide with

space S

a polynomial of degree less than & 1in each subinterval

L,r
h

is of class C° and further satisfy (1.5). Take also a

[:jh, (J+n ], 0 <3J <N. Thus any function w in S

positive integer M, denote T/M by At, sAt by tS )

u(',tn) by u and’ g(°,ts) by g

For any integer n, 0 < n <M, we seek

functions ut = U8 in SQ”r

N n to approximate the solution y at

instant t .
n

The first algorithm we propose is of predictor-

corrector type. Define U® by



(U® | w) = (ug | w) (2.1)
; . . ~n+1
and for n > 0, determine a first approximation i thru
Tn+l n
( v - U | w) = <f(Un),w >t <g 4l w> (2.2)
At X 7
. : . . n+1
and then obtain the "corrected" approximation U by
n+l . n ~n+l,.n
U - U +U
( Y | w) = <f ( 5 ), w > ¥ <gn+% y W> (2.3)

where (2.1) - (2.3) must hold for any w in Sﬁ’r.
L,r
h 2

(2.3) give two non-singular systems of linear algebraic equations.

When w 7runs thru a basis of S (2.2) and

As remarked above, the coefficient matrix of the systems thus
obtained remains the same for all time levels, so that triangulariz
ation is done once for all. To advance each time level, two
systems must always be solved. The non-singularity of the linear
systems we deal with is a consequence of being the inner-product

SR equivalent to the standard one in H?!.

The second algorithm involves a two-step

discretization in the time variable:

ve =yt yt =yt o, (2.4)



with . U’ and Ut as defined in (2.1) - (2.3), and for n > 1

1 s W> (2.5)

for any W in Sh

This scheme has the same accuracy as the
previous one and requires approximately half the calculations,
as one solves only one system for each time level. Nevertheless
the numerical experiments described in section 4 indicate a
sensibly better performance of the first algorithm, as compared

with the latter.

Both schemes are unconditionally convergent.This
is proved by using a slight change in the arguments presented
in [_27], and will be done in the next section. Since all
results we obtain are valid for both schemes, in the sequel

W' will denote approximations defined by either algorithm.

3. AN EXISTENCE THEOREM AND CONVERGENCE RESULTS

From now on we shall assume that £ is

continuously differentiable on the real line and that g, besides

L]



fulfilling (1.6), satisfies also

lgCe 4 ©)]  dt <o ,

H

that is, g ¢ LZ(O,T;HE). Furthermore, u, will be taken as an

arbitrary function in HE.

First we state a basic fact:

Lemma 1. There exists at most one solution of (1.3') = (1.5)

and it must satisfy

|uC+51t) | e , 0 <t <T (3.1)
o =t=

where C = C (uy, g, T) independs of f.

Proof. Let u e HE satisfy (1.3') - (1.5) and take
w Zu in (1.3"). By (1.5),
u(x) 1
<f(u), u.> = [ f(s) ds:} =0
0 x = 0

Thus (1.3') may be written in the form



from which we obtain by integration

t

[ulzl (t) < ]uolzl + fo {Igliz + Iuli2 } dt.
H H

An application of Gronwall's lemma to this
relation then gives (3.1).
We shall not repeat here the argument for

uniqueness, which is standard.

Thanks +to this lemma, we can assume,with
no loss of generality, that f has a bounded support. In fact,

consider instead of (1.3'), the equation

(utlw) = <f (W), w >+ <g,u> R (3.2)
with f, defined by fc(s) = f(s) 8(s/C), where
1 12> |s|
6 (s) = exp { exp(1/1-[s|)/(]s]-2D} | _ Is| < 2
0 [s| > 2.
Notice that fC has compact support and the
same regularity as f. Moreover, if wu, satisfies (3.2) ,

(l.4) and (1.5),

flug) = fc(uc) R



since the constant C in (3.1) depends only on uy, , g and T.
Consequently U is also a solution of (1.3') - (1.5), and by

the uniqueness property, U, = u.

We further remark that there is no loss of
generality in assuming £(0) = 0, as (1.3') remains unchanged

when a constant is added to f.

Under the above hypothesis for f, g, and ug,

we have
Lemma 2.
There exists T > 0 such that
|7 + W < C, (3.3)
H! Ht
for n=0,1, . . ., M=T / At, with C = C(T,f,g,ue)

independent of M, N and n.

To prove this result, the same steps in the
proof of Lemma 2.1 in [:2:1 must be followed. The independence
of the estimate of f(U™) on n is a consequence of f Dbeing

assumed a regular function of bounded support.

In an analogous fashion, we take in (2.3) and

(2.5)

- W / At



to get the following a priori estimate:

~n+l, N 1
o, ™2 gl e | g 0] ) (s, UMTE]
t HY ~ 2 Tl ntrpe L
L
< L orcr o+ s, UMY |2} ,
- 2 t 1
H
1
and analogously for 8. vitT , so that we can state
Lemma 3.
There exist constants T > 0 and C = C(f,g,uy,T)
such that
s, w2 < o, (3.4)
gt
for n=0,1, . . . 4 M= T/At.

To obtain (3.3) and (3.4) no relation between
N and M needs to be assumed. This means that both numerical

schemes are unconditionally stable.

We now define for (x,t) € QT the global

approximations

M-1

Wy gy (X1) = witl/2

1ne~1i

oy () [wle + 6 (x) (t-3At) 7] (3.5)

3=0



-10-

where 6% is the characteristic function of the interval

C3at , (3+At [ . Notice that
M-1 . .
4y Goo = . e s w00 for v £,
dt N,M 340 j

and thus the above estimates imply:

2 . 1
R Wew € L (0,T3 H).

They also indicate that both families WN M
2

and Wy o remain in a bounded set of L2(0,T; H') .
b

Consequently, there exist sub-sequences W, and W! and
N,M N,M

functions W in LZ(D,T;H§), W. in L%(0,T;H!) such that as N,M » «

1

weakly in L%*(0,T; H').

Of course, by making use of the standard argument from  the

theory of distributions, W; = W follows. Moreover, there
is also a subsequence, still denoted by Wﬁ M such that
]
. .
WN,M > W a.e. in QT )

as a consequence of Sobolev's Imbedding Theorem. Notice that

both sequences



_ll_

M=1 . . .
T = J "‘Aj'l'l J
Uy (X0 = jzo by (YU TG0+ UT(x) J/2
and
- M~1 . . .
= ] J+1 - yJ
V() = i oy (£)[[3 V2" (x) - VI(x)]/2
have the same pointwise limit as U! and V! respectively.
N,M N,M
This is clear for the latter sequence. To study the former,
~n+
take w = U" Lo Un+l in both (2.2) and (2.3}, tThen subtract,

thus obtaining

n+1l_ n+l|2

H

n+1,

Hl

| g™ -y

< At {|ECU™ L 24072y | 2|Un+l—U }
1~ 1

<t RO s vz 4 O™ 30
L2 Hl

We also have that as M » « ,

8}, () g.

gM(Xat) = Z :]+—§-

weakly in  L2(0,T; HY),
p

Now let w be an arbitrary function in

L2(0,T; Hé)- and let " e Sﬁ’r yield strong approximations

of w, 1in the sense that, denoting



-172-

oy yOGE) = 1 ey (0 2o,
b j=O
we have
¢ T
IQN M wlzl at =+ 0 , as MyN » =
’ H
0
For i,j = 1, ... , M-1, take in either (2.3)

or (2.5) w = e% (t), multiply by 0y (t) and add to obtain

¢ T T T

- W >
(8. Wy yl@y p0dt = | <EQy 105y 30 >dt + | <g 0y pdt

0 0

Passing to the 1limit as M,N » «» we get

T ( T ( T
(Wjw)dt = <E(W), w > dt + <g,w> dt
0 0 0
for any o in L2(0,T; H%) . Now let T € (0,T) be

arbitrary, choose ¢ > 0 small enough and pick any W in Hé.

Take w as equal to the characteristic function of (1-8, T+6)

multiplied by W/28 and thus get

T+¢8

1| [ W|w) - <E(W), w > <g,w> } df = 0.
26 X ‘
-6



~13-

When we take the 1limit as ¢ > 0 and use a

result of Lebesgue's, we conclude that
Wlw) = <€D, w > + <g,w> , a.e. in (0,T).

This means that W equals the solution u of
equation (1.3') we are seeking and further that the proposed
algorithms do give approximations for it. Observe that the
uniqueness property implies that there 1s no need for taking

subsequences of W the whole sequence being convergent,

N,M?

To obtain a precise estimate for the error
(u - Wy, ), the argument explained in [:2:] may be followed
N,M

with no changes so that we simply state

Theorem 1.

Assume that f € C(R), u, € Hg (0,1) and

g e L2(0,T; Hé) . Then there exists a unique solution of
(1.3") - (1.5). This solution may be obtained as the limit
of the , ) i .

sequences UN,M or VN,M defined by (3.5) and

algorithms (2.1) - (2.3) or (2.4) - (2.5), respectively.

Furthermore, if u ¢ C* (QT)’ the error in these approximations

satisfies

sup [W" - u(e, t )| <¢cTh
0<n<M n - =

+ (A2 7],

with C=C(uy , f, g, T) and M= T / At.



.__lJ_l,_

Conditions implying the regularity of the solution
u were obtained in [:6:]. We should remark that weaker assumptions

upon g would suffice.

4. NUMERICAL EXPERIMENTS

We have implemented the algorithms described
above with cubic splines as the approximating spaces, that is, we took
for Sﬁ’r the parameters & = 4 and r = 2. The value for

§ was always picked as 1/6 and the experiments were performed

on the IBM-370/145 at CBPF, with double-precision in all runs.

In the first two examples we took g =0 |,

At = 1/25 h = 1/20 and used the "predictor-corrector"

[

scheme .

ExamEle 1.

The plots in Fig. 1 show the system evolution

with £f(s) = s + 3 s2/4 + s3/20 and uo(x) = (x(x=1))3,

Example 2,

In this example, £(s) = s + 3 s2/4 so that
the equation assumes the form (1.1). The initial value has a

pulse-like shape:



_15_

r
(8 x (x-1/4) _]%/2 0 < x < 1/4
U (x) =
0 1 >x > 1/4.
| -~z
The plots obtained are shown in Fig. 2.
ExamEle 3.
For different values of At and h we used

both schemes taking

f(s) = s + 3 s?/4 and u(x,t) = sin (2w(x-t))/50 ,

which implies

2
glx,t) = 2T cos(2m(x~t)) I sin (2m(x-t)) - 2T W
50 | 100 3

The variation of the error thus obtained 1is
consistent with the estimates deduced (see Table 1) and further
indicates a sensibly better performance of the first algorithm,

as compared to the second one (see Table 2).
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TABLE 1

At = 1/5 At = 1/50
h = 1/10 h = 1/10
MAXIMUM MAXIMUM MAXTIMUM MAXTMUM

TIME ABSOLUTE ‘ERROR  RELATIVE ERROR  ABSOLUIE ERROR  RELATIVE ERROR
0.00000E+0 -4.51652E-6 -2.37447E-4 -4.51652E-6 -2.37447E~4
2.00000E-1 -1.15600E-3 -1.07870E~1 4.94997E-6 2.51961E-4
4.00000E-1 -1.97411E-3 -1.09087E-1 ‘5.34073E-6 3.46570E-4
6.00000E-1 -2.21629E-3 -1.11033E~1 6.34775E-6 3.75906E~-4
8.00000E-1 -1.81954E-3 -1.12453E-1 7.15064E-6 3.95138E-4
1.00000E+0 8.99359E-Y4 1.05613E-1 8.34852E-6 7.79031E-4
1.20000E+0 -2.86002E~-4 -2.27742E-1 9.55385E~-6 7.49411E~-4
1.40000E+0 -1.39203E-3 -1.09193E-1 1.06996E-5 6.94320E-4L
1.60000E+0 -2.09303E-3 -1.10037E-1 1.16688E-5 6.91015E-4
1.80000E+0 2.18458E-3 1.12772E-1 1.25619E-5 1.47516E-3
2.00000E+0 1.64311E-3 1.12701E-1 1.39246E-5 1.29935E-3
2.20000E+0 -6.31835E-Y4 -1.02233E-1 1.52075E-5 1.11077E-3
2.40000E+0 -5.67863E-4 -1.14170E-1 1.63759E-5 1.06290E-3
2.60000E+0 -1.59807E-3 -1.09612E-1 1.73626E~5 1.02818E-3
2.80000E+0 2.17252E-3 1.12149E-1 1.81386E-5 1.00232E-3
3.00000E+0 2.11528E-3 1.11207E-1 1.86928E-5 9.82739E-4
3.20000E+0 -1.44459E-3 -1.13315E-1 -1.95441E-5 -1.42752E-3
3.40000E+0 -3.54515E-4 -1.41431E-1 -2.07743E-5 -1.34808E-3
3.60000E+0 -8.38713E-4 -9.84910E-2 -2.18145E-5 -1.29183E-3
3.80000E+0 1.78245E-3 1.10161E~-1 -2.26468E-5 -1.25144E-3
4.00000E+0 -2.21111E-3 -1.11438E-1 -2.32565E-5 -1.22266E-3
4.20000E+0 -2.00708E-3 -1.10910E-1 -2.36324E-5 -1.20292E-3
4.40000E+0 -1.21681E-3 -1.13545E-1 -2.37670E-5 -1.183070E-3
4.60000E+0 -6.97354E-5 -2.78194E-2 -2.37398E-5 -1.40584E-3
4.80000E+0 1.09830E-3 1.02486E-1 -2.46635E-5 -1.36288E-3
5.00000E+0 ~-1.94127E-3 -1.10764E-1 -2.53639E-5 -1.33345E-3
5.20000E+0 -2.22242E-3 -1.11340E-1 -2.58298E~5 -1.31477E-3
5.40000E+0 -1.86095E-3 -1.10203E-1 -2.60536E-5 -1.30525E-3
5.60000E+0 -9.62307E-4 -1.13006E-1 -2.60315E-5 -1.30415E-3
5.80000E+0 ~-2.18563E-4 -3.04894E+3 -2.57634E-5 -1.31140E-3
6.00000E+0Q -1.34044E-3 -1.14024E-1 -2.52832E-5 -1.32764E-3
6.20000E+0Q -2.07177E-3 -1.11412E~1 -2.49219E-5 -1.26856E-3
6.40000E+Q -2.19801E-3 -1.11882E~1 -2.52406E-5 -1.26452E-3
6.60000E+0Q 1.68889E-3 1.15841E-1 -2.53135E-5 -1.26817E-3
6.80000E+0 ~6.95768E~4 -1.12579E-1 -2.51405E-5 -1.27969E-3
7.00000E+0 -5.02552E-4 -1.01038E-1 -2.47255E-5 -1.29989E-3
7.20000E+0 -1.55492E-3 -1.13572E-1 -2.40758E-5 -1.33040E-3
7.40000E+0 2.15954E-3 1.11479E-1 -2.32026E-5 -1.37402E-3
7.60000E+0 2.13918E~3 1.12464E-1 ~-2.21205E~5 -1.43544E~3
7.80000E+0 -1.49479E~-3 -1.17253E-1 2.16218E-5 1.10058E-3
8.00000E+0 -4 .21132E-4 -1.68011E-1 -2.12820E-5 -1.11886E-3
8.20000E+0 ~7.77702E-4 -1.05628E~1 ~-2.07106E-5 -1.14445E-3
8.40000E+0 1.74201E-3 1.13041E-1 -1.99165E-5 -1.17943E-3
8.60000E+0 2.20927E-3 1.11341E~1 -1.89145E-5 -1.22739E-3
8.80000E+0 -2.03705E~3 ~-1.12566E~-1 -1.77222E-5 -1.29445E-3
9.00000E+0 -1.27459E-3 -1.18938E-1 -1.63605E~5 -1.39171E-3
9.20000E+0 -1.38168E~4 -1.10013E-1 1.54129E~5 8.51705E~-4
9.40000E+0 1.03990E-3 1.07928E-1 1.46538E-5 8.67780E-4
9.60000E+0 1.90867E-3 1.08904E-1 1.36884E~5 8.88270E-4
9.80000E+0 =2.22473E-3 -1.11236E~1 1.25435E-5 9.83928E-4
1.00000E+1 -1.90102E-3 -1.12576E-1 1.13383E-5 1.05802E-3




TABLE 2

MAXIMUM ABSOLUTE ERROR
At = 1/15 At = 1/25
h = 1/10 h = 1/20

TIME ALGORITHM 1 ALGORITHM 2 ALGORITHM 1 ALGORITHM 2
0.00000E+0Q -4 ,51652E-6 -4 ,51652E-6 -2.76795E-7 ~2.76795E~7
6.66666E-2 4 ,.49580E-5 b ,49580E-5 9.40378E~6 9.40378E-b
1.33333E-1 -8.52266E-5 1,73508E-u -1.86729E-5 -3.81426E~5
2.00000E-1 -1.27154E-4 ~3,04737E-UL 2.77060E-5 -6.65822E-5
2.66666E-1 -1.58268E-4 ~4 ,16813E-L -3.64292E-5 -9.40829E-5
3.33333E~1 ~1.92236E-4 =5,23510E-4 -4 , 47531E-5 -1.20707E~-4
4,00000E-1 -2.15404E-4 =6.10108E-U -5.24396E~5 -1.45522E~4
4,66666E~-1 ~-2.28858E-4 ~-6.69713E~4 -5,97207E-5 -1.69130E~-4
5.33333E-1 -2.42922E-4 -7 ,21818E-4 -6.59036E~5 -1.90063E-4
6.00000E-1 ~-2.38599E~-4 =7.34975E-4 -7.18L487E-5 ~2.09551E-4
6.66666E-1 -2.35313E-4 -~7,.33629E-u ~-7.62094E-5 -2.25667E-4
7.33333E-1 ~2.21221E-4 =7 .07349E-4 -8.05566E~5 -2.39946E-4
8.00000E~-L 1.95034E-4 ~6,49299E-4 -8.30827E~-5 ~-2.50656E-1
8.66666E-1 1.71499E-4 ~5,82976E-4 -8.53605E-5 -2.58987E~4
9.33333E~-1 1.34516E-4 -4,86409E-4 -8.60595E-5 -2.63813E-4
1.00000E+0 9.81930E-5 -=3,79377E-4 -8.61051E-5 -2.65705E-4
1.06666E+0 ~5.66962E-5 -=2.,59177E-4 -8.49471E~5 -2.64462E-4
1.13333E+0C -1.41062E-5 1.279U42E-4L -8.26968E-5 -2.59823E-u
1.20000E+0 -3.19312E-5 -8.34261E-6 ~7.97302E-5 -2.52568E~-4
1.26666E+0 -7.60889E-5 1.40580E~-U -7.53927E-5 -2.41659E-4
1.33333E+0 -1.13227E-4 2.65305E-4 -7.07340E-5 -2.28641E~-u
1.40000E+0Q -1.52850E-4 3.88821E~4 6.45506E-5 -2.12074E-4
1.46666E+0 ~-1.83740E-4 4 ,95509E-4 5.8340L4E-5 -1.93744E-4
1.53333E+0 -2.06849E-4 -=5,81897E-L 5.07851E~5 -1.72463E-4
1.60000E+0 -2.29684E~-4 -B6,61452E-UL L ,31754E-5 -1.49660E-4
1.66666E+0 -2.,35057E-4 -7.,04752E-4 3.46342E-5 -1.24666E-4
1.73333E+0 2. 42746E~4 =7 ,35451E-4 -2.59700E-5 -9.84673E-5
1.80000E+0 2.38052E-4 -7 ,4L034U0E-4 -1.68030E-5 -7.09131E-5
1.86666E+0 2.21710E-4 -=7.11853E-4 -7.59468E-6 4,27233E~5
1.93333E+0 2.07081E-4 -6.74214E-4 -1.97956E-6 1.39503E-5
2.00000E+0 l1.76644E-4 -6,01854E-4L -1.12661E-5 1.51641E-5
2.06666E+0 -1.46643E-4 =5,15661E-U -2.06105E~5 L,40619E-5
2.13333E+0 -1.09601E-4 <4 ,12950E-4 ~2.94782E-5 7.21867E-~5
2.20000E+40 -6.77359E-5 2.91440E~-4 -3.82811E-5 9.97091E~5
2.26666E+0 -2.65010E~5 1.68823E-4 -4 .,63416E-5 1.25778E-L
2.33333E+0 -2.11495E-5 3.41982E~5 -5.40788E-5 1.50522E-4
2.40000E+0C ~6.24694E~5 1.01258E-4 -6.10285E-5 1.73395E-4
2.46666E+0 ~1.00961E-4 2,33613E-4 ~-6.72790E-5 1.94067E-L
2.53333E+0 ~-1.42216E-4L 3.55822E-4 ~7.28392E-5 -2.12867E-U
2.60000E+0 -1.73351E-4 L ,63143E-4 ~7.72080E-5 -2.28604E-4
2.66666E+0 -2.03964E-4 -5,65220E-4 ~-8.11559E~5 -2.42438E~-4L
2.73333E+0 2.,19078E~-4 =6.36232E-Y4 -8.84502E-5 -2,52U93E~-4
2.80000E+0Q 2.37388E-4 -6,98082E=U4 -8.56284FE-5 -2.60517E~-4
2.86666E+0 2,42468E~4 =7,32711E-4 -8.585UB6E~5 -2 .60466E-4
2.93333E+0 2.36395E-4 =7.,35817E-L 8.60043E-5 -2.66141E-4
3.00000E+0 2.31433E-4 -7.28686E-L 8.43683E-5 -2.63913E-4
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