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COUP; LD CHARGE AND SPIN FIELDS IN ITINERANT-ELECTRON PARAMAGNETS
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Consideration is given to the combined effect of charge and spin
£1u:tuations,on the theymocynamic properties of the Hubbard Hemiltonian.
As a consequence of the existence of a spin charge couﬁ]ing term, the cccu
rence of first order magnetic transitions in wetals is quite less  common
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than @ spin only theory predicts. We also.discuss briefly the critical

properties.

Coupled charge and spin fields.
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1. Introduction

This paper sumarises some of our recent work in attempting to
elucidate certain properties of the non-degenerate Hubbard Hamiltonian.
A review of the general setting of the problem is given by Cyrot [1] in

these proceedings.

The non-degencrate Hubbard Hamiltonian has been studied in re-
cent years [2,3] using, among others, the functional integral technique.
This formulation relies on the Hubbard-Stratonovich transfonnétion, which
carries the original many-body Hamiltonian into an effective free energy
density from which the thermodynamic quantities may be evaluated. Two
fluctuating effective fields, coupled respectively to the spin andbcharge
densities, are introduced. However, chafge fluctuationsvhave been disre-
garded in past work. In what follows, charge fiuctuation effects arc taken
into account in the devivation of the free energy density. The resulting
functional exhibits spin-charge coupling terms. We compare this two field
problém.to others studied in the literature |4] , concentrating on the con
sequences of spin-charge coupling for the critical hehaviour of an itine -

rant~electron systen.

2. Symmetry Considerations

The ubbard model exhibits spin-rotation invarisnce. Conscquently,
in the construction of a functional adequate to describe the model, this

requirenent should be taken into account.

Varions procedures have been proposed to transform the Coulomb
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term [5] . For cxample, one may use the identity [2b] :

_1 2 1 -
n,n, =gz @ +n)" -7 @ -n)° 1)

and apply the Hubbard-Stratonovich transformation to each squave term, i.e.

. +oo 2
AZ , T ~ax T+ 20AX
e” = r e Codx (2)

where A is either (n, +n, ) or (n+ - n¢). When use is made of equ. (2) in
1 Y .

B £or the Hubbard hamiltonian, one

the partition function Z = Trace e
transforms the original many body problem into a gaussian average over the
partition functions of a single particle interacting with two external

fields Xl and XZ coupled respectively to (n+ +-n4) and [n,t - n+).
However, the spin field which results from the use cf (1) and (2)

is Ising-like, thus violating the rotational invariance of the original

Hemiltonian. This point is discussed further below.

chricffer [2a] used the identity n§ =n_  to write:

-1 , 1 2
nry =50 tn) -5 @ -n) - 3
1 o . ' .
the tewm 5{n, + n ) is incorporated in the one-electron part of the Hamil-

tonlan and the sqﬁarcd.opcrator - %{n+ - n+)2 is transforined using (2).
‘The vepresentation (3) was discussed in detail by Yeiter [2c] . It intro-
cuces a spurious intercction among cqual spins. Furthermore the original

Totutional invariasce is lost in the remaining tem: (n, - n

+ R
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the spin density and ¢ which is coupled to the charge density (_n+ + n+).

Yet another identity can be used:

-

o, +n) %E.s (4)

o
o0 s

= - + 1
n n, i Uﬂ n+)

Contrasting with equ. (1) and (3) which only deal with SZ (Ising-
like fields) cqu. (4) has Heisenberg like character i.e., the rotational
invariance of the spin term is explicitely included. It yields a anFtio-

- (£o -

nal with two coypled fields-one, £ 1is a vector, withn = 3, coupl”d\ S,

while ¢

is a scalar, coupled to the charge density.

We ave thus faced with the following ploblem equ. (1), (3) and
@ provide exact transformations of thp Hubbard hamiltonian into various
free energy functionals which apparently do not have the same physical pro
perties. This problem is discusscd in details in ref. [Sj . To sumnzrize,
if one is intcrested in deriving a lLandau-Ginsburg-Wilson free energy func
tional for the Hubbard mcdel (sce below cq. (5)), the best choice among
eau. (1),(3) and (4) is provided by equ. (4), the latter allows an expan- .
sion in tewms of powers of auxiliary fields E?and t which exhibit rotation

invariance term by teim.

3. The free epergy functional

Following the procedure used by Schrieffer |2| and Hertz |3

-
j—
c
=~

xeeping both the charge and the spin teyms, one cobtains a free enervgy dor nsi .

L g

ty which cxbibits coupled order parameters:



—5_

Q.4 .4 —~ 1 2 3 3
I 3 ~ ™ (40 s Lt (8 V] AY A
LYY , :
¢,b

v “

1 s ) N
R RENC e
q

e

EOL
IS A ~(a,%q,) (5)

q,-.49..49 N 1

< 4 Y v N 4V 4"
4 v e

41

The notation q; = Gy mi) takes account of both the momentun and frequency

139
i
. " aa
dependence. Xo(q) is the usval non-enhanced susceptibility. The temn
.

1+0U xo(q) in the Gzussian charge temm of eq. (5) is a characteristic fea
P: " ) ) . ) . . -2 ,:;.2\
ture of the Hubbard Hauniltonian., The coupling constants for the (£ ) (g )

. SC -SC
term s oy, 177 ana 17
Yy -y

ave likewisc the spin charge couplings.
1 2 .

Eg. (5) sbows no pessibility of a charge instability, as expected.

If one considers iinite tomporatures {only Wy = 0 frcquencics are retained)

and neolocts the q; dependence of the interaction vertices, the first two

e

tevms in (5) plve a Fileen-type free encroy Lov leisenberg spins (no= 3).
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The lowest order spin-charge coupling term 1s

sc . 1/2 3/2 anfe)
Il v (}\B l‘C) de e
' F
where n(e) is the density of states and 38 is the Fermi level, .1t is pu-
~2 2 oy o

re imaginary. The coefficients of the £ ¢ and 7 ¢ terms arc respecti-

vely

(We restrict the discussion to the vicinity of the critical temperature T )

>

The terms involving only the fields Z, describe a system of char

1

PR L P .
ge fluctuations which do not become critical at any temperature. This is

3

4 . L .
why terms in g and ¢ are omitted in equ. (5). The latter exhibits cou-

pling terms betwecen the magnetic modes gq which become soft at Tc and

the charge modes which do not.

Note that

ISC

4"

vanishes when the Feymi level lies at an extremun
1 : '

of the density of states. When such is the case, one has a second order

phase transition when the extremrn is a maXimum (n”(eF)< 0) and a first

order transition when

(In the latter case,

“functional.)

oroscepis Humtitoniay (Tor a motwwgnet or s

the extreanum is a minimm (HH(EF)> 0); see fig. 1.

6
terms in g have to be introduced in the free energy

Prot

have recently studicd covpled-ficld problens, star

yin
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systaon) or from ;}‘n-.f‘nomeno]ogiéal irec encrgy density (see ref. [5] for
a more detailed revicw). A renormalization group procedure shows the
irrelevance of the {fourth 01‘@.91‘_ cross temm (coa;responding to Iic in (4) )
and of the third and fourth order cloupl_ing terms between fluctuations in
the "non-ordering' field; these results have been obtained with an Ising-~
like ovder parameter (n = 1). We have studied the extension to arbitrary
n [6] . |

4,2 First ovder vérsus second order phase transitions - Effect

of spin charge coupling.

The above mentioned works show that the condition feor the occuren
ce of a first order phase transition is

sC
eff ' "‘Il‘

‘uq' = uu -Z-E—»i() ' . (6)
o]
where B o 1s the cocfficient of the quzofz tefm in the L.G.W. functional
(In our case B A Un (CF)) . Tricritical bechaviour obtains when the
equality helds.Iquaticen (6) is generslly valid for coupled ficld systems
(with onz soft ficld only) and can be derived within the molecular field

approximziion.

* g — R » - - 1. ~ - _.f' - » -
pecitic feature of the Hubbard wodel is that 1;(: i$ pure ima-

ginary. Thes cou. (0) bocomes

! :
| de) BN CD
!

l [ AP, 1

nored, woe have only

Ve

<nley ] 3
< - T (6")

et
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which is the vsual result (neglecting temperature corfections of the orde
of (gle/ep) 2. .

Fouation (6') shows that the L\]QTLLCP of the spin-charge coupling
reduces the domain of possible occﬁrrence of first order transitions as
shown schenntically in fig. (1). 1t expresses thé fact tha@, in order for

-l"

pi\ to be nezative, n”LtI) has to be negative ensugh to overcome the posi

tive temm —(}JL) /28
1 (o]

Cnly regions in cnergy necar dips of the density of states allow
irst-order magnetic phase transitions in metals. In the absence of
spin~charge coupling, the occurrence of first orvder phase transitions in

mapnetic metals and alloys would be more frequent given the peaky nature

of the density of states in transition metals.

4.b  Rernomialization group results for co upled systems: connec-

tion with the Hubbard model

Achient and Imry [4] discussed a frece energy functional which shows
close similarity to eq. (5). They consider the role of constraints in |
affecting the stability of the various fixed points. Fisher renormalization
oi critical exponents is obtained (i.e. the renormmalized Ising fixed point

1s the most stuble one) when constraints are imposed. For example: one

may set ¢ _, = constant in the functional intezral defining the partition
=

Junction.  In the iubbevd model, constraints nust be imposed on the charge
ficld, to-cnsvre perticle mumbey conscrvation, or charge neutrality if onc

desoribes a charped Femmi 1iguid.  Thus the discussion of the coupled {icld

41 is especially relevent to the Pubbard medel. An dmporvtant

probicn in rel |

v

di Tlorence however arlses in this case, due to the fact that J 1s puve
1

SRS TN

wy.
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The may of fixed points is diffevent when the spin field is Ising-

like (n = 1) or when it is Heisenberg-like (n = 3) The reason is that
there is a chonge in the stability of various points when the coefficient

« chanpges sign, as happens when n changes from 1 to 3. In order to work
this out, onc nust generalizc the investigation of Achiam and Imry [4] ;
heir study, the spin order parameter has n = 1, while the (isotropic)
Hobbard model has 1 = 3. This generalization is carried through in ref.
[6] o first order ine = 4 - d. To that order, the cxchange of stability
of fixed points occurs for n = 4, so that it would seem that the isotropic

.

model has the same map of fixed points, with the same stability as

111
Iidu‘\

the anisctropic (n = 1) case.

However, one can show [6] that the exchange of stability between
Tixed points really occurs with the change of sign of o } the coefficient
of the specific hent. Since ¢ for n = 3 and d = 3 is negative, the most
stablc fixed poin nts do not exhibit Fisher renommalized critical exponents,
contrary to what happens for n = 1. Aoaln one must keep in mind that the
physical requirencni that I is purc imaginary in the Hubbard model. The
conscqucn ‘e of this is that a number of fixed points which are found in

the general coupled ficld pzob]cm are not physically acceptable for the

Hubbard model .

This situation is discussed at more length in refercnce [6] toge-
ther with the obscrvabilaity of a possible 1Cﬁn singularity in the charge~

‘churge correlation function.

0.
e oy devs a1l o oy (3 0 m Ty iy 3 - -
Wo heve desived a generalized Landun-Ginzbarg-Wilson functional
for the pon-degenerate phbbard nodel. Roistion invarinnce is preserved, and
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as a consequence, couplings ave generated axong the charge and the spin

fields. . .

Within th@\dCTiVCd free energy, no charge 1ndtab311(y is possi-
ble. This is a feaLure of the hdobaru Hamiltonian; and oLher mechanisms
should bz inveked (e.g. phonons or multinba:u<kf ‘ects) if charge instabi-
Jities arc to be produced.

The renormalization group techniques applied to the functional
(5) give a set of four fixed points, each oﬁu, depending on its stability,
governing the behaviour of the systom near the Ciitical point. The most
stable fixed point exhibits Fisher rcnormalization only for n§;2; which
corresponds to en anisotropic Hubbard model. In all cases the possibili-
ty vemains of tricritical peints or first-order transitions. As stated
above, this possibility depends on the Sttcpgth'of the idtraatomic Coulomb

b 4

1nt<*ac tion and cn the density cof states amd its derivatives at the Fermi

{..\
[9¢]
©

L

level.

The imaginary coupling between spin and charge fields makes more

difficult the occurrence of first order magnetic transitions in metals.
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Fig. 1
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FIGURE CAPTION

If Svin—chnfgc coupling is neglected, a magnetic metal exhibits
a first order transition if the Fermi level falls between A and
A" (n''(e) > 0) . Then the spin charge coupling is taken into

accourrt, the region for first order tronsition shrinks to the
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