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ABSTRACT

An extension of the calculation of the temperature independent resistivi-

ty performed by Blackman and Elliott is presented, in order to describe tran-

sition metal-like hosts. A Dyson-like equation is derived for the one-electron

s-propagator. Then, only terms to second order in the exchange parameters, in

absence of magnetic order, are considered. Ar expression for the temperature

independent resistivity is obtained in terms of phase-shifts and exchange coupl-

ings.

* To be submitted to Physica Status Solidi.

** On leave of absence from Instituto de Fisica, Universidade Federal de Per-

nambuco, Recife, Brazil.
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1. INTRODUCTION

It is well known that a magnetic rare-earth impurity embedded in a tran-
sition metal environment interacts with both the s and d conduction states.
The potential introduced by thé impurity has a spin independent and a spin
dependent part. The spin indépendent potential arises from the charge dif-
ference introduced by the 1mpu}ity, the source of spin dependent scatters-

being the exchange coupling to the localized moment.

Since Kondo's work (1964) 1, one relates the spin dependent scattering
to the internal degree of freedom of the spin. In that paper Kondo calcu-
lated the resistivity due to the exchange interaction to third order in the
exchange parameters, showing then the existence of a singular temperature
dependence. A more complete theory, based on the Green function formalism
had been given by Nagaoka (1965) 2, Hamann and Bloomfield (1967) 5. Black-
man and E11iott (1969) ¢ calculated the resistivity due to a small concen-
tration of magnetic impurities on a single band, taking into account also
the effects of the charge difference introduced by the impurity. It is the
purpose of our calculation to extend the work of Blackman and E11iott in
order to include a more complicated band structure, namely a transition
metal host which exhibits s and d-1ike bands. The plan of this paper is as
follows: in Sec..Il we formulate the problem under the basic assumption
that charge screening is entirely performed by the d-electrons and s-d
hybridization induced by the impurity takes place only at the impuri ty
site. Since conduction is due almost exclusively to the s-electrons, we
restrict ourselves to the derivation of a Dyson-like equétion fér the one-
electron s-propagator in terms of the host metal propagators. This equa-

tion is valid to all orders in perturbation theory within the accuracy of



Nagaoka's decoupling scheme. In Sec. III the equation for the one-electron
s-propagator is solved to second order in the exchange parameters J(S) and
J(d). This solution enable us to compute the temperature independent

resistivity in terms of the exchange Couplings and the phase-shifts intro-

duced by the spin independent potential.

Finally, in the discussions, we compare briefly the obtained results to
the usual ones where the effect of spin independent potential is neglected.
From that comparison and effective exchange coupling can be defined. The

third order terms (Kondo effects) will be discussed in a forthcoming paper.

I1. FORMULATION OF THE PROBLEM

a) HAMILTONIAN OF THE SYSTEM

We consider a two band picture for the host, consisting of s and d bands,
which for simplicity are not hybridized. Since conduction is mostly performed
by s-electrons, we resirict cur calculation to quantities such as the G??(w)

propagator.

The pure host Hamiltonian is:

_ _ -—(S) + 'r(d) + - 1
7%0 = igc lij Cio Cjo + i%o "1 d1o dJc (1)

The impurity, placed at the origin, contributes two sources of scattering:

(1) Potencial scattering tnrough d-d scattering and impurity induced

s-d mixing. Then:
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imp _ (d) + ., +
%pot = Vyq g Mg .+§ {Vsd M Coc} (2)
The Hami]tonian-(Z) has already been used (Gomes, Thesis Paris, 1967 5) but
it is rather a simplified version of the convenient one (cf. Riedinger and
Gautier, 1970 6). However, due to its simplicity, we conserve it in this
~ calculation, expecting that the main physical aspects are described proper-

ly. Furthermore, we neglect completely intra s-band scattering V as-

SS,
SQnﬁng that screening is perfcrmed by the d's.

t4) OSpin scattering - conduction electrons are coupled to the impuri-

ty spin through:

exch

gim - () g (o), go EORAC .go (3)

where the spin components of conduction electrons are defined by:

z _ o+ _ 4
917 4 Fa T Ry B4y
+ +

9 T 344 34y

- +

9§ % 35y 344

1
The a.s in the above expression stand for the c; or di’ according to s and

d states respectively.

The total Hamiltonian for the alloy is:
_ imp imp
o= jéo +ﬂpot +%exch (4)

This Hamiltonian intends to be a model for rare-earths diluted in transi-
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tion-metal-Tike host or intermetallic compounds, Potential scattering (which

may be rather strong), arises from the difference of valence between host

and the trivalent rare-earth.

b) SOLUTION OF THE PROBLE! 1IN THE ABSENCE OF SPIN SCATTERING
(b.i) PURE HOST SOLUTION (#=7
We firstly derive sirple results that will be useful later on; by

introducinc the pure host propacetors:

EHIORSI S
dd, .
Piglu) = << dys dj>>

it follows from the usual equations of motion:

ss 1 s 133
wPU()=7-; +22ﬂ) Py ()
(5)
dd ] -(d) ,dd
0 P§%w) = gk 6y + I, T r{d) pd Sw)
The trivial solutions are:
Pos s (w) = —-_(_)-6""' and Pdd (w) = —-(376""' (6-a)
(L)'Eks w-ek
or in the Wannier representation:
. : ek (R;-R,) . : ek*(R;-R,)
15(‘”) =77 Zk () and Pij(w) i Zk (d) (6-b)
wey w - g
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(b.it) SOLUTION FOR THE PROBLEM LEFINED BY f +jépo A

To do that we introduce the notation:

SS _ .+ . ds _

G (w) = << Cigs cjo g Gij(w) = << d1o’ Cjo w
dd _ Loat . sd _ .

Gij(w) = << digs djo>>w ’ G (w) R << Cig djo>>m

Due to impurity induced s-d mixing one now has pairs of coupled equations.

DETERMINATION OF THE Gsi[w] AND Gij[w] PROPAGATORS

From the general equation of motion:

w &5 (w) = A Tis) g 3 (@) + 850 Vo OJ(m) (7.2)

" e;’g(m) -1, 149 Gds(m) +8, V., 68w + s, &350 (7.b)

io 'dd oj io ds

Fourier transforming equations (7) and after some algebraic manipulations,

one gets the results:

Skt 1 1
& (w) = + — 55 (w) (8.a)
Ko L) 8wl
and
6% \(w) = — 1 19 () L (8.b)
Kk * .
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where the T(w) matrices are defined as:

dd
Vsql® Poole)
755 (w)

= (8.¢c)
d 3 dd
1= Vg PYGw) - v 412055 w) P
v
ds
() = (8.d)
dd S
1= Vg Pool®) = [V 412P8%(w) P (w)

In the Wannier representation equations (8.a) and (8.b) can be rewritten

as:
6;3(w) = Pi5(w) + 2m P5(w) T () Pos (w) (9.2)
ds _ dd, . .ds SS
Gij(w) = 2m Py (w) T (w) Poj(m) (9.b)
DETERMINATION OF THE Gf?(m] AND GSd(wl PROPAGATORS
Again, from the equations of motion:
dd _ 1 (d) sd
w Gij(w) = 5= 8 i + 22 T} (w) + 85,V dd OJ(w) + 610 ds G (w) (10.a)
sd _ (s) nsd dd
G1J w) = L Tiz GZj (w) + 61'0 sd oa(w) (10.5)

Proceeding exactly as in the above case one obtains:

8

kk' 1 1 1
dd d

G .(m) = '2—1r $— — T d(w)

wreéd) 21 eéd) m—sé?)

(10.c)
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and
1 1 1
o) = — 7w (10.d)
ar L (s) (d)
where the new T(w) matrices are defined as:
2 »SS
a Vag * Vedl® Poolw)
T (w) = (10.e)
ss
1- dd oo(w) lVSdlz P ( w) P ( w)
sd vsd
T (w) = y (10.f)
dd 2 nSS d
1- Vdd poo - dl Poo(w) Poo(w)
In the Wannier representation, these propagators read:
e;’g(w) - (w) +2n P3d(u) 194(4) Pdd( w) (11.3)
and \
GSd(w) - 2n P3S(w) T u) ng(w) (11.b)

Therefore, the impurity problem in the absence of spin scattering, is

completely solved by equations (9.a), (9.b), (11.2), (11.b) in terms of V4,

V ,and V

sd ds’

¢) INTEGRAL EQUATION FOR THE COMPLETE HAMILTONIAN

Now we start discussing the complete problem including exchange.

Introducing the notation:
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13 o + ds <t
S — z -0, +

'j(w) «<ogLis S * Ci-o S0 3 o 7w

ds@u) = <«od;,_S% +d, _S%; ¢t

ioc To i-o0 "o Joiw

one gets, from the general equation of motion: (it should be noted that we are

only interssted in s-s propagators)

1
SS . s
w Tij(w) = E; 6 3 + zz T(S) rSs( w) + 610 sd oJ(w) + J( ) 510 OOJ(m) (12.a)
and
Fg;(w) i 22 2 ZJ (w) + %0 Jdd (w) Si0 ¥ gs T (w) + J(d) 830 gj(w)
(12.b)

These two exact equations of motion completely specify the propagators
F1§(w) and r (w) in terms of the "spin flip" propagators 91'(w)'

033 (w) and ©

v

Green's functions. Ve follow strictly Blackman and E1liott's procedure 7

Wow we can obtain approximate equations of motion for the dS( w)

H

decoupling higher order propagaters according to Nagaoka's ‘scheme 2; one gets:

W O?%(w) =g < Sg> 5.. + ZR T(S) 0

ij 2n *+ 6 (w)

23(w) io sd 03

+ a8) g5 (s +1)s, IS8 (w)-6, €53 (w)+205565S () -

io " oJ io "0j 10 OJ(

_ SS pSS (d) sd .ds sd ds
3855 03( wl + d {2a %o 603( w)-3 Bio oa(w)

(13.2)
andc
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w Ggg(w) Zz T(d) 6 (w) + 610 dd OJ(w) +8i, Vds 0 Lw) +

38 G2 o S - 363 TS} ¢
£ otd) CRLI rEi(w) - 8;o 053(w) + 2 ofs e53(u) -
- 3 % rds( )} (13.b)

Where the correlation functions o and B are defined as:

“fj =< cig 50" “?3 = <dj di6”

fg =< C:IE.O djc > a?i. = <d:c Cio” (14)
B?Z =< Czo %o S;G> B?g = <d;0 di 5 S;O >

8 <y e 5T ity b 5T

It is clear that equations (12) and (13) completely determine the propagator
P?i(w) The rest of this paragraph will be used in casting these equations
in the form of an integral equation for rs J( w).

(c.?) TRANSFORMATION OF EQUATIONS (12) IN TERMS. OF THE G PROPAGATORS

Fourier transforming equations (12), one has:
s Ss
(ure( )) P .(w) = —;- Gkk' + VSd Zk" Fk"k.(w) + J( ) Zk" @k"k.(w)
(15.a)

(wef V) TE (0) = Vyq Ten T () + Vg Do T (@) + 3D 3,4 05, ()
(15.b)
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Introducing the notation:

xk.(w) = Zk" rk"k (w) H ngs(w) = zku I'E.s.k.(w)

ykl(w) = zk" O “kl(w) s ykl(w) = Zku ek"k ( )

it follows from (15):

1 1
XS (w) = — PSS (w) xi(w) + 305D PSS (w) yii(w)  (36.a)

sd (]0]
o, e§e>

-~

{1 = pgg(w)} xel(w) = Vg PIw) x3(w) - 3l PENw) vi(w) (16.0)

From these equations one is able to make explicit xi%(m) and ng(w) in terms

1
of known quantities and the Yyis-

Using the notation:

X(6) =1 - Yy P39 - Vg 12 PSS (w) Pdd() (16.c)
one gets:
1 Vds ng(w) 1 Vds ng(w) PZZ( )
xgﬁ(w = — + gs) yzﬁ(w) +
2m X(w) ure( ) X(w)
kl
ng(w)
X(w)

and
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1 Vs ql?Pogtw) Pogla) 1
xisi(w) =— 41+ : +
2m X(w) w—e&s:)

SsS SS
PSS () ¥ES(u) +

" { V54l Pool®
+J 1+
X(w)

sS dd
(d) Ysd Poo(w)v Poo(“’)
+ J

v (w) (16.c)
X( w)

Substituting (16.c) and (16.d) into equations (15.a) and (15.b), one has:

» odd
1 Sy ! 1 Veal? Pool® 1 )
I‘ii.(m = — + +
2w ‘*"E(i) m_E'((s) X(w) (s)

Wy
1 1 !Vsd‘ngg(w) 1 (S) .
" J ]
¥ (s) ¥ (s) I (s) Y (w) +
W€y W €y X(w) W Ep
v
1 sd 1
+ Lo SIS (17.a)
(D'"EIS ) X(w) UJ"Eku .
d
N ds ! 1 Vas ] 1 Vas 1 (s) ss
Mg (w) = — + " 35 i) +
AR O (N () L (O €}
Vag *+ 1V 4l P33 (w)
1 dd sd 00 ]
ey X(w) e I (17.b)
Wy wEg
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Remembering the expressions for the propagators in presence of potential

scattering, one gets:

rii'(w) GsS (w) + Zﬂzkl Giil(w) J(S) Zkz K, k.(w)

sd (d) ds 17.
+ 2m zk; Gkk;(w) J zkz ekzk (w) (17.¢)
and

resi(0) = 62 (w) + 2n Iy @ iy () 4 3(s) AR
+on L G @ oD L 68w (17.4)

Finally, in the Wannier representation:

r3j(w = 635(0) + 27 653 (w) a(s) 9oj(w) + 2m 639(w) (9 ¢ J( w) (18.a)
(o) = *fi(m) + 21 683w 3080 623 () + 2n6f(w) g(d) o5 (@) (18.b)

Equations (18) complete the fivst step of the determination of the integral e-

. 3
quation for I'"°(w).

(ec.72) TRANSFORMATION OF EQUATIONS (13) IN TERMS OF THE G-PROPAGATORS

Fourier transforming equations (13) one has:

(w—sés)) @;i.(w} 'gf o <S§> Sy * VSd yk ( w) + Zkk (w) (19.a)

(et D) o (w) = vy, vE W) + Vg ¥ + 25 (w) (19.b)
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where we introduced the notation:

255 () = 36 {5,541 S - yiR(w) + 2 T oy V(W) -
- 30, By xi?(m + 9t {é{k Sﬂ Y& () -

= eSd xﬂ%(m{} (19.¢)

and
28w = 2oy, Gk Vi) = 3 Ty By, G} +
+ J(d) {50(504'1) xk.(m) - yk.(m) + 2 Xk akk .Vku(w)

-3 Zk ekk xk.(m)r (19.d)

Proceeding exactly as before one obtains for the propagators G)ii.(m) and

d
Oki.(w):

dd
(w) 52 1 Syt ] lVsdlz Poo(®) 1 1
' = o< - + +
kk 21 m_e‘((s,) w_s‘((s) X(w) o el((sl)j
%Kk, 1 Vogl® Pogle)
+ zk + Zisk.(w) +
) el e X @ |
) ] s ] (w) (19.¢)
+ (w .C
“ we(S) X)) "1“

w-€
k 1
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and
i , 1 1 Vis 1
ekkl(w) =0 <So> : — +
2m w-eés) X(w) w-eéﬁ)
)
1 ds 1
+ by, Ty (@) +
-e‘((d) ¥(w) w_eéls)
2 pSS
Sk 1 Vaa * Degl® Poole) 4 i
+ Zkl d + d X( ) (d) zklk'(w)
w—e£ ) w-e£ ) w wey
(19.f)
Using the results for the propagators G, one has:
\S sd
6 1 (w)=0<S? >6, .(w)»,znzk1 Gkk Slk'(“’) + 2m zk Gy (w)Z c(w) (19.9)
ds ds d SS- dd ds
Ok (w) = o<SZ>G .(m)+2n2k Pkil(w)zklk.(m) + 27 Xkl Gkkl(w)Zklk.(w) (19.h)

Finally, in the Wannier representation:

ejj:(m) = o<sh> eij.(w) + 21% 655 (w) zss(w) +2m [ 6 (w) z,‘g(w) (20.2)

e?é(w) = 0<S% o> G (w) + 2w z Gds(w)Zss(w) + 2m 2 G ( w) Z ( w) (20.b)

It remains to collect terms involved in the functions ij. Equations (19.c)

and (19.d) can be rewritten as:

zss( )-J(S)‘LS (5,+1)6 3ef§ f)j 5){10 ﬁ':‘)} e'f);(m) +

+2 31 638 o (w) - 3 9(D g5d 1% (w) (20.c)
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and
285w =2 9 off 3% (0) - 39(8) 6% 13 (w) +
+ 9td) {:So(so +1)8,,-3 ngj} rgz(w) -
- ot {fio -2 “33} oo w) (20.d)

At this point it is useful to introduce a matrix notation.

(e.7i1) INTEGRAL EQUATION IN MATRIX FORM

Using the matrices A“B(m) and DaB(m), (o, B = 5,d) defined in
Appendix B, equations (20) become:
05 ()-8 (0) =0 <SB85 () + B (0) 7 (0) + B%w) T (0)45°%0)-8% (w)
| (21.3)

D9%(w) - 895 () =0<5 %> 6% () # R () - T () 4RI (1) 755 (1) +5% (w) 8% (w) (21.b)

Quite similarly, introducing the YgB(w) matrix, defined by:

{.Ygﬁ(u))}ij = 27 J(B) G?i(w) 603’ (a¢, B = s,d) (21.¢)

equations (18) can be rewritten as:

T55(w) = 8% (w) + v () F () +¥5%w) 8% (v) (21.d)
1% (W) = 8% + ¥3%w) 8% (w) + v () 8% () (21.e)

The set of coupled matrix equations (21.a), (21.b), (21.d) and (21.e)

completely specify the involved propagators in terms of the G's. In order
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to obtain an integral equation for the ?Ss(w) propagator, we start eliminat-
ing in (20.a) and (20.b) the propagator T (w) using equation (21.e); one
gets:

255 (1) 8% () = 0<8%> T (w) + BY(w)+ B (w) + A5 ()75 () 42° %) 8% ()

(22.a)
299 (w) - 0% (w)o< SB>6% () #A%(w) - B (w) +A% () T55 ()42 % () °° (w)  (22.D)

where we have defined:

25 0) = %) - B TS W)

290w = 0%(w) - Ad(w) v 34(w) (22.¢)

~sd

259(w) = B4 + B0~ v 8w

AL a d ~d

2% (w) = 8% (w) + A%(w) ¥ (w)
From equations (22) we are able to get explicit expressions for %Ss(m) and
/éds(

. ~Ss
w) in terms of I'"°(w).

Introducing the matrix Mss(m) as:

WS (w) = T - (355(w) " 2%%w) - (3%%(w)) 0% (w)

one gets:
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85 (w) 05D (35 () -5 () [655 (85w - B%(a) " 85 )]
+ (855 () W% (u)) ™" [?\Sd(m)+85“(w)-(2“d(w))"-’Rd“wﬂ G () +
+ (855 () -F°% ()" '[ﬁss(w)ﬁs"(w)-(X""(w)f‘-K“S(wﬂ'-'r‘“(m
and:
6"5(w)=o<sg>(’&dd(m))“-{['f + 595 ()« (A5 () - W55 (w)) 2 559 () - (39 (w)) 7} -85 () +
+?\ds(w)'(zss(w)-ﬁss(w))-l'ass(w)} +
+(2““(w))“-@dd(w)f&dsw)-(Kss(m) A () [ w) +
+ (’A\dd(w))_l'ﬁdd(w)‘]} B8y +
+(X"d(w))“-{i“s(w>+ﬁds<w>-<Ess(w)-ﬁss(w))“-[ﬁss(u» +
+ 359 (w)- (3% Rds(w)]}- 55 (w) (23.b)

Equations (23.a) and (23.b) substituted into (21.d) provide the final form

A,
of the integral equation for Pss(m).

Let us introduce the following auxiliary definitions: (self-energies)
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IE0) 0755 )+ 355 ) S ) [ 28w (%) 4] +

¢ YAZ"(w)-(K"d(w))"-{f\“d<w>+2d5(w>-(XSSm)-’MSS(w))"-[?\de) .

+ 2859(w) - (399(y)) -ﬁdd(w)] ) (24.a)

—

Fa\
Ss ss ~ss

(1) () =370 (6% ()15 (w)) 7+ (R () 1654 - (39() ) S )] +

oo BN RS @S ) 355 -5 ) A )

+ ZSd(w)-(de(w))"-ﬁds(w):]} (24.b)

The terms proportional to <S% contribute the self-energies:
A ~ ~ . A -1 Fal A -l Ad A N -1
Ty (@) =300 %2 0 (0)) ™+ $5%00) (B%)) ™ 29 () (355 () 5 ()

(24.¢)
and finally:

I7ey () = Y35 (0)+ (855 (0) W5 (w)) 35 () (291" &
RAADHALBISN XdSm)-(XSS(w)-r?ss(w))‘l-?x“(w)-(de<w>>'1]

(24.d)
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Using these definitions, the final result for the integral equation defining

"~
r°5(w) is:

?ss(w) - TS(w) + 0 <sg> g?i)(w).ass(w) +0 <sg> Z?S)(w).ads(w) N

ORI OB N OR (25)

IIT. TEMPERATURE INDEPENDENT RESISTIVITY
a) SECOND ORDER SOLUTION OF EQUATION (25)
In the absence of magnetic order, one has:
<s§> =0

A ~
In this case one just needs Z?f)(w) and Z??)(w). From expressions (22.c):

A3 (w) = 64, + 0(J)

ij iJ
dd _
(26.4a)
sd _
Aij(w) = Gij + 0(J)
ds _
Aij(w) = Gij + 0(J)

Using definitions (A-1) - see Appendix A - it follows that:
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A5(w) = 2 S (S 1) 305) 65 () ¢

2
o 0+0(J)

J

A?‘J?(m) = 2n 5, (5 +1) 3D e¥(w) 650 * 0(3)
(26.b)
A;.’j.(w) = 2m 5 (s,+1) 30%) 68 (w) 650 + 0(9)
ASw) = 2r so(s 1) 30 63d(w) 64, + 0(9%)
Relations (26.a), (26.b) imply:
~dd, 7
[A (w)]ij = Gij + 0(J)
(255 (w) .ﬁss(w)];; =855+ 0(9)
(26.c)
]XSd(m).(Edd(w))“.ﬁds(w)—i1.3. = 0(3)
EiSd(m).(de(w))"‘.ﬁdd(wﬂij = 0(J2)

These resuits give the approximated (to second order in J) self-energies:

nss A ~ A A
Loyt TvEs ) A% @) + v A% () (27.2)
1500 T2 B %) + 15w A (27.b)

ass
Thus, the T”"(w) propagator reads:
A A N A A ~ A~ ~
P (1) =6°° () 97 25 () A5 () + 6% () 1y 3 3(w) + A% (1) 65 () +

+ Y3 (0) B w) 6% (w) + 73 3(w)+R%w) 6% () (28)
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or, in the Wannier representation (by using equations (21.C) and (26.b)):
T = 65 + @nrs (s, 655w a%) 65w of®) 655 (w) +
+ (2m)2 s (5+1) 659(w) o(D) 68wy ofs) 655 (w) +
+ (2m? S (s+1) 655 (w) 9(5) 63S(u) ofd) Gds(w) ;
+ (2m)?2 S (5 #1) 630(w) 9(%) 624(y) o(9) sgj(w) . (29)

Equation (29) describes the four possible scattering processes involving

electrons propagating in presence of potential scattering; pictorially:

J(S) J(S)
s s s s s S{s s?s s
’j\/\ﬁ,i\\_,; = : —7 1‘ + g z +
j 1
(d) 5(s) §J(s) 5(d)
s d}d d?d s s s's d}d S
N AN N N\ N2
20 2
e S e B e
J 1 J 1
5(d) 5(d)
3 d?d d?d s
+ N A \
2 <) ;O 2
j Vg [e) / 3] 7 ;

Making use of the explicit expressions relating G-matrices and pure host

propagators P, (see equations (8), (9), (10), (16.c)), one finds the final

result:

1 1
r33w) - P33(w) + P — Piglw) T(w) Po3(w) (30.2)



261

where:
Vg 4l Poa(w)
T(w) = +
X(w)

S48t vy ey rSiely FJ‘SU“’PS(wXP‘“(uw Yt + (SU7 1y e

+
(X(w))?
(30.b)
Remembering definition (6.c), one has:
" 1
Py (m)-z = F, (w), A=s,d (30.¢)
wE

Hence, the T-matrix assumes this version:

Vg ql? Fylw)
i{w) = +
X(w)

S 55 D LN (1-v, )P (21 208 ol )2 (1 Py K D 412 (F 4(w)) 7

+

(X(w))?®
(30.d)

b) CALCULATION OF THE RESISTIVITY
In order to calculate the resistivity, one needs firstly to obtain an
expression for ImT(w). Introducing the concept of phase - shift 7, one

writes:
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-6 ()
Folw) = Fy(w) e °
-6 (w)
Falw) = [Fy(w)| e @
-3 (w) ~in_ (w)
T Vaa Fal) = 11 - vgg Pyl e 9 L e ad (31)
-in(w)

X(w) = [X(w)] e

where 'FS(‘U)I s IFd(w)l s [K(w)], | X(w) | 65(“’)’ ‘Sd(w)’ ”dd(‘") and n(w) are
defined in Appendix B.
Substituting (31) into (30.d), one gets:

IFg(w)] ot m)]
| X(w) |

T(w) = |V

sd’2

K 3 4 3 - 5 )
+ SO(SO+1) (J(S))Z I_(_‘f__)_l___ IFS((U)I . 1[ (ndd(w) n(w)) s(w] .
[X(w)]?

[K(w) | 1F ()| F 4(w) |2

+ zlvsdpJ(S) g(d) e'iE\dd(w)+ds(w)+26d(w)-3n(m)] ,

[X(w)]?

|Fy(w)? -3 -
d12 (J(d))z d . 3i [Sd(w) n(m):'}

| X(w)|®

(32)
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'Fd(“’”

Im T(w) = - |Vsd|2 ———— sin [éd(w) - n(ué] -
| X(w)| |

2 I K(w)].s

- 5,(5,+1) 4(308))
‘ [X(w) |

[Fy(@)] sin[3(nggla)-n(e)) + 6,(w)] +

[K(w) | [Fg (0 11 ()]

+2!V5d|2J(5)J(d) Ix(w)la sin Edd(w)+65(w)+26d(w)—3n(w)]+

|F g(w)]®

v lztdy: — sin[3(6d(w) - n(w))]} (33)

| X(w) |

Consider a small concentration c of randomly distributed impurities. The

effective life-time due to the impurities is:

— =~ c Im T(w) (34)

If the electric conductivity per unit volume can be represented by a scalar

(e.g. for crystals of cubic symmetry), one has:

e2 , [ of

o= T, V[~ — | d% (35.2)

k "k e
1273 4 \ k

where f is the Fermi-Dirac distribution functidn and Vi is the electron group
velocity. Transforming the integral over a volume of k space into integrations

over constant energy surfaces (35.a) simplifies to:



F )
— f vidse (35.b)

(The subscript F indicates that the calculation is performed at the Fermi sur-
face).

The resistivity is:

%
rs A — (36.3)
TF
. where:
n
A= (36.b)
e2"F2"s(el’)

Q2 being the atomic volume and p the density of states. (Isotropic Fermi sur-

face). From the above results, one finds for the temperature independent

resistivity:

le(EF)l
r = Ac}V_ |? ———— sin [5 (eg) - nle )] +
sd |X(EF)| d\"F F
KR
+ Ac S (S,+1) (J(S))z m |F (eF)I sin [3(ndd(€F) nep) )48 (e:F)J
F

lK(eF)llFS(EF)lle(GF)‘z
s sin[n gqlep}48, (e5) 28 (e p)-3n(ep) |

s1n[3(6d(sF) - n(eF))]} (37)

+ 2|V [2als) gld)

Fylep)?
+ lvsdlz(J“”V

lx(ep)‘a
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Equation (37) may be wri tterl\ in a)rlnore convenient form. Denoting the exchange
(e
independent term Ac:I\Isdlz “T%‘FT sin[ﬁd(eF) n(eF)] by Ar(eg), and

remembering that (cf. Appendix B):
. I
[F (ep)Isin 8 (ep) = F ' (ep) = ™ p (ep)

R
[F(epdcos 6 (ep) = FR(ep)
it follows:

r= bro(ep) + 7 Ac s (541 (3520 (ep) {1 + Heg, IVsdI‘)} (38)

where:
IK(ep)!?

lx(e ) ‘ cos [3(71“(6'_-) - n(EF))]
F

lk(ap)l : FSR(‘:F)

+
IX(EF) [* PglER)

H(Epilvsd‘z) -

[3tnggter) - nie)]

vy J(d) 1 [K(ep) | Fg(ep)| | Fylep)]? | [ 5
sin ep) +
sd 3(8) mog (ep) X(ep)]? NgqlEF
+ GS(SF)+26d(eF)-3n(EFﬂ+IVsdlz A [Fy(ep)]? 1 :1n[3(5d(€F)-n(eF)2]'1
y(s) |X(ep)|® mog(ep)

39
Thus, it is possible to define an effective exchange coupling, namely: (%)

a8} = ols) [1 + Hieg, |vsd|2)_'[”2 (40)
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and so:
; s).2
r=br(ep) + 7 Acp (ep) (380 s (5,41) tan)
In the absence of charge potential scattering, one has:
Heps IVygl?) =0 =5 af3) < o9
and the resistivity reduces to this simplified form:

(s)y2
r=mAc S (S+1) (3V7) pglep) (42)

CONCLUSIONS

As firstly discussed by Blackman and Elliott 4, a strong impurity
potential (treated beyond the Borm approximation) affects in a significant
way the resistivity associzted to a local moment. In their paper, however,
the potential acting only in & single-band model, excludes the possibility
of discussing.transition metal-like hots. The latter systems suggest new
possibilities of experimental work. In fact, the existence of two bands
(s and d) and consequently two exchange couplings, may change the standard
result of De Gennes and Friedel 8 as given by equation (42). This result
has been extensively used (together with the Abrikosov-Gorkov picture of
*he decrease of superconductor temperature with concentration of magnetic

writies)gas an experimental method for deriving coupling constants J, How-
r, the result described in (38) shows that in the case of transition

one may have strong deviations from the simple free electron case (42)

. A
o from the wsult chtained in ref. &. In the former case °, the

§4s associated to the spin independent impurity potential appear

2
ag only (J) -
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In the transition metal case the situation is very different: one has
phase-shifts multiplied by J(S) and J(d). these exchange parameters appearing
as (J(s))z,» (J(d))2 and J(s) J(d). For suitable impurities (like Cerium)
J(s) < 0, so one has cross products which may strongly affect the magnitude
of the derived Jéi% (40). These results suggest that one should take into
account, in the detailed comparison, of the calculated bare exchange para-
meters, the characteristic of the impurity with respect to the host.
Expression (38) suggest also that, if rare-earth impurities are used, on
may consider firstly Lu (no spin moment). In this case only the first term
of (38) still remains. A resistivity measurement determines then the first
-term. When a 30 # 0 trivalent rare-earth impurity (e.g. Gg+) is introduced

in the same host, the first term of (38) is expected to remain nearly

constant. In this way, one measures the contribution of the second term of
(38).

Finally, we want to point out that the general equation (25) being valid
to any order in perturbation theory, may serve as starting point for a
calculation (similar to ref. 4) of the effect of the impurity potential in

the logarithmic Kondo term.
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APPENDIX A

DEFINITION OF THE MATRICES A(w) AND D(w)

A5 (w) =278 (S 163 (w)als)s, -szma(s 635 (w) 3855

A?g(w)=2nso(so+1)G$g( ©)d (d)a o2 {9639, 358%

B8 3wy =2 o (5, +1) 65 Qw2 (Vs 2nf 9 (685 () 363 %6 ; -2l (Dl w38

S w)=2ms (s, +1)63 (w)1(5)a -2nf a{$)gdd

DS (w)-6 +2ﬂGSS(w)J( )s -ZHXme;(w)zaSSJ( )s

m)5+me(mﬂ® 2ﬁ$$ y2addy (@

jo

-2nf_3(8)634(y)

502l Vel (w)

ds
(w)38mo 8507

Zﬂz

j-2ml

-2nf 3568

)2 (5)

m1m

(m) -2n65 d(wy ol Vs _ 2L 655 (w)2a (d)60j+2ﬂ ZmG?g<w)2uggJ(d) 5

Dds(w)- 2163 (w)a(%)s 2l 63d(u) 208 J(S)aoj+2wz

Gds Zu;d (d)

36

mo® jo
(A.1a)

38

mo Jjo
(A.1b)

mo jo

(A.1¢c)

)38 56,

mo- jo

(A.1d)

Goj

0Jj

ds ss .(s)
mGim(w)zamoJ 5oj

(A.2a)

605 (A-2b)

(A.2¢)

(A.2d)



APPENDIX B

PHASE-SHIFT PARAMETERS

Taking into account definition (30.c), forw+ i in the limit § - O,

one has real and imaginary parts. Hence:

Fy(0+i8) = Fa(w) £ 1 Fi() (A = s,d)

where:

1
R I
Fylw) =P E ————(—)—w_Ek 57 5 Frlw) = 7oy (w)

px(w) denoting the density of states of conducting X-electrons.

If we introduce the "phase-shift", one may write:

Fy(wti8) = |F, (w)]e™ (®)

where: s
@] = [(FR)? + (Flw)?]
Fr()
cos 8, (w) = ———
MR ()]
F) (w)
sind, (w) =
ST NY

It is quite clear that:

Fo(WHO)Fy(utis) = |F ()] |Fy(w)] e¥L Ss(0)4dq(u)]

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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Similarly:

Fi "dd(“)
1- vddFd(w-16) =1- VddFd(w) *i VddFd(w) = |1- VddFd(w)l e (B.6)

where:

N-Vy gl = [}1-vdd FR(w))? + (Vyq Fg(w)){]

]-Vdd Fg(w)
cos ndd(w) = (B.7)
]-vdd Fd(w)[
v, Flw)
dd 'd
sin ndd(w) = -
l]-vdd Fd(w)l

and finally:

T-Vyq Falwrio)-{V  1® F_(wtis) Folatis) = [X(w)| e Fin(w) (8.8)
where
[ X(w) 1=t [1-v, F |Vd](F 5“” (@)]? +Hddd

Vg gl? (Ftw) Fi(w) + Fiw)FRw))2y’

1= Vg Pl = 1Vgl? (Fw) FRw) - Fliw) Fliw)
cos nlw) = Y (8.9)
w
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. Vyq Fa(@) = IV l* (Fiw) Fe(w) + Fg(o) Fr (w))
sin n(w) = -

| X(w)

APPENDIX C

The spin independent contribution to the resistivity is:

le(EF)I

sdiz
Ix(eF)l

fr, = Ac |V {sin Gd(eF) cos n(eF) -

- c?s 6d(EF?,Sﬂ] n(sF)}

Aclv ,l? .
= ——— {7 p, (eg) cos n(eg) - Fi(eg) sin n(e )} (C.1)
[X(ep)] d\®F F d\F F

where we have used definitions (B.4).

Now neglecting mixing terms in expression (B.9) (which give higher order

contributions) one obtains:

R
- Vgq Fglw)
cos nlw) =
i]' Vdd Fd(w)l
(C.2)
Vag ™ Pglw)
sin n(w) = -
“ . Vdd Fd(w)l

Substituing {C.2) into (C.1) and neglecting IVSdI2 contributions in |X(eF)| one
gets:
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Vsd” R R
Br, = Ac {m pd(eF)(‘l - vdd Fd(eF)) + T pd(eF) vdd Fd(eF)}
11 - Vyq Falep |

lvsd] 2w pd(eF)

Ac

|1 - Vyq Falep|?
Finally:

ul lvsdlz pd(EF)

[1 - Vg F':i(eF)]2 + [n Vg pd(e,,-)]2

which is the result obtained in ref. 5.

Ar

(C.3)
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