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Abstract: From uniterity alone a lower bound for the derivative of the
absorptive part of the forward scattering amplitude with respesct to the
momentum transfer is obtained, in terms of the elastic and total cross
gections. Comparison with high energy scatﬁering experiments shows +{hat
the actual value of this derivative is rather close to the lower bound,
which provides some information on the partial wave distribution. Our
result can alsc be used to obtain consistancy requirements on theoretical
modelse., If Regge behaviour is assumed for high energy scattering namely
F(e,t) > £(%) s{x(t), then one can show that either o'(0)>e >0 or o(t) =
const.
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INTRODUCTION

Two qualitative features of high energy scattering  have
been known for some time: 1) At a given energy the total cross
section and the width of the diffraction peak may not assune
arbitrary values; The larger the total cross section the grzater
is the minimum number of partial waves required to build it up,
which means a larger '"radius" of the scattering object and
consequently a narrower diffracfion peak. An expression of such
a relationship in the form of an inequality was given iIn a
previous paper 1’2. ii) For a given total cross section the
width of the diffraction peak increases as one increases the

total elastic cross section 1’2,

A rough estimate of the width of the diffraction peak is

indeed easily obtained from:
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In section 1, we give a precise meaning to such a relation
ship by calculatiqg a lower bound for the derivative of the
scattering amplitude in the forward direction. We have Ffound

the following inequality:
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Ir section 2 ard 3 we have applied this result ir conpection
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with high energy scattering experiments ard theoretical predic-
tions. | |

1. Derivation of inequality 3.

let us consider the absorptive part of the scattering anm-

plitude:
o %
A(s,t) =58 > (2f+1) ag(s) Bll+— (4)

2k2

where les) is the imaginary part of the partial wave amplltude
%ﬁsjs k is the momerntum in the center of mass system,s is the
square of the energy and ~t is the squarse of the momentum transfer.

The requirement of unitarity imposes the following restriction on

the partial wave amplitudes agis)g

<a2{3543, (5)

The total cross section is given bys

Tpot = “~ Z (28+1) aﬂfqﬁ {(6)

and the total elastic cross seg%ion is given by

. rf%_Z (2441 g (8317 (7)

which evidently satisfies the ineguality:

o> Ty g =BT (2041) 8 (s ) (8

The derivative of A(s,;t) in the forward direction is:
L{L+1)

d
L Algstd, A = Z (2l41Y =ommeemee 2 4(g) (9)

Now one can obtain in a straightforward calculation an extremum
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of (9) when o, . and Oel.im, 3T® held fix. Using the method of
Lagrange multlpliers we readily get that (9) is ar extremum when
ag(s) is of the form: | _
ag(s) = o=~ BLA+L) (10)

whenever (5) is satisfied. We have, thus, to consider two cases:

a) o >1(°-e1.im >%'Utot)

Then an extremum of (9) 1is obtained for:

al(s) = 1 , AQ(LO
: £1(3) = w=BR(l+1) LKLy (11)
| aﬂ(s) =0 Co Q>Ll

where L, is the smallest integer for which o= BRALALY] ¢ 1 and
Ly 1is .the largest integer for which [ -p2L +1)] > 0. As a first
approximation in our calculations we replace sums by integrals*
and readily obtain: |

Ctot | Cel.im. \2

— |1+3 (1 -
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X
8

which is in agreement with the result of ref. 1 to order O(JE)D
k
Now one ean verify that this case corresponds to small irelasti-
, ; 2
city. Actually one obtains that whenever «> 1, Uél.im.> 3 Otot’
Sinee in the high energy region (10 - 30 Bev) all elementary
particle scattering cross sections turn out to be such that

Gel.im.<§ O%ot ¥e shall‘ not proceed to give a more accurate

It turns out that the relative error committed in doing so is of the

order -% and becomes negligible in the high energy region.
¥ ) .
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bound than (10), for this case.

a

b)“<lG%Lﬁm<3c%mD°

This case corresponds to higher inelasticity. The partisl wave
distribution leading to a minimum iz given by

ag{s) =a =pI(L+1) ,?,<Ll

(13)
ag(s) = 0 L>Ty

The condition a£(53<<1 is automatically satisfied and the only
restriction imposed by unitarity is a£f§§> 0. The exact result

for the minimum is:

5 .
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(14}
Yot [ Tret\ 1
The right hand side is positive for 4# s >w§ « Actually
el. k

one can verify that the expression in brackets is only slightly

s T

zgt GGOt) m‘j§ j over the entire range of energies
el. k- '

for which this expression is pesitive. We shall henceforth use

larger than {

the simpler and more convenient inequality.
.

1 (ot Tiot 1

o

=Tt

A Setl.im.  %°
One can make use of this ineguality in two ways:

i) by direct comparison with experimert.

i1} to check the internal consistency of theoretical models.
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2. COMPARISON WITH EXPERIMENT.

In oréder to confront (18} with experimertal rssnils  we
firat remark that sinee > that ineguality holds evern
Tel. el.im.
more so if one replaces O, .. by a4 o1 the right hwnd  side.
Then the right hand side may be experimentally determired. The
left hard side is not directly accessible to experimental detey
mination. However let us assume that in the forward direction
the ﬁdedPt Re f\S,b) m~ - Re f{s.t3 iz negligible as compered with
Tm f(Sgt) - In f(sgo) and in addition that at high energies the
interaction becomes spin~independent. Then the left hard sifs
‘}. a ’d(}' 9 £ 2 T Y
will be approximately egual to = 5% in | 55 ) which Is 2 mesrurabie
2 at L 5L
quantity. Wow using the resulis of Foley and others ? for small

angle scattering and the interpolation curves they propose. ong

L@ Cys T
R = J; ,,‘_.Cl,.. j?’p Qﬂg ; g tﬁ‘t tOt\m m:;;g l-v‘n;(:)
REAENNARY 9 T\ TR
L el./ |
+ +

is remarkably clcze L0 ong. TOY PDy T Do K P scatbtering this
ratio -lies in the range 1.4 ~ 1.5 whils for pp seattaring  one
gets Ra21.1. This value comez about because Iin p§ seattering the
best fit for the momertum transfer distribution of the form exv.
(a + bt + ¢t") was obtaired for ¢ = 0, that is with £ TNrE

exponential.

Now the closer the ratio to the walue ones the strongar the

restriction on the partial wave distribution which mmst avproach

the parabolic distribution giver by (13). To show how sensitive
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this ratio is to the partial -wave distribution we gilve & = few
examples: for a rectangular distribution {a; = const. for I>L,
a;= 0 for L>L)Y R = 2,253 for an exponential a, = const. exp.
(-0 L) one obtains R = 1.68 and for a gaussian aj = const. exp.
[-f(L+1)] one finds R = 1.1. The first example would  be
in disagreemert with the experimental value for all processes
and the second ¢ne would. be inconsistent with the data for Pp
scattering. Qnexmust;emphasizeg,hgweveraithgﬁ such an.analysis
can only give the general behaviour of the g_dgpendence.,of the
partial waves. One capnaf'for'iﬂ“tance rule out an exporential
tail in pp scatterlngg as required by analyticity. Howeverg one
expects that +hiq +a11 does not give aﬂy szzeable contr¢bution
for the scattering amkatJde, “The se conoiderations are of course
valid only in so far as the twﬂ aqvumpt Oﬂs madeg nanely the
smallness of Re f\sgo) 5 ‘Re f\sgujltuo and ‘spin independenee
hold true. K; J;”F6iéyf3 and ‘others have checked the smallness
of Re f(s,0) with respect to Im f{s,0) and spin independence by
extrapolating the elastic differemtial eross.section t0 zero

momentum transfer and comparing with the. optical 1limit,

>k?(~. ) L an
RN o

The equality 1s verified only if the amplitude  is purely

s Lo 10

‘ fdﬁw*‘t

absorptive and spin independent. . They have found that the
equality is at*léast'véryﬁheaﬁly\saﬁigfie&'iﬁ*pﬁ'ahd'ﬁETscatn'f
tering. On the other hand the experimental determination of

the derivative of +he real part with respect to t is very dig
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ficult although not impossible in principle. One could, thus
also take the view that the value of R close to one would
indicate a large value for é% Re f(Sgt)|t=0 with sign opposite
to that of Re f£(s,0).

%. A THECRETICAL CONSEQUENCE

We shall now consider a theoretical implication of
inequality (12). If the high energy scattering amplitude has
the Regge behaviour:

{

s \alt)
) (18)

5o
where o«(t) is analytic in the nelghbourhood of the physical
region then either o(t) is a gonstant or a1(0)}>€ >0. An

elegant proof of this assertion was Independently given by Su=
gawara 4 and Yamamoto & 6. We want to show that this result

also follows as a natural consequence of inequality (12).

First we notice that 1f A(s,t) is asymptotically given by
(18) and if the contribution of large momentum transfer (t <~ 7)
to the elastic imaginary cross section can be neglected,* then
*k

the ratio oél.im./(cfot)z approaches zeroc as s == 4 provided

that o(t) is not a constant. Indeed, under these hypotheses,

one can wrlte:

# In the case of identical particles one should add forward and backusrd
contributions.

% We must point out that this hypothesis is not required in the proof
presented in Beference () and (5).
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0 2
Oe1.im. 1 J’ B(t) s \2 [a(t)-a(0)]
s ( — dt (19)
°%ot2 16n° T P(O)T‘ No/

Since a{%t) is analytic in the neighbourhood of the physical
region and by wnitarity o«(t) € :o(0) then the right hand side of
(19) vanishes at s going to infinity. ‘Now taking (18) into (14)
one obtaing: S . _ _
B1(0) 1 [ %ot /%ot - 1)
+ «t(0) In s> 5 - (20)
py - R AN S WL T
Hence 1f o«(t) 1s not a constant the right hand side of (20)

g.

tends to infinity which implies that

axt{0)2€>0
However if o(t) is constant both sides of (20) remain finite
and there would be no violation of the inequality implied by
unitarity in the S-channel.
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