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Abstract

The noncommutativity induced by a Drinfel’d twist produces Bopp-shift like trans-
formations for deformed operators. In a single-particle setting the Drinfel’d twist
allows to recover the noncommutativity obtained from various methods which are
not based on Hopf algebras. In multi-particle sector, on the other hand, the Drin-
fel’d twist implies novel features. In conventional approaches to noncommutativity,
deformed primitive operators are postulated to act additively. A Drinfel’d twist im-
plies non-additive effects which are controlled by the coproduct. We illustrate these
features for a class of (abelian twist-deformed) 2D Hamiltonians. Suitable choices
of the parameters lead to the Hamiltonian of the noncommutative Quantum Hall
Effect, the harmonic oscillator, the quantization of the configuration space. The
non-additive effects in the multi-particle sector, leading to results departing from
the existing literature, are pointed out.
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1 Introduction

The aim of this paper is to show that a consistent (non-relativistic) quantization of a
Drinfel’d twist [1] deformed theory implies distinctive features in its multi-particle sector.
The resulting, noncommutative, theory is controlled by a Hopf algebra structure [2].
Deformed primitive operators acting on multi-particle states are not necessarily additive
(the coproduct unambiguously fixing their non-additive terms). It is rewarding that, in
the single-particle sector, the quantization based on the Drinfel’d twist produces the same
results obtained from various conventional ways (not based on a Hopf algebra structure)
of dealing with noncommutativity. The departing point with respect to these results
lies in the m-particle sector (for n > 2). In most of the conventional approaches, either
the problem of constructing multi-particle operators is not addressed or, alternatively,
noncommutative primitive operators are postulated to act additively. The Drinfel’d twist
induced noncommutativity (twNC, for short) offers a different picture.

We illustrate the features of twNC' by quantizing a class of (abelian twist-deformed)
two-dimensional operators which depend on a set of parameters. By suitably choosing
the parameters we can recover, as special cases, the Hamiltonian of the noncommutative
Quantum Hall Effect, the 2D noncommutative harmonic oscillator, the quantization of
the 2D configuration space.

The quantization framework which respects the Hopf algebra structure and is con-
sistent with the Drinfel’d twist deformation (named “Unfolded Quantization”) was in-
troduced in [3] and further discussed in [4, 5, 6]. In this paper we analyze its model-
independent features. The scheme of the paper is as follows. In Section 2 we review the
basic features of the Unfolded Quantization. In Section 3 we apply the abelian twist-
deformation to a class of operators which include, among others, the harmonic oscillator
and the Quantum Hall Effect Hamiltonians. In Section 4 we compute the effects of the
non-additivity in the 2-particle sector. We comment our results in the Conclusions.

2 The Unfolded Quantization revisited

In a non-relativistic system of non-interacting particles certain important operators, in-
cluding the Hamiltonian, are additive. Indeed, the energy of a system of non-interacting
particles is the sum of the energy of its constituents. This feature can be nicely encapsu-
lated within a Hopf algebra framework provided that the additive operators are regarded
as primitive operators. This construction, discussed in [3], was named “Unfolded Quan-
tization”. We review here its salient features.

At first an abstract dynamical Lie algebra Gp is individuated. One of its generators
is associated with the Hamiltonian. In order to allow for the Drinfel’d twist deforma-
tions that are discussed in the following, the dynamical Lie algebra Gp must contain the
Heisenberg-Lie algebra (with generators x;, p;, i) as a subalgebra. The Universal Envelop-
ing Algebra U(Gp) is naturally endowed with a Hopf algebra structure. In particular a
coproduct A : U(Gp) — U(Gp) @ U(Gp) is defined. A physical interpretation of the
coproduct is that in the undeformed case it nicely encodes the additivity of the energy.
Indeed, let us take any element g € Gp. Satisfying the primitivity condition means that
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A(g) = g®1+1® g. For the generator associated to the undeformed Hamiltonian,
this condition gets translated into the additivity of the two-particle energy levels, that is
Ey 9 = Ey + E5 (for other physical constructions based on the coproduct see [7]).

The choice of the dynamical Lie algebra Gp depends on the properties of the dynamical
system under consideration. In this paper we are focusing on different types of non-
relativistic two-dimensional systems which can be derived by a dynamical Lie algebra Gp
whose generators can be identified as follows

Gp = {h,x1,29,p1, P2, X11, Xa2, X, P11, Pao, Ps, My1, Moo, Mo, Mo }. (1)

The structure constants of the Gp Lie algebra can be derived from the structure constants
of its Heisenberg-Lie subalgebra, namely

[zi,p;] = ihdy, (2)
if the following identifications are made

X1 = %%2, Xog = ,%%2, Xs = %(Ile + x271),

Py = 1pi?, Py = 1po?, Ps = 3 (p1p2 + pap1), 3)
M, = %(1'1291 +p1a1), My = %(352202 + paa),

Mo = %(flpz + pax1), My = %(1521?1 + p172).

We deem unnecessary to explicitly present these straighforward computations.

Some of the generators entering Gp are primitive components of a given Hamiltonian
(as discussed in the following), while the remaining ones have to be inserted to guarantee
the closure of the Gp Lie algebra. It is important to stress that the generators entering (1)
have to be regarded as elements of an abstract Lie algebra. In particular the Hopf algebra
structure of the Universal Enveloping Algebra U(Gp) is only derived from the properties
of the abstract Lie algebra Gp alone. At the Hopf algebra level the (3) identifications are
inconsistent.

The introduction of quantum mechanics further requires the identification of a Hilbert
space V' which carries a representation of U(Gp). An operator & = p(u), acting on V', is
associated to a given u € U(Gp). It is recovered from the mapping

p : U(Gp) — End(V). (4)

On V', h acts as a multiplication by a constant number. In this paper we set B = p(h) = 1.

3 A class of operators and their twist-deformations
We introduce here a class of primitive elements Q2 € U(Gp), given by the expression
Q = a(Pll + PQQ) + b(XH + X22) + C(M12 - M21) + dxl + fp27 (5)

for a,b,c,d, f arbitrary real parameters. The Q operators, obtained via the (4) trans-
formation, are Hermitian. By specializing the coefficients entering (5) we obtain several
interesting cases that will be discussed in detail. In particular we get
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i)forb=1and a =c=d = f =0, the element {2 coincides with the “squared radius”

R?* = X11 + Xo;
i) for a = 5 and b = Jw? the element Q is associated to the Hamiltonian of the
harmonic oscillator H = %(Pn + Py) + %WZ(XH + Xoo);

iii) for a = ﬁ, b= m‘§C2, c=%,d=ckl, f=0,we obtain the Quantum Hall Effect

Hamiltonian in the presence of constant electric (E) and magnetic (B) fields (e is the
electron’s charge, w. = ;—Ii is the cyclotron frequence).
The Universal Enveloping Algebra U(Gp) admits an abelian Drinfel’d twist deforma-

tion induced by F € U(Gp) @ U(Gp), with

j:‘—l — e—i()teijpi@pj = ?5 ® 76 (6)

(in the right hand side, the Sweedler’s notation is understood).
The deformed generators 77 induced by the twist (see [8, 9, 3])

r e =0T (7)

generalize the Bopp shift and define, under the ordinary Lie algebra brackets, a non-
commutative structure. Since, explicitly,

RF = h, pz‘f = Pi, %f =T — aeijhpja (8)
we have that
(2.7, 27] = © = 2iah? (9)

(the constant non-commutative parameter © is expressed in terms of the abelian twist
parameter ).
The twist maps Q € Gp into Q7 € U(Gp). We have

O = Q-+ a[2b(z1py — por1) — 2¢(pi® + po?) — dhpy] + &®bR(pi® + po?). (10)

The deformed operator 0F € End(V') can be nicely expressed in terms of the creation
and annihilation operators

1 i 1 1 i
N . T
a;"V = Ax; + 1 . a; = AT; —1—), 11
AN VRPN )
for ¢ = 1,2 and a suitably chosen real parameter A so that
[az(')\)7 ag)\)T] 5@]h’ (12)

In all three cases above, namely the deformed squared radius operator, the deformed
harmonic oscillator and the deformed Quantum Hall Effect Hamiltonian (in the latter
case in the absence of the electric field), the deformed operator Q7 has the form

O =s(N+1)+tZ (s>t (13)
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in terms of the commuting operators N, Z ([N, Z] = 0)
N =alay +abay, Z =i(asal — ayald), (14)

where, for simplicity, the index A in the creation/annihilation operators has been dropped,
therefore a; = p(a; ( ))

A common pair of eigenvalues (n,z) for the operators N,Z are the integers n =
0,1,2,...and z = —n+2j (=0,1,...,n). It follows that, for s = |¢|, the vacuum of the
operator (13) is infinitely degenerate. A unique vacuum solution is obtained when s > |t|.

The following identifications are obtained:

—_

i) for the deformed squared radius operator R we get
)\ = — R S = t — 20{ (]‘5)

(one should note the singular limit for o — 0);

it) for the deformed hamiltonian H¥ of the harmonic oscillator we get

2
A= i — , s =wV1+ alw?, t = aw?; (16)

1+ a?w?
i1) for the deformed hamiltonian Hgp &, in the presence of a constant magnetic field B,
we get
mw, 1 W,

)\:4— I—t:—cl— .
2 —maw, s 2w< 4)

(17)

In the last two cases the undeformed limit & — 0 is non-singular.

In the third case the turning on of a o # 0 non-commutativity does not remove the
s = |t| degeneracy of the vacuum.

In all three cases a discrete single-particle spectrum of the corresponding deformed
operator is recovered from (13). For the squared radius operator an o # 0 twist deforma-
tion does not just imply a smooth deformation of the undeformed continuum spectrum,
but its breaking into a discrete spectrum.

In the s = [t| case with an infinitely degenerate vacuum there is a convenient, al-
ternative choice of the creation/annihilation operators, given by b, b', d, d' satisfying the
commutators

[b,0'] = [d, d"] = 1? (18)

and vanishing otherwise. We recall that, acting on V' we have, for the non-vanishing
commutators, [b, bT] [d, dT] =1

By setting, for a non-vanishing real «,
7)

([L’{: + Z[L”;), bt = — %3 ),

1 L
NG o /a L
1 ) ) 1 )
d= —(:cf—z:cf—l—Zah(pf%—zpf)), dl = 2\/_(3131 —|—m:2 +2ah(p2 zpf)),
(19)
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the operator R?” can be written as
R = 2a(2bTb+1). (20)

For the deformed Quantum Hall Effect Hamiltonian Hggy I (in the presence of the con-
stant electric field E) if we define

1 , .
b= E(al_la2+ﬂ)7 bt = (ar" +ias" + p),

1
d= —(CLl + ’ia2>, dT == (alT - ia2T)7 (21)

V2

Sisle

with

V2eE(1 — taw.)

= , (22)
\/wc?’(l — iawc)B
the Hamiltonian can be expressed as
Hows”™ = W) + K +r(d" +d), (23)
where the constants are
1
W = w(l—- Z—Lawc),
1 1 (eE)?(1 — taw,)?
K = - c 1—- c) — 2 )
E
ro= ¢ (24)
we(l — %awc)
(without loss of generality we have set, for simplicity, m = 3).

—

The spectrum of Hgp & is the sum of a discrete contribution proportional to W and
of a continuum part proportional to r. The latter part vanishes in the absence of the
electric field E.

The present derivation allows to recover the single-particle non-commutative spectrum

of the R?” operator (see [10]), of the harmonic oscillator (see [11] and also [12]) and of
the Quantum Hall Effect Hamiltonian ([13], see also [14]).

4 The multi-particle sector of twist-deformed opera-
tors

The multi-particle sector of twist-deformed operators is computed with the help of the
coproduct. We discuss at first the 2-particle state.
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For any 7 € U(Gp) the deformed coproduct is defined as
AP (1) = FAMF ' eU(Gp)@UGp). (25)

Applied on V ® V, due to the expression (6), the twist becomes a unitary operator

—

F € End(V®V), so that the 2-particle operators A7 (1) and A(7) are unitarily equivalent
15, 3]

AF(r) = FA(NF' € Bnd(VaV). (26)

Therefore, without loss of generality, the deformed 2-particle operator can be computed
from the undeformed coproduct of the deformed element.
For 7 expressed by (10) we have that A(Q7) € U(Gp) @ U(Gp) is given by

A(Qf) = A(Q) + 2abA(x9p; — x1p2) — QOzCA(pf —|—p%) — adA(hpy) + a%A(ﬁ(pf -H?%)).

(27)
Therefore A/(Q\f) € End(V®V)is
AOF) = FR1+1007 +0,91+18 0, + Qi (28)
where
Q, = —adpy+ (P> + p2) € End(V) (29)
and
Uiz = 20b[Z2 @ P1 + P1 ® Lo — T1 ® Pa — Po @ 1] — da(c — ab)[p1 ® P1 + P2 @ Po] € End(V @ V).

(30)

The non-additivity is implied by the presence of the last three terms in the right hand
side of (28).

In the absence of the Qmm term, the structure of the 2-particle operator A/(Q7 ) consists
of additive contributions from the first and the second particle. It should be noticed,
however, that these contributions Q' do not coincide with the deformed 1-particle operator

ﬁ}, due to corrections from the QT term
QO = OF+Q,. (31)
A convenient formula, for f = 0, is given by the commutator
[ﬁmiwaﬁl ®1+1® ﬁl] = 8iab(c— ab)[T1 ® P1 + T2 @ Po + P1 @ T1 + Po ® To] +

4icd(c — 2ab)[p1 ® 1 + 1 @ p1] — 2iabd[ty @ 1+ 1 @ Zo].
(32)

A common set of eigenvalues for ﬁmm and O R1I+1I® Q' is only obtained for d = 0 and

at the special value of a given by a = 7.
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4.1 Center of mass coordinates and 2-particle eigenvalues of the
harmonic oscillator

Let us discuss now for illustrative purposes the 2-particle harmonic oscillator Hamiltonian
in three cases:

a) the undeformed 2-particle Hamiltonian,

b) the “additive” noncommutative 2-particle Hamiltonian constructed as a sum of two
1-particle noncommutative Hamiltonians and, finally,

¢) the twist-deformed 2-particle Hamiltonian.

Let xl(-l), (z'*) be the coordinates of the first (second) particle (similarly pgl) and p?)

3
are their momenta). The center of mass coordinates and momenta are defined as

Xi= @+ o), = pf?, (33)
while the relative coordinates and momenta are
b= =) ==l 34
The three Hamiltonians are expressed as follows.
Case a:
H o= (P + P+ 2704 X+ (@ 4 ) + 2200 +4d). (3
Case b:

1
H = 5(1 + W) (P + P?) + 203 (X2 + X2) — 200 (X1 Py — X, P)) +

1
5(1 + a®w?)(qf + ¢3) + 2w (Y] + 13) — 20w (Y102 — Y1) (36)

Case ¢

1 1
H = (5+20°0°)(PF + Py) 4 2°(X] + X3) — daw (X0 Py = XoP) + 5 (a7 + g2) + 207 (07 + ).

One can see that in the twist-deformed case the deformation appears only in the center-
of-mass sector.

The eigenvalues are labeled by the four integers mi,ns, ji, jo (where ni,ny are non-
negative, while —n; < j; < ny, —ny < jo < ny). We have, in the three cases, the
following eigenvalues of the energy.

Case a:
Erimzri 2w(ny + ng) + 4w. (38)

Case b:
Erimsivie = 2wV1+a2w?(ng + ny + 2) + 2aw?(j1 + ja). (39)

Case c:

Erinsiige = 2wV14+4a2w?(ng +1) +2w(ng + 1) + daw? ;. (40)

(37)
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4.2 The twist deformation of the 2-particle Quantum Hall Effect
Hamiltonian

—

The twist-deformed 1-particle Hamiltonian (23) Hogpr” of the Quantum Hall Effect co-
incides with the noncommutative Hamiltonian (obtained with other methods) by [13]. In
the 2-particle sector of the Hamiltonian an extra, non-additive term H,..,., appears. We
have

—— ) — —

Hong = Hopp” ®1+1® Houp” + Hewtra- (41)

The contributions from H,..., can be computed, with perturbation method, at the first
order in the expansion of the deformation parameter a. We have

Hewtra = aHpy+0(a?), (42)
with
Hyy = —d(p2®1+1@p) +26(22 @ P+ p1 @ &2 — &1 @ Po — P2 @ &1) — 4c(p1 @ p1 + P2 @ Pa).
(43)
The perturbation theory at the first order gives the energy corrections

AEq = <nlanZS61752‘H(1)|n1>n2361>ﬂ2> (44)

for the 2-particle states |nq, no; 01, G2 > that, in the absence of H,y.q, have energy eigen-
values

Epynsppe = W(ni+no) + 2K + (81 + Bo)rv/2 (45)

(the constants W, K, r are given in formula (24)).
The computation of the first-order energy corrections AFE(;) is lengthy but straight-
forward. We get, explicitly

(eR)? We
AEqy = ——+¢ek —. 46
(1) 3 + e (51 + B2) 3 (46)
This formula shows the effect of the non-additivity of the Drinfel’d twist deformation in
the 2-particle sector.

5 Conclusions

This work points out non-additive effects in the multi-particle sector of twist-induced
noncommutative nonrelativistic quantum mechanical systems. We discussed a general
class of operators which, for different choices of their parameters, lead, in particular,
to the harmonic oscillator Hamiltonian, the Quantum Hall Effect Hamiltonian and the
square distance operator. The method based on deformed Hopf algebras allows to recover
the single-particle non-commutative spectrum computed in [11], [13] and [10], respectively.
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Our work addresses the question of the non-commutative contribution to the multi-particle
sector. For the above cases the Drinfel’d twist induced noncommutativity gives definite
results, that have been here presented. In the case of the harmonic oscillator, non-additive
properties of multi-particle systems were derived in [4]. In a different approach based on
Moyal star-product non-additive effects have been recently discussed in [16].

It should be mentioned that, for n-particle systems with n > 3, the non-additive effects
satisfy the associativity property as a consequence of the coassociativity of the coproduct
6].

The quantization framework for multi-particle systems here presented can be straight-
forwardly applied to other types of non-commutative deformations (in particular to non-
abelian twists) and is left for future investigations.
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