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Abstract

We calculate the vacuum energy density of the electromagnetic and conformally coupled scalar fields confined in
the interior of a rectangular waveguide and of a rectangular cavity. We identify the physical measurable vacuum
energy density by excluding local functions that once integrated do not depend on any global length parameters.
Although this quantity is uniform for both fields between parallel plates we show that in the interior of the waveguide
it is non-uniform for the conformally coupled scalar field and uniform for the electromagnetic field. In the interior
of the rectangular cavity, it is non-uniform for the electromagnetic field. In the situations where the vacuum energy
density is non-uniform, we provide a numerical analysis of the results, showing how their form depend on the
boundary conditions and on the global length parameters.
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I. INTRODUCTION

It is well-known that boundary conditions imposed upon quantum fields may lead to divergent expectation values
for local observables when they are evaluated on the boundaries. A simple example is a massless, minimally coupled
scalar field ϕ(t,x) which vanishes on the z = 0 plane. One finds that the renormalized expectation values of both
ϕ2 and of the energy density T00 diverge as z → 0.
A less trivial example of the situation discussed above is the local version of Casimir original problem, performed

by Brown and Maclay [1]. They obtained a finite (constant and diagonal) stress energy tensor due to the cancellation
of the electric and magnetic sectors. This result can also be interpreted as due to the conditions of covariant
conservation, null trace and symmetry considerations in the general form of the stress energy tensor between the
plates [2] (a similar cancellation can be arranged for the scalar field by computing the improved stress energy
tensor, which is traceless). Nevertheless, the boundedness (and uniformity) of the stress energy tensor of the
electromagnetic field in this configuration does not represent its generic behavior. If the boundary is curved,
however slightly, then the behavior of the stress energy tensor near the boundary is actually divergent. The electric
and magnetic sectors in the Casimir problem each behave in this way, but the divergences cancel perfectly (see
however [3]).
Though related to the infinities of field theory, this divergence is not of the usual type that is to be removed by

renormalization. It is real in the sense that it originates in the unphysical nature of classical “perfect conductor”
boundary conditions [2] [4]. In the case of material boundaries, such metal plates, infinite values of 〈E2〉 or other
observables are presumably avoided because such boundaries are not perfect reflectors at all frequencies. A metal
plate is a good reflector of electromagnetic waves at frequencies below the plasma frequency, but becomes relatively
transparent at higher frequencies (for a recent discussion see [5]).
A well-known example of the physical nature of boundary divergences is the wedge shaped region formed by two

plane conducting boundaries intersecting at an angle α. We find [4] that 〈T00(x)〉 diverges as r−4, where r is the
distance to the edge. In the limit r → ∞ and α→ 0 in such a way that rα = a remains constant, this configuration
approaches two parallel plates separated by a distance a. This consistency would of course no be obtain if the
unbounded term r−4 were to be removed by an ad hoc renormalization.
Consider a quantum field confined in the interior of a cavity with Dirichlet boundary conditions (although the

correct picture of the Casimir effect is a classical boundary immersed in a quantum field, we will not lead with
the contribution of external modes since this is a open problem for the rectangular boundaries considered is this
paper; see for example ref. [6]). A fundamental problem is then how does the finite global Casimir effect result
from the divergent local description. The traditional solution to this problem is to compare the system to a
“reference vacuum” where the latter is understood to be the system obtained by displacing in an appropriate way
all boundaries to spatial infinity [7] [8]. When local quantities are integrated over the cavity, this definition arranges
the cancellation of the boundary divergences through the subtraction of a infinite quantity that do not depend on
any global length parameters and then the global result is recovered. This infinity quantity is identified with the
integral of the boundary divergent part over all space [9].
The global result can be obtained in another way, with a more clear physical interpretation, as the author showed

in ref [9]. Explicit calculations for rectangular geometries demonstrated that the known global variable 〈Qm〉 (〈〉
means vacuum expectation value) of those systems can be obtained from the local variable 〈Q(x)〉 as follows :∫

m

〈Q(x)〉F = 〈Qm〉+
∫

ext

〈Q(x)〉B , (1.1)

where 〈Q(x)〉F and 〈Q(x)〉B means boundary finite and boundary divergent parts respectively. In the second
integral, the subscript “ext” means that 〈Q(x)〉B is integrated outside the cavity far away where its diverges. To
illustrate this, consider the scalar field between parallel plates separated by a distance a. The global energy can be
obtained from the energy density (using the minimal coupled stress tensor) as :∫ a

0

〈T00(x)〉F dx = Ec +
∫ ∞

a

(x)−2
dx +

∫ 0

−∞
(x− a)−2

dx
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where Ec = π2/1440a4 is the Casimir energy. Note that in the second member the integrals are convergent because
the integrations are done away from the boundaries where the two integrands diverges.
Let us compare the two procedures. In the reference vacuum, the boundaries are infinitely far apart, so 〈Q(x)〉F =

0. The physical measurable global variable 〈Qphys〉 is defined by

〈Qphys〉 =
∫

m

〈Q(x)〉 −
∫

all space

〈Q(x)〉B

Suppose that is possible to do the separation 〈Q(x)〉 = 〈Q(x)〉F + 〈Q(x)〉B. Using (1.1) we have

〈Qphys〉 = 〈Qm〉+
∫

ext

〈Q(x)〉B +
∫

m

〈Q(x)〉B −
∫

all space

〈Q(x)〉B
= 〈Qm〉 .

So the procedure of subtract a reference vacuum is equivalent to exclude the local functions that once integrated
do not depend on any global length parameter. In this paper we define the physical measurable vacuum energy
density using the latter procedure. Unlike the case of parallel planes geometry in which the conformally coupled
scalar field and the electromagnetic field both gives a uniform vacuum energy density, we will show that these fields
can give different answers (namely local functions uniform or not) in other rectangular geometries.
The organization of the paper is the following: In section II a brief review of the formalism is presented. In

section III we calculate the boundary finite part of the vacuum energy density of a conformally coupled massless
scalar field in a rectangular waveguide submitted to Dirichlet and Neumann boundary conditions on the walls.
We then integrate the boundary finite part, separate the physical measurable vacuum energy density and show
that it is non-uniform. A numerical analysis is presented to show how their form depend on the global length
parameters. In section IV we use the Borgnis-Bromwich method to obtain the physical measurable energy density
of the electromagnetic field in a rectangular waveguide and in a rectangular cavity. We show that this quantity is
uniform in the waveguide configuration and non-uniform in the rectangular cavity. Conclusions are given in section
V. In this paper we use h̄ = c = 1.

II. BASIC FORMALISM

A. Conformally coupled scalar field

The vacuum expectation value of the improved stress energy tensor of a real massless scalar field Θµν(x) can be
written as

〈Θµν(x)〉 = lim
y→x

[
1
3

(
∂

∂xµ

∂

∂yν
+
∂

∂xν

∂

∂yµ

)
− 1

6

(
∂

∂yµ

∂

∂yν
+
∂

∂xν

∂

∂xµ
+ ηµν

∂

∂xα

∂

∂yα

)]
〈φ(x)φ(y)〉 , (2.1)

Using the standard Fock space representation, the quantity 〈φ(x)φ(y)〉 in eq.(2.1), can be written as

〈φ(x)φ(y)〉 =
∑

n

1
2ωn

exp(−i (x0 − y0)ωn)φn(x)φ∗n(y) , (2.2)

where x =(x1, x2, x3) and {φn(x)} is a complete set of spatial modes satisfying −∆φn(x) = ω2
nφn(x). To simplify,

let us limit the discussion to the energy density only. Applying the differential operator of eq.(2.1) in the expression
given by eq.(2.2) and taking the limit x→ y will define 〈Θ00(x)〉 (formally) as

〈Θ00(x)〉 = 5
12

∑
n

ωn |φn|2 + 1
12

∑
n

1
ωn

∣∣∣�∇φn

∣∣∣2 (2.3)

The mode sums given by eq.(2.3) diverges and needs regularization and renormalization procedure. We can
regularize these sums writing them in terms of the bilocal zeta function (and its spatial derivatives)
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〈Θ00(x)〉 = 1
12

lim
y→x

[
5 ζ(s = −1

2
| x,y) +

3∑
i=1

∂

∂xi

∂

∂yi
ζ(s =

1
2
| x,y)

]
(2.4)

where :

ζ (s | x,y) = µ2s
∑

n

(
ω2

n

)−s
φn(x)φ∗n(y), (2.5)

(s complex) which in four space-time dimensions converges for Re(s) > 3
2 (we introduce the parameter µ with

dimensions of mass in order to have a dimensionless quantity raised to a complex power). As we have to calculate
the bilocal zeta function in the region Re(s) < 3

2 we have to define it through analytic continuation in s. It is
related to the heat kernel by a Mellin transform

ζ (s | x,y) = µ2s

Γ(s)

∫ ∞

0

dt ts−1K (t | x,y) , Re s >
3
2

(2.6)

where

K (t | x,y) =
∑

n

e−tω2
nφn(x)φ∗n(y), t > 0. (2.7)

Initially holding Re s > 3
2 we can perform the Mellin transform of K (t | x,y) and then continued the result to

Re s < 3
2 . Once this is do it we can identify the free space bilocal zeta function (which has a ultraviolet divergence

in the coincidence limit) and all boundary divergences. The remaining terms will form convergent mode sums. For
sake of simplicity we choose µ = 1 in the following because no final result in this work will depend on it.

B. Electromagnetic field

The stress energy tensor associated with the electromagnetic field can be calculated from the scalar problem using
the Bromwich-Borgnis method [13], which reduces the problem to two scalar boundary value problems through
the Hertz vectors. These quantities are connected with the electromagnetic potential in such a way that the
Lorentz condition is satisfied identically. For given Hertzian vectors Πe and Πb the electric and magnetic fields are
constructed by

E = ∇×∇× Πe +
∂∇× Πb

∂ t
(2.8)

B = ∇×∇× Πb − ∂∇× Πe

∂ t
(2.9)

We adopt the convention that the electric (E) and magnetic (H) fields are expressed in terms of the Hertz vectors
having only one nonzero component

Πe = (0, 0, φ), Πb = (0, 0, ψ), (2.10)

where φ and ψ are scalar fields that can be quantized as usual. Using the two preceding equations, the electric (E)
and magnetic (B) fields are given by

E =
(
∂0∂2ψ + ∂1∂3φ,−∂0∂1ψ + ∂2∂3φ,−∇2

⊥φ
)

(2.11)

B =
(−∂0∂2φ+ ∂1∂3ψ, ∂0∂1φ+ ∂2∂3ψ,−∇2

⊥ψ
)

(2.12)

where ∂µ = ∂/∂xµ and ∇2
⊥ = ∂1∂1 + ∂2∂2. The normalization constants for the electric and magnetic fields may

be obtained demanding that∫
cavity

d3x
1
2

(
En1,n2,n3E

∗
m1,m2,m3

+ Bn1,n2,n3B
∗
m1,m2,m3

)
=

1
2
ω δn1m1,n2m2,n3m3
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This condition is satisfied if the normalization constants are given by |Nn1,n2,n3 |2 = ∇−2
⊥ .

The vacuum stress energy tensor associated with the electromagnetic field

〈Tαβ(x)〉 = lim
y→x

〈
Fαµ(x)F

µ
β (y) − 1

2
ηαβFµν(x)Fµν(y)

〉
, (2.13)

can be calculated using φ and ψ through the eqs.(2.11) and (2.12) by evaluating the appropriate electromagnetic
field correlations. Again we will limit ourselves to the energy density only.:

〈T00(x)〉 = lim
y→x

1
2
(〈E(x)E(y)〉+ 〈B(x)B(y)〉) (2.14)

The electromagnetic boundary conditions E‖ = 0 and B⊥ = 0 on the walls will correspond to an appropriate
combination of Dirichlet and Neumman boundary conditions for the scalar fields φ and ψ.

III. CONFORMALLY COUPLED SCALAR FIELD

A. Rectangular Waveguide

Let the waveguide be oriented along the x3 axis, with Dirichlet (D) or Neumann (N) boundary conditions at
x1 = 0 and x1 = a and also x2 = 0 and x2 = b . For Dirichlet b.c., the spatial modes are given by:

φm1,m2 (x) =
(

4
ab

) 1
2

sin
m1πx1

a
sin
m2πx2

b

1√
2π
eik3x3 , (3.1)

with m1,2 = 1, 2, 3, ...; −∞ < k3 < ∞ and ω2
n =

((
m1π

a

)2 +
(

m2π
b

)2 + k2
3

)
, where n denotes the collective indices

(m1,m2, k3).
With Neumann b.c., the spatial modes are given by:

φm1,m2 (x) =
(

4
ab

) 1
2

cos
m1πx1

a
cos
m2πx2

b

1√
2π
eik3x3 , (3.2)

with m1,2 = 0, 1, 2, 3, ... and −∞ < k3 < ∞. Substituting eq.(3.1) in eq.(2.7), integrating the free space-time part
using eq.(A1) and ressuming the resulting expression using eq.(A2) we have :

K (t | x,y) = (4πt)−
3
2 exp

[
− (x3 − y3)2

4t

]

×
∞∑

n1=−∞

{
exp

[
− [2n1a+ (x1 − y1)]2

4t

]
∓ exp

[
− [2n1a+ (x1 + y1)]

2

4t

]}

×
∞∑

n2=−∞

{
exp

[
− [2n2b+ (x2 − y2)]2

4t

]
∓ exp

[
− [2n2b+ (x2 + y2)]

2

4t

]}
. (3.3)

where the upper (lower) sign corresponds to Dirichlet (Neumann) boundary conditions. Performing the Mellin
transform using eq.(A3) we have

ζ (s | x,y) = Γ(3
2 − s)

(4π)
3
2 Γ(s)

∞∑
n1,n2=−∞

(
Z−− ∓ Z−+ ∓ Z+− + Z++

)
, (3.4)

where Z±± = Z±±(n1, n2,x,y) are given by

Z±± =

[(
n1a+

(x1 ± y1)
2

)2

+
(
n2b+

(x2 ± y2)
2

)2

+
(
x3 − y3

2

)2
]s− 3

2

. (3.5)
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Let us identify the ultraviolet and boundary divergences that will appear in the local zeta function ζ(s | x,x). The
term Z−− (0, 0,x,y) is the free space-time contribution, then containing a ultraviolet divergence in the limit y → x
and will be discarded. The terms Z−+ (0, 0,x,x), Z−+ (0,−1,x,x), Z+− (0, 0,x,x) and Z+− (−1, 0,x,x) are iden-
tified with the divergent wall boundary terms and the terms Z++ (0, 0,x,x), Z++ (0,−1,x,x), Z++ (−1, 0,x,x)
and Z++ (−1,−1,x,x) are identified with the divergent edge boundary terms. The appearance or not of these
divergences in the stress energy tensor will depend on his specific form.
The energy density (2.4) can now be evaluated using the analytic continued bilocal zeta function (3.4) as

〈Θ00(x)〉 = 〈Θ00(x)〉B + 〈Θ00(x)〉F , (3.6)

where B and F mean the boundary divergent and boundary finite part respectively. In explicit form:

〈Θ00(x)〉B = − 1
96π2

{
[
(x1)

2 + (x2)
2
]−2

+
[
(a− x1)

2 + (b− x2)
2
]−2

+

+
[
(x1)

2 + (b− x2)
2
]−2

+
[
(a− x1)

2 + (x2)
2
]−2

} (3.7)

〈Θ00(x)〉F = − 1
32π2

∑
(n1,n2) �=(0,0)

[
(n1a)2 + (n2b)2

]−2
+

± 1
24π2

(∑
(n2b)2

[
(n1a+ x1)2 + (n2b)2

]−3
+

∑
(n1a)2

[
(n1a)2 + (n2b+ x2)2

]−3
)

− 1
96π2

∑
(n1,n2) �=(0,0),(−1,−1),(0,−1),(−1,0)

[
(n1a+ x1)2 + (n2b+ x2)2

]−2
. (3.8)

As expected we see that 〈Θ00(x)〉 has no wall divergences, but only edge ones.
Let us now integrate the boundary finite part of the vacuum energy density, 〈Θ00(x)〉F , over the waveguide ,

0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b, and separate the part that gives the total energy, i.e., the physical measurable part. The
integral of the first term of eq.(3.8) gives:

− ab

32π2
Z2(2|a, b), (3.9)

where :

Z2(2|a, b) =
∑

(n1,n2) �=(0,0)

[
(n1a)2 + (n2b)2

]−2
.

The integration of the second (and third) term of eq.(3.8) can be done using the fact that

∫ a

0

dx

∞∑
n=−∞

[
(na+ x)2 + B

]−3
=

∞∑
n=−∞

∫ (n+1)a

na

dt
[
t2 +B

]−3
= 2

∫ ∞

0

dt
[
t2 +B

]−3

where the last integral is given by eq.(A4). The result is :

− 1
24π2

∫ a

0

dx1

∫ b

0

dx2

∑ [
(n1a+ x1)2 + (n2b)2

]−3
(n2b)2 =

1
32πa2

ζ(3), (3.10)

− 1
24π2

∫ a

0

dx1

∫ b

0

dx2

∑ [
(n2b+ x2)2 + (n1a)2

]−3
(n1a)2 =

1
32πb2

ζ(3), (3.11)

where ζ(s) is the usual Riemann zeta function. Following the notation of [9], the integral of the fourth term of
eq.(3.8) can be rewritten as:
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− 1
96π2

∫ a

0

dx1

∫ b

0

dx2 ζF (2|x1, x2) =
1

96π2

∫
ext

ζB(2|x1, x2) =

=
1

24π2

[∫ ∞

a

∫ ∞

b

+
∫ ∞

a

∫ b

0

+
∫ a

0

∫ ∞

b

]
dxdy

1
(x2 + y2)2

, (3.12)

where

ζF (2|x1, x2) =
∑

(n1,n2) �=(0,0)(0,−1)(−1,0)(−1,−1)

[
(n1a+ x1)2 + (n2b+ x2)2

]−2
(3.13)

and the right-hand side is each one of the divergent edge terms integrated over the appropriate quadrant outside
the cavity, i.e., away of the points where they diverge, and thus eq.(3.12) is also finite but as we will see below, do
not contribute to the total energy. Gathering all previous results we have that:∫

cavity

〈Θ00(x)〉F = EC +
∫

ext

〈Θ00(x)〉B , (3.14)

where ∫
ext

〈Θ00(x)〉B = − 1
96π2

∫
ext

ζB(2|x1, x2). (3.15)

And

EC = − ab

32π2
Z2(2|a, b) + 1

32π
ζ(3)

(
1
a2

+
1
b2

)
, (3.16)

is the total Casimir energy. We can add the same infinite term∫
cavity

〈Θ00(x)〉B

to both sides of the equation above, obtaining:∫
cavity

〈Θ00(x)〉 = EC +
∫

all space

〈Θ00(x)〉B , (3.17)

where the last integral above is an infinite constant independent of the global length parameters a, b. In global
calculations one usually discards this infinite constant. The physical measurable energy density is then given by

〈Θ00(x)〉phys = − 1
32π2

∑
(n1,n2) �=(0,0)

[
(n1a)2 + (n2b)2

]−2
+

± 1
24π2

∑ [
(n2b)2 + (n1a+ x1)2

]−3
(n2b)2 +

± 1
24π2

∑ [
(n1a)2 + (n2b+ x2)2

]−3
(n1a)2. (3.18)

Figure (1) show the form of 〈Θ00(x)〉phys in the interior of the square waveguide for Dirichlet b.c., assuming
a = b = 1. We see that this quantity is positive in all space points and produces a positive total energy. We observe
that 〈Θ00(x)〉phys is greater near the edges. This result can be interpreted as though the edges mimic the curvature
properties [10] once curved surfaces alter the local density of modes in the region near the surface. In general, the
change in the mode density from the free-field case that occurs very near the surface varies as the inverse radius of
the curvature [11]. Figure (2) show 〈Θ00(x)〉phys in the case b = 2a. In this case the contribution of the negative
part of the vacuum energy density dominates and one obtains a negative total energy.
Figure (3) show the form of 〈Θ00(x)〉phys in the interior of the square waveguide for Neumann b.c.. As Neumann

boundary enhances the field in its vicinity, as opposite to Dirichlet boundary that weakens it, figure (3) has the
form of the figure (1) upside down. Figure (4) shows 〈Θ00(x)〉e for b = 2a. We see that in the Neumann case,
the sign of the total energy do not change with the relative sizes of the waveguide as is well-know from global
calculations [12].
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B. Rectangular Cavity

For posterior use in the electromagnetic case, let us calculate the bilocal zeta function in the interior of a
rectangular cavity submitted to mixed boundary conditions. Let the rectangular cavity obey Dirichlet boundary
conditions at x1 = 0, a and x2 = 0, b and Neumann boundary conditions at x3 = 0, c (DDN). The spatial modes
are given by:

φm1,m2,m3 (x) =
(

8
abc

) 1
2

sin
m1πx1

a
sin
m2πx2

b
cos
m3πx3

c
, (3.19)

with m1,2 = 1, 2, 3, ..., m3 = 0, 1, 2, 3...and

ω2
n =

((m1π

a

)2

+
(m2π

b

)2

+ (
m3π

c
)2

)
,

With Neumann boundary conditions at x1 = 0, a and x2 = 0, b and Dirichlet boundary conditions at x3 = 0, c
(NND), the modes are :

φm1,m2,m3 (x) =
(

8
abc

) 1
2

cos
m1πx1

a
cos
m2πx2

b
sin
m3πx3

c
, (3.20)

with m1,2 = 0, 1, 2, 3, ..., m3 = 1, 2...
Following the same steps of the previous subsection we have :

ζ (s | x,y) = Γ(3
2 − s)

(4π)
3
2 Γ(s)

∞∑
n1,n2,n3=−∞

(
Z−−− ∓ Z+−− ∓ Z−+− ± Z−−+ + Z++− − Z+−+ − Z−++ ± Z+++

)
,

(3.21)

where the upper (lower) sign corresponds to DDN (NND) boundary conditions and Z±±± = Z±±±(n1, n2, n3,x,y),
are given by

Z±±± =

[(
n1a+

(x1 ± y1)
2

)2

+
(
n2b+

(x2 ± y2)
2

)2

+
(
n3c+

(x3 ± y3)
2

)2
]s−3/2

The free space-time contribution Z−−− (0, 0, 0,x,y) contain a ultraviolet divergence in limit y→x (will be
discarded). The boundary divergences are contained in the following terms :
Z+−−(0, 0, 0,x,x), Z+−− (−1, 0, 0,x,x), Z−+− (0, 0, 0,x,x), Z−+− (0,−1, 0,x,x) , Z−−+ (0, 0, 0,x,x) and

Z−−+ (0, 0,−1,x,x) ⇒ divergent wall boundary terms.
Z++− (0, 0, 0,x,x), Z++− (0,−1, 0,x,x), Z++− (−1, 0, 0,x,x), Z++− (−1,−1, 0,x,x) , Z+−+ (0, 0, 0,x,x),

Z+−+ (−1, 0, 0,x,x), Z+−+ (0, 0,−1,x,x) , Z+−+ (−1, 0,−1,x,x) , Z−++ (0, 0, 0,x,x), Z−++ (0,−1, 0,x,x),
Z−++ (0, 0,−1,x,x) and Z−++ (0,−1,−1,x,x) ⇒ divergent edge boundary terms.
Z+++ (0, 0, 0,x,x), Z+++ (−1, 0, 0,x,x), Z+++ (0,−1, 0,x,x), Z+++ (0, 0− 1,x,x) , Z+++ (−1,−1, 0,x,x),

Z+++ (−1, 0,−1,x,x), Z++ + (0,−1,−1,x,x) and Z++ + (−1,−1,−1,x,x) ⇒divergent corner boundary terms.

IV. ELECTROMAGNETIC FIELD

A. Rectangular Cavity

In the case of a rectangular cavity, it turns out that the boundary conditions of the electromagnetic field at the
inner surface of the cavity are fulfilled if φ satisfies Dirichlet boundary conditions at the walls which are parallel
to the e3 direction and Neumman boundary conditions at the walls perpendicular to e3 and exactly the other way



CBPF-NF-013/03 8

around for the potential ψ. Thus the bilocal zeta functions defined by eq. (3.21), ζ(s |x,y)DDN and ζ(s |x,y)NND

are the bilocal zeta functions for the potentials φ and ψ respectively.
For brevity let us evaluate only the boundary finite part of the energy density (the other components can be

calculated exactly in the same way). It is easy to show that by evaluating the electromagnetic field correla-
tions present in eq.(2.14) using eqs.(2.11) and (2.12), the resulting expression will depend only on derivatives of
〈φ(x)φ(y)〉 + 〈ψ(x)ψ(y)〉. After a long but straightforward calculation we get

〈T00(x)〉F = − 1
16π2

∑
(n1,n2,n3) �=(0,0,0)

[
(n1a)2 + (n2b)2 + (n3c)2

]−2
+

− 1
16π2

∑
(n1,n2,n3) �=(0,0,0),(0,−1,−1),(0,0,−1),(0,−1,0)

[
(n1a)2 + (n2b+ x2)2 + (n3c+ x3)2

]−2
+

+
1

4π2

∑
(n1,n2,n3) �=(0,0,0),(0,−1,−1),(0,0,−1),(0,−1,0)

[
(n1a)2 + (n2b+ x2)2 + (n3c+ x3)2

]−3
(n1a)2 +

− 1
16π2

∑
(n1,n2,n3) �=(0,0,0),(−1,0,−1),(0,0,−1),(−1,0,0)

[
(n1a+ x1)2 + (n2b)2 + (n3c+ x3)2

]−2
+

+
1

4π2

∑
(n1,n2,n3) �=(0,0,0),(−1,0,−1),(0,0,−1),(−1,0,0)

[
(n1a+ x1)2 + (n2b)2 + (n3c+ x3)2

]−3
(n2b)2 +

− 1
16π2

∑
(n1,n2,n3) �=(0,0,0),(−1,−1,0),(0,−1,0),(−1,0,0)

[
(n1a+ x1)2 + (n2b + x2)2 + (n3c)2

]−2
+

+
1

4π2

∑
(n1,n2,n3) �=(0,0,0),(−1,−1,0),(0,−1,0),(−1,0,0)

[
(n1a+ x1)2 + (n2b+ x2)2 + (n3c)2

]−3
(n3c)2, (4.1)

where in the first sum we excluded the free space-time divergence and in other sums we excluded the edges
divergences (the wall and corner divergences have been cancelled when we combined the Hertz potentials).
Let us now integrate the boundary finite part of the vacuum energy density, 〈T00(x)〉F , over the cavity ,

0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b, 0 ≤ x3 ≤ c, and separate the part that gives the total energy. The integral of the first term
of eq.(4.1) gives:

− abc

16π2
Z3(2|a, b, c), (4.2)

where

Z3(2|a, b, c) =
∑

(n1,n2) �=(0,0,0)

[
(n1a)2 + (n2b)2 + (n3c)2

]−2
. (4.3)

Following again the notation of [9] and using (A4), the integral of the second term gives :

− 1
8π2

∫ a

0

dx1

∫ b

0

dx2

∫ c

0

dx3


ζF (2|x2, x3) +

∞∑
n2,3=−∞

∑
n1 �=0

[
(n1a)2 + (n2b+ x2)2 + (n3c+ x3)2

]−2




= − a

8π2

∫
ext

ζB(2|x2, x3)− π

48a
, (4.4)

where the functions ζF (2|x2, x3) and ζB(2|x2, x3) are defined by eqs. (3.13) and (3.12). The integral of the third
term gives :

1
4π2

∫ a

0

dx1

∫ b

0

dx2

∫ c

0

dx3

∞∑
n2,3=−∞

∑
n1 �=0

[
(n1a)2 + (n2b+ x2)2 + (n3c+ x3)2

]−3
(n1a)2 =

π

24a
(4.5)

The other terms can be integrated in a similar way. Gathering all previous results we have
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∫ ∫
cavity

〈T00(x)〉F = EC +
∫

ext

〈T00(x)〉B , (4.6)

where

EC = − abc

16π2
Z3(2|a, b, c) + π

48

(
1
a
+

1
b
+

1
c

)
(4.7)

is the total Casimir energy, in agreement with [8] and∫
ext

〈T00(x)〉B = − 1
8π2

{
a

∫
ext

ζB(2|x2, x3) + b
∫

ext

ζB(2|x1, x3) + c
∫

ext

ζB(2|x1, x2)
}
. (4.8)

Finally, the physical measurable vacuum energy density is :

〈T00(x)〉phys = − 1
16π2

∑
(n1,n2,n3) �=(0,0,0)

[
(n1a)2 + (n2b)2 + (n3c)2

]−2
+

− 1
16π2

∞∑
n2,3=−∞

∑
n1 �=0

[
(n1a)2 + (n2b+ x2)2 + (n3c+ x3)2

]−2
+

+
1

4π2

∞∑
n2,3=−∞

∑
n1 �=0

[
(n1a)2 + (n2b+ x2)2 + (n3c+ x3)2

]−3
(n1a)2 +

− 1
16π2

∞∑
n1,3=−∞

∑
n2 �=0

[
(n1a+ x1)2 + (n2b)2 + (n3c+ x3)2

]−2
+

+
1

4π2

∞∑
n1,3=−∞

∑
n2 �=0

[
(n1a+ x1)2 + (n2b)2 + (n3c+ x3)2

]−3
(n2b)2 +

− 1
16π2

∞∑
n1,2=−∞

∑
n3 �=0

[
(n1a+ x1)2 + (n2b+ x2)2 + (n3c)2

]−2
+

+
1

4π2

∞∑
n1,2=−∞

∑
n3 �=0

[
(n1a+ x1)2 + (n2b+ x2)2 + (n3c)2

]−3
(n3c)2. (4.9)

And we see that this is a non-uniform function. Its form is show in figure (5) for a = b = c = 1 at the z = 1/2,
z = 1/4 and z = 1/16 planes respectively. We see that the vacuum energy density grows as we approach the corners
(as expected).

B. Rectangular Waveguide

Letting the waveguide be oriented along the x3 axis, it follows that φ and ψ must satisfy Dirichlet and Neumann
boundary conditions, respectively. Therefore, the bilocal zeta functions associated with the Hertz potentials φ and
ψ are given by eq. (3.4). Following the same steps of the previous section we have for the boundary finite part of
the vacuum energy density

〈T00(x)〉F = − 1
16π2

∑
(n1,n2) �=(0,0)

[
(n1a)2 + (n2b)2

]−2
+

− 1
16π2

∑
(n1,n2) �=(0,0),(−1,−1),(0,−1),(−1,0)

[
(n1a+ x1)2 + (n2b+ x2)2

]−2
(4.10)

where we excluded the free space-time divergence in the first sum and the edges divergences in the second sum
(the wall divergences was cancelled when we combined the Hertz potentials). Like in the case of the conformally
coupled scalar field the second term do not contribute to the global energy, therefore the physical measurable energy
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density is only the first term, which is uniform. So we have showed that in the waveguide configuration, besides
the fact that the wall divergences cancelled for conformally coupled scalar field and for the electromagnetic field,
the physical measurable energy density is non-uniform in the first case and uniform in the second.

V. CONCLUSIONS

In this paper we obtained the physical measurable vacuum energy density of a massless scalar field in a rectangular
waveguide and of a electromagnetic field in a rectangular waveguide and in a rectangular cavity. As we showed, in
the waveguide configuration this quantity is non-uniform for the conformally coupled scalar field and uniform for
the electromagnetic field. The numerical analysis illustrated how their form depend on the boundary conditions
and on the sizes of the waveguide. This result can be though as an unexpected since as we mentioned in the
introduction, in the Casimir original problem the uniformity of the vacuum energy density is usually associated
with the fact that the stress energy tensor of the electromagnetic field is traceless. Nevertheless, in a rectangular
cavity, we showed that the physical measurable energy density is non-uniform for the electromagnetic field. The
discrepancy between the results is probably attributed to the number of degrees of freedom of each one these fields.
Although the global Casimir effect is more related to experiments where we measure the force between macro-

scopic surfaces, we believe that the local Casimir description has physical relevance since the stress energy tensor
is in principle an unambiguously identified quantity, by its effect on the gravitational field. In the context of
the perfect conductor model, it is reasonable to associate the results obtained in this paper as the source of the
gravitational field since as we mentioned we identify the physical measurable part of the stress energy tensor by
discarding an infinity quantity that do not depend on any global parameter.
In order to remove the boundary divergences, two possible ways are to take into account the real properties

of the material, i.e., imperfect conductivity at high frequencies, or else make a quantum mechanical treatment of
the boundary conditions, as was done by Ford and Svaiter [14]. It should be interesting to repeat the present
investigation about the uniformity of the vacuum energy density using these possibilities.
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APPENDIX A: FORMULAE

1
2π

∫
dk3 e

−t(k3)
2
eik3(x3−y3) = (4πt)−

1
2 exp

[
− (x3 − y3)2

4t

]
, (A1)

Jacobi θ-function identity
∞∑

m=1

exp(−m2x) cos(m2πh) = −1
2
+

√
π

4x

∞∑
n=−∞

exp
[
−(n+ h)2

π2

x

]
(A2)

∫ ∞

0

dt ts−
5
2 exp(−A

t
) = As− 3

2Γ(
3
2
− s), Re s >

3
2
. (A3)

2
∫ ∞

0

dt
[
t2 +B

]s−2
= Bs− 3

2

√
πΓ(3

2 − s)
Γ(2− s) . (A4)
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FIG. 1. Vacuum energy density when a = b (conformally coupled scalar field with DBC).
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FIG. 2. Vacuum energy density when a = 2b (conformally coupled scalar field with DBC).

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

y

–0.0445

–0.044

–0.0435

–0.043

–0.0425

–0.042

–0.0415

FIG. 3. Vacuum energy density when a = b (conformally coupled scalar field with NBC) .
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FIG. 4. Vacuum energy density when a = 2b (conformally coupled scalar field with NBC) .
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FIG. 5. Vacuum energy density when a = b = c at z = 1/2, 1/4, 1/16 planes (electromagnetic field).


