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1 Introduction

Our objective in this paper is to derive a new evolution equation describing the behavior of large partonic

densities. The fact that parton densities increase as the Bjorken scaling variable xB decreases follows

directly from linear evolutions equations such as the GLAP [1] or BFKL [2] equation, and has been

experimentally observed by both HERA collaborations [3]. They observe a powerlike behavior of the

deep inelastic structure function

F2(xB , Q
2) ∼ x−ω0

B , (1)

with ω0 " 0.3− 0.5. This behavior is predicted by the BFKL equation and is not inconsistent with the
GLAP equation. (Such powerlike growth at small x can be imitated by a solution of the GLAP equation

with a distribution that is constant in x at a low initial scale Q0.)

¿From a physical point of view such behavior is inconsistent with unitarity. This fact necessitates a

change in the evolution equation in the region of small xB . The Þrst attempt, more than ten years old,

to write down a new equation led to the nonlinear GLR equation [4]. See [5] for a more extensive review.

We will explain in this paper that the GLR equation only includes two-gluon correlations in the

parton cascade. Multigluon correlations should be essential to solving the small xB problem, at least

theoretically [6, 7]. It is the aim of this paper to take such correlations into account.

In section 2 we derive and explain the limitations of the GLR equation. We consider multigluon

correlations in section 3 by employing the relation between these correlations and high twist contributions

to the deep-inelastic structure function. In section 4 we suggest the evolution equation which takes

these correlations into account. Some particular solutions and a comparison with the GLR equation are

discussed in section 5, while we discuss the general solution of the new evolution equation in section 6.

We summarize and conclude in section 7.

2 The GLR Equation

In the region of small xB and large Q
2 we face a system of partons at mutually small distances (thus the

QCD coupling αs is still small), but dense enough that the usual perturbative QCD (pQCD) methods

cannot be applied. The physics that governs this region is non-perturbative, but of a different nature than

the one associated with large distances. The latter corresponds to the conÞnement region, and is usually

analyzed using lattice Þeld theory or QCD sum rules. In contrast, we encounter here a situation where

new methods must be devised to analyze such a dense relativistic system of partons in a non-equilibrium

state. We need, in fact, new quantum statistical methods to describe the behavior of such a system and

to chart this unknown region. We are unfortunately only at the beginning of this exploration.

On the upside, we can approach this kinematical region in theory from the pQCD region, and assume

that in a transition region between pQCD and high density QCD (hdQCD) we can study such a dense
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system in some detail. To illustrate what new physics one might anticipate in this transition region let

us look at deep-inelastic scattering and compare with the pQCD results for this process. We can expect

the following phenomena in the transition region:

(i) As xB decreases the total cross section σ(γ∗N) grows and, near the border with the hdQCD

domain, becomes even comparable with the geometrical size of the nucleon σ(γ ∗N) → αemπR
2
N . Here

the cross section should be a smooth function of lnQ2.

(ii) Although the parton language can be used to discuss the main properties of the process, inter-

actions between partons become important, especially the annihilation process. This interaction induces

screening (a.k.a. shadowing) corrections.

(iii) In this particular kinematical region such screening corrections are fortunately under theoretical

control. They modify however the pQCD linear evolution equation. The correct evolution equation now

becomes nonlinear.

We will now give a simple derivation of this nonlinear equation, based on physical concepts.

First some nomenclature. The quantity that is measured in deep-inelastic experiments is the structure

function F2(xB , Q
2). As is well-known, it can be expanded according to the Wilson Operator Product

Expansion (OPE) as a series of terms consisting of coefficient functions multiplying matrix elements of

local operators, in order of increasing twist (the twist of an operator is its dimension minus its spin).

Terms with operators of twist τ are supressed by a factor (Q2)(1−τ/2). In this paper we are dealing with

the gluon structure function (a.k.a gluon distribution function), which can be measured fairly directly in

many experiments on diffraction dissociation and heavy quark production in deeply inelastic processes. As

an explicit example, we mention how the gluon structure function can be extracted from the measurement

of F2 in deep-inelastic scattering. Based on the leading twist factorization one may show [8] that at small

xB the gluon density G(x,Q
2) is approximately related to F2(xB , Q

2) by

xBG(xB , Q
2) =

1

< e2 >

!
dF2(xB , Q

2)

d lnQ2
− PFF (ω0)F2(xB, Q2)

"
1

PFG(ω0)
(2)

with ω0 deÞned in (1), < e2 >= 5/18 for four active ßavors and P FF , PFG certain combinations

of Altarelli-Parisi splitting functions, see [8]. For simplicity, and because our investigation is mainly

theoretical in nature, we will neglect operators containing quark Þelds beyond leading twist. In our

kinematic region of interest gluons presumably dominate the physics. Thus we will consider a deÞnition

such as (2) valid for all twist, and will treat the gluon density in a nucleon as a structure function.

As we stated, the main new processes that we must consider at high density are parton-parton

interactions. To incorporate these in our physical descriptions we must identify a new small parameter

that controls the accuracy of calculations involving these interactions. Such a parameter is

W =
αs
Q2

· ρ , (3)

where ρ is the gluon density in the transverse plane

ρ =
xBG(xB , Q

2)

πR2N
. (4)
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Here RN characterizes the area of a hadron which the gluons populate. It is the correlation length of

gluons inside a hadron. Naturally, this radius must be smaller than the radius of a hadron (proton).

Since this paper is mostly devoted to the discussion of purely theoretical questions we will not specify

further the value of RN . However it should be stressed that RN is nonperturbative in nature: all physics

that occurs at distance scales larger than RN is non-perturbative.

The Þrst factor in (3) is the cross section for gluon absorption by a parton in the hadron. Hence W

has the simple physical meaning of being the probability of parton (mainly gluon) recombination in the

parton cascade. The unitarity constraint mentioned in the introduction can be represented as [4]

W ≤ 1 . (5)

Thus W is indeed the small parameter sought. The parton cascade can be expressed as a perturba-

tion expansion in this parameter. This perturbative series can in fact be resummed [4] and the result

understood by considering the structure of the QCD cascade in a fast hadron.

There are two elementary processes in the cascade that impact on the number of partons.

splitting ( 1 → 2 ); probability ∝ αs ρ ; (6)

annihilation ( 2 → 1 ); probability ∝ α2s d
2 ρ2 ∝ α2s

1

Q2
ρ2 ,

where d is the size of the parton produced in the annihilation process. In the case of deep-inelastic

scatterinq d2 ∼ 1/Q2.
When xB is not too small only the splitting of one parton into two counts because ρ is small. However

as xB → 0 annihilation comes into play as ρ increases.

This simple picture allows us to write an equation for the change in the parton density in a �phase

space� cell of volume ∆ ln 1
xB
∆ lnQ2:

∂2ρ

∂ ln 1
xB
∂ lnQ2

=
αsNc
π

ρ − α2s γπ

Q2
ρ2 , (7)

where Nc is the number of colors. In terms of the gluon structure function

∂2xBG(xB , Q
2)

∂ ln 1
xB
∂ lnQ2

=
αsNc
π

xBG(xB , Q
2) − α2s γ

Q2R2N
(xBG(xB , Q

2))2 . (8)

This is the so-called GLR equation [4]. To determine the value of γ and the understand the kinematical

range of validity of (8) this simple physical description does not suffice; rather one must analyze the

process carefully in W -perturbation theory [4] [9]. The result for γ was found to be [9]

γ =
81

16
for Nc = 3.

We would like to emphasize that the main assumption in the above derivation was that

P (2) ∼ ρ2, (9)
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where P (2) denotes the probability for two gluons in the parton cascade to have the same fraction of

energy x and tranverse momentum (characterized by r " lnQ2).

By assuming (9) we neglect all correlations between the two gluons other than the fact that they are

distributed in the hadron disc of radius RN . In the large xB region this assumption is plausible because

the correlations are power suppressed, and the densities involved are small. In the small xB region we

cannot justify (9), even when it holds for large xB.

3 Induced multigluon correlations

In [6] it was shown that the problem is oversimpliÞed when one assumes that the probability of annihilation

is simply proportional to ρ2 in deriving the GLR equation. It was found that

P (2)

ρ2
∝ e

1

(N2
c − 1)2

#
16Ncαs

π ln Q2

Q2
0

ln 1
xB , (10)

where Q0 is the initial virtuality in the parton cascade. This ratio increases with decreasing xB . Con-

sequently we must take dynamical correlations into account, which could change the GLR equation

crucially.

The key to the calculation of parton correlations was suggested by Ellis, Furmanski and Petronzio

in [10], and was developed further in [11]. It was shown that gluonic correlations are directly related

to high twist contributions in the Wilson Operator Product Expansion (OPE) arising from so called

quasi partonic operators. According to the OPE, the gluon structure function can be written as (see the

remarks above (2))

xBG(xB , Q
2) = xBG

(1)(xB , Q
2) + 1

Q2R2
N

x2BG
(2)(xB .Q

2)

...+ ... 1
(QRN )2(n−1)x

n
BG

(n)(xB , Q
2) ... (11)

where the n�th term results from the twist 2n quasi-partonic operator. The probability density P (n) to

Þnd n gluons in the cascade with the same x and Q2 can be directly expressed through the n�th term in

the above expansion (P (n) = xnBG
(n)(xB, Q

2)/(πR2N )
n, P (1) = ρ).

We recently determined the anomalous dimensions γ2n of these high twist operators [7] to next-

to-leading order in the number of colors Nc. This was done by reducing the complicated problem of

gluon-gluon interactions to rescattering of colorless gluon �ladders� (Pomerons) in the t-channel. In [6]

it was shown that this approach works for the case of the anomalous dimension of the twist 4 operator.

The fact that there is no Pomeron �creation� or �absorption� in the t-channel means that we are dealing

with a quantum mechanical problem (not a Þeld theoretical one) in the calculation of the γ2n anomalous

dimension. The problem then amounts to calculating the ground state energy of an n-particle system

with an attractive interaction given by a four-particle contact term (see Fig.1) of strength λ. Its value
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can be calculated to be

λ = 4
αsNc
π

δ, (12)

where δ = 1/(N 2
c −1) if one only takes color singlet ladders into account. Including the other color states

renormalizes δ to 0.098 [6]. This effective theory is two-dimensional (the two dimensions corresponding

to ln(1/x) and ln(Q2)) and is known as the Nonlinear Schrodinger Equation. It is well known that

this model is exactly solvable. Translating the ground state energy of this model into the value of the

anomalous dimension led to [7]

γ2n =
ᾱsn

2

ω
{ 1 + δ2

3
(n2 − 1)}, (13)

where ᾱs = αsNc/π, ω = N − 1, N being the Mellin-conjugate variable to xB

f(N) =

$ 1

0

dxBx
N−1
B f(xB) or f(ω) =

$ ∞

0

dye−ωy[xBf(xB)], (14)

where f is an arbitrary function and y = ln(1/xB).

The answer (13) is only reliable when δ2n2/3 ' 1 [7]. Thus to check selfconsistency we must Þrst

generalize the GLR equation based on (13) and understand what value of n is important for the deep-

inelastic structure function. If the answer is inconsistent with the condition δ2n2/3' 1 we must try and

Þnd the expression for the anomalous dimension valid for any n.

Let us note that if we neglect the term proportional δ2 in (13) we can estimate xnBG
(n)(xB , Q

2) via

the inverse Mellin transform

xnBG
(n)(xB, Q

2) =
1

2πi

$
C

dωe(ωy+ γ2n(ω)r)M (n)(ω, Q2 = Q20) , (15)

where y = ln(1/xB), r = ln(Q
2/Q20), Q0 being the initial virtuality in the parton cascade. The contour

is to the right of all singularities in M as well as to the right of the saddle point (ωS) which is given by

d

dω
{ωy + γ2nr}|ω=ωS = 0. (16)

Thus in the saddle point approximation for δ = 0

xnBG
(n)(xB , Q

2) ∼ [xBG(xB , Q
2) ]n, (17)

in particular P (2) = ρ2. We also assume here the factorization of the matrix element M (n) = (M (1) )n;

this expresses the physical assumption that there are no correlations between gluons other than the fact

that they are distributed in a disc of radius RN . We will comment more about this assumption further

on. In this sense the GLR equation is only the lowest order approximation in δ 2 even if we assume the

factorization of the matrix element and thus, strictly speaking, is valid only in the limit of a large number

of colors. The term proportional to δ2 in (13) is clearly responsible for induced gluon correlations and

we take it seriously in this paper. In next section we will therefore generalize the GLR equation.
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4 A New Evolution Equation

The Þrst step in such a generalization is to make an ansatz for P (n) using the same approach as for the

GLR equation, viz. the competition of two processes in the parton cascade. Thus, in analogy to the

derivation of (7) we write

∂2 P (n)(xB , Q
2)

∂ ln 1
xB
∂ lnQ2

= C2n · P (n)(xB , Q2) − n · α
2
s γπ

Q2
P (n+1)(xB , Q

2) , (18)

where C2n = γ2n ω. The factor n in front of the second term on the right hand side of (18) reßects

the fact that in the Born approximation n + 1 gluons annihilate in n gluons through the subprocess

gluon + gluon → gluon , which corresponds to the two − ladder → one − ladder transition with the
strength of the triple ladder vertex γ. There are n such possibilities due to the time ordering of gluon

emission. Note that the inÞnitely recursive set of equations can be cut off at any level by imposing

e.g. P (n) = P (n−m)P (m). The GLR equation is the case P (2) = (P (1))2. Since we operate under the

assumption that high twists are essential for small enough xB we must however consider the whole series

in (11), which we now do using eqs. (18).

Let us introduce the generating function

g(xB, Q
2, η) =

∞%
n=1

enηg(n) , (19)

where g(n) = xnBG
(n)(xB , Q

2). Comparing with (11) we see that for the full structure function

xBG(xb, Q
2) = Q2R2N g(xB , Q

2, η = − ln(Q2R2N )). (20)

The recursive set of equations (18) can be summarized in one equation for g:

∂2g(xB, Q
2, η)

∂ ln 1
xB
∂ lnQ2

= ᾱs
∂2g

∂η2
+
ᾱsδ

2

3
(
∂4g

∂η4
− ∂

2g

∂η2
)− α2sγe− ln(Q

2R2
N )e−η(

∂g

∂η
− g). (21)

To solve this linear, 4th order partial differential equation in three variables, we must impose some

boundary and initial conditions, on the Q2 and xB behavior respectively.

The boundary condition is straightforward

For η, ln(
1

xB
) Þxed; g(xB , Q

2, η)
lnQ2→∞→ eη gLLA(xB , Q

2), (22)

where gLLA is the solution of the standard GLAP evolution equation for the leading twist gluon density

in leading lnQ2 approximation.

The initial condition is much more difficult, because we need g(xB = x0B , Q
2, η) for solving (21),

whereas experimentally we can only measure the structure function, which is at Þxed η. In other words,

we need detailed information on the gluon distribution in a hadron at large xB . We can make the following

suggestion (although others are possible)

g(x0B, Q
2, η) = (23)
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∞%
n=1

enη
(−1)n
n!

· [ gLLA(x0B , Q2) ]n = 1− exp(−eηgLLA(x0B , Q2) ).

This can be recognized as the usual eikonal approximation for the virtual gluon-hadron interaction [12].

The virtues of this expression lie in the fact that it is simple, and that it has the transparent physical

meaning of reßecting the assumption that there are no correlations between gluons with x ∼ 1 other than
that they are distributed in a hadron disc of radius RN .

If one replaces the hadron with a nucleus, one can prove such an approach, which corresponds to the

so-called Glauber Theory of shadowing corrections. In the deep-inelastic scattering case an expression of

this type was discussed by A. Mueller in [12].

To summarize this section, we have proposed a new evolution equation which has two new features

over and above the GLR equation:

(i) It includes induced multigluon correlations.

(ii) It allows an arbitrary initial condition not necessarily an eikonal one, unlike the case of the

GLR equation. We recall that the GLR equation has been proven only under the assumption of the

factorization property of the matrix elements, which corresponds to an eikonal initial condition [4]. By

including all twists in our evolution equation we overcome the need for a reductive initial condition, such

as (23). One could e.g. try to solve (21) using an initial condition with correlated gluons at large x and

study the consequences of its evolution, with or without δ. Because such initial correlations must be very

small, and because our main interest lies in comparing with the GLR equation, we do not pursue this

line of inquiry here.

5 Approximate Solutions

In the next section we will discuss the general solution to eq. (18). Here we will give approximate solutions

for various special cases. In particular we try to answer the following questions: how does the nonlinear

GLR equation follow from our present linear equation; what value of n is typically relevant in the sum

(19) and how do the corrections to the ordinary GLAP evolution due to (18) differ from those due to the

GLR equation?

5.1 The GLR Equation from the Generalized Equation

The Þrst question that arises is how the nonlinear GLR equation is contained in the linear equation (18)

if we neglect the term proportional to δ2. SpeciÞcally, we would like to establish the equivalence of

∂2g(xB, Q
2, η)

∂ ln 1
xB
∂ lnQ2

= ᾱs
∂2g

∂η2
− α2sγ e− ln(Q

2R2
N )e−η(

∂g

∂η
− g), (24)

to the nonlinear GLR equation. Let us parametrize the solution in the form

g(xB , Q
2, η) = Φ( eηF (y = − lnxB , r = ln(Q2R2N ) )) . (25)
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Because we dropped the gluon-correlation term from (18) we can impose the �no-correlation� initial

condition at xB ∼ 1. This is the only initial condition the GLR equation allows [4]. In the set of �fan�
diagrams (Fig.3) that the GLR equation sums the initial distribution has the form

g(x0B , Q
2, η) =

∞%
n=1

enη(−1)n · [ gLLA(x0B , Q2) ]n , (26)

which gives

Φ(t) =
t

1 + t
. (27)

The absence of the 1/n! in the above equation compared with (23) is explained as follows. The 1/n!

in (23) enforces the correct time ordering of the produced partons in the parton cascade, related to

diagrams of production of n parton shadows (see Fig.4 which shows a case in which three parton shadows

are produced). In the fan diagram of Fig.3 we do not have to enforce the correct time ordering because

it is already included via the vertex γ 1. Thus the initial condition of eq. (27) just corresponds to the

sum of �fan� diagrams, of which Fig.3 is the lowest order example, with the assumption that there are

no correlations between gluons inside the proton. We will see in section 6 that the main properties of the

full solution of eq. (18) do not depend on the form of the initial condition. The reduction to the GLR

equation does however.

With (27) it is now straightforward to check that eq. (24) reduces to the GLR equation to Þrst order

in eη (recall that Þnally we must put η = − ln(Q2R2N )' 1), with F (y, r) = xG(x,Q2).

5.2 Relevant Twists in the Solution

Here we try to follow the recipe mentioned below eq. (14): to see if our approach is consistent we must

determine what values of n are relevant in the solution to (21). Should those values not be consistent

with δ2n2/3 ' 1 then we must generalize the expression (13) for γ2n such that it is valid for all n. If

they are consistent we can maintain (13) and thus (21).

However, to determine the relevant n�s we need the general solution to eq. (21), which is presented

in section 6. Here we will perform some rough estimates.

Let us Þrst take a �worst case� scenario by letting the term proportional to δ 2 dominate, and by

dropping the Þrst term and last term on the RHS of (21):

∂2g(xB , Q
2, η)

∂ ln 1
xB
∂ lnQ2

=
ᾱsδ

2

3
(
∂4g

∂η4
− ∂g

∂η2
) (28)

To solve this equation we perform a Laplace transform in the variable η

�g(xB , Q
2, p) ≡

$ 0

−∞
dη epηg(xB, Q

2, η). (29)

1The strength of the three Pomeron vertex γ was calculated in ref. [9] using the AGK cutting rules

[13], which are equivalent to time-ordering.
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Then
∂2�g(y, r, p)

∂y∂r
=

ᾱsδ
2

3
· p2(p2 − 1) �g(y, r, p), (30)

where y = ln(1/xB), r = ln(Q
2/Q20). The solution to (30) is the Bessel function I0(2

#
ᾱsδ2

3 p2(p2 − 1)yr).
The most general solution is then

g(y, r, η) =

$
C

dp

2πi
e−pηφ(p) I0( 2

&
ᾱsδ2

3
p2(p2 − 1)yr ) , (31)

where the contour C runs to the right of all singularities in p. The function φ(p) is Þxed by imposing an

initial condition (e.g. (23))

g(0, r, η) =
1

2πi

$
C

dp e−pηφ(p). (32)

One may write the solution in fact directly in terms of the initial condition:

g(y, r, η) =

$ 0

−∞
dη%G(y, r, η − η%)g(0, r, η%), (33)

with the Green�s function

G(y, r, η − η%) = 1

2πi

$
dp e−p( η− η

" )I0( 2

&
ᾱsδ2

3
p2(p2 − 1)yr ) . (34)

¿From eq. (19) we see that large typical n corresponds to small typical η, which in turn by (31) corresponds

to large typical p (�p0�). Thus we must Þnd δ
2p20 ' 1 to trust eq. (13).

Let us investigate (33) to Þnd the most relevant values of η %. The function g(0, r, η%) falls down

monotonously for η% → −∞ (the Þrst term in (19) dominates) where it behaves as exp(η %). Next, we

can show that the function G(y, r, η − η%) has a maximum at η = η% whose width is of the order of

(8
#

ᾱsδ2

3 yr)(1/2). To see this, evaluate (34) using the asymptotic form for I0(z) ∼ ez/
√
2πz(1+ . . .). Eq.

(34) then becomes (neglecting the unimportant non-exponential prefactor) in the asymptotic form

G(y, r, η − η%) = 1

2πi

$
dp e−p( η− η

" )+ 2
'

ᾱsδ2

3 p2(p2−1)yr . (35)

The equation that determines the saddle point pS here is

− (η − η%) +
2(2p2S − 1)'
p2S − 1

&
ᾱsδ2

3
· yr = 0 (36)

or

2
#
p2S − 1 +

1'
p2S − 1

=
η − η%

2
#

ᾱsδ2

3 · yr
. (37)

In the dangerous case that pS is large this leads to

pS =
η − η%

4
#

ᾱsδ2

3 · yr
. (38)

With (35) this becomes

G(y, r, η − η%) =
(
8π

&
ᾱsδ2

3
· yr

)−1/2
· e
− (η− η")2

8

'
ᾱsδ2

3
·yr . (39)
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Thus, in summary, either or both the regions η ∼ 0 and η % ∼ η give dominant contributions in (34). For
η% ∼ 0 we have

g(y, r, η) ∼ e
− η2

8

'
ᾱsδ2

3
·yr .

while for η% ∼ η
g(y, r, η) ∝ e−|η| .

The Þrst of these can dominate the second only for a restricted range in η, namely

|η| < 8
&
ᾱsδ2

3
· yr, (40)

which implies, with (38)

pS ' 2 . (41)

Outside of the range (40) the typical value of (η − η %) is at large η of order (8
#

ᾱsδ2

3 · yr)(1/2), yielding

pS ∼ 1

(2
#

ᾱsδ2

3 · yr)(1/2)
' 1 for yr + 1. (42)

We conclude, based on the simpliÞed model equation (24) that typical values of p, and thus n, are small,

and therefore we should be able to use eq. (13). We will see that this conclusion holds when we consider

the full solution in section 6.

5.3 Estimates for Corrections to the GLR Equation

In this subsection we want to estimate the possible size of corrections to the GLR equation. Recall that

the GLR equation sums the contributions of fan diagrams (Fig.3) while the generalized equation includes

more general graphs, which are all of the type shown in Fig.5 at large Q 2. To estimate the correction let

us parametrize the full solution as

g(xB, Q
2, η) = Φ( eηF (y, r) ) +∆g(y, r, η) , (43)

where the Þrst term is the solution to the GLR equation found in subsection 5.1, and the second term is

considered to be a small perturbation. Equation (21) becomes then for ∆g

∂2∆g(y, r, η)

∂y∂r
= ᾱs

∂2∆g

∂η2
+
ᾱsδ

2

3
(
∂4Φ

∂η4
− ∂2Φ

∂η2
) − Φ%% [F %y F

%
r − ᾱsF

2 ]e2η , (44)

where Φ% denotes ∂Φ/∂t. We neglected the contribution of the ∂∆g/∂η −∆g term in eq. (44) since the

coefficient in front of this term contains an extra power of αS which we treat as a small parameter. The

initial conditions for ∆g(y, r, η) are ∆g(0, r, η)= ∆g(y, 0, η) = 0, because we assume that all boundary

conditions have been fulÞlled by Φ. The last term in eq. (44) can be neglected for two reasons: (i) at

η = − ln(Q2R2N ) this term is suppressed and (ii) the difference in brackets is small in both the semicassical
and the EKL [8] approach. Substitution of the explicit form of Φ in (27) yields

∂2∆g(y, r, η)

∂y∂r
= ᾱs

∂2∆g

∂η2
+
ᾱsδ

2

3
· 12t

2(t− 1)
(1 + t)5

, (45)
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where t = eηF (y, r). We can simplify the equation if we keep in mind that the value of η is large and

negative in the deep-inelastic structure function. Thus t' 1 and

∂2∆g(y, r, η)

∂y∂r
= ᾱs

∂2∆g

∂η2
− 12 ᾱsδ

2

3
F 2e2η . (46)

Now the η depedence of ∆g is trivial: ∆g = e2η∆F (y, r). Thus

∂2∆F (y, r)

∂y∂r
= 4 ᾱs∆F (y, r) − 12 ᾱsδ

2

3
F 2 . (47)

Using similar techniques as in the previous subsection, but now for the y and r variables, it is straight-

forward to show that the general solution to this equation with the initial condition ∆F (0, r) = 0 has

the form

∆F = − 12 ᾱsδ
2

3

$ y

0

dy%
$

df

2πi

$
dω

2πi
eωy

"+ fr ω
�F 2(ω, f)

ωf − 4 ᾱs
, (48)

where �F 2 is the Laplace transform in y and r of the function F 2(y, r). The contours for the f and ω

integrals lie to the right of all singularities in these variables. We now need a reasonable estimate for �F 2.

Note that �F 2 corresponds to the (Laplace tranform of) the properly normalized initial gluon distribution

at low virtuality and small y. A rough estimate can be made usine the methods of [8].

�F 2 =
A2G

[ω − 2ω0 ][ f − 2 γ(ω = ω0)]
, (49)

where AG is the normalization factor for the gluon structure function, ω0 is deÞned in eq. (1) and

γ(ω) = ᾱs
ω is the anomalous dimension for the leading twist operator. Here we consider the EKL

solution to parametrize the data over a wide kinematic region, including GLR nonlinear corrections.

Shortly we will discuss the case where both the GLR and multigluon corrections are considered small.

All contours in (48) are to the right of all singularities in ω and f . The integrand has two poles in ω,

one corresponding to the initial condition (2ω0) and one from the equation (4ᾱs/f). We will demonstrate

in the next subsection that the former is dominant for the choice ω0 = 0.5, and that restricting ourselves

to its contribution is very good approximation. Under this assumption we perform the ω and f integrals,

and obtain

∆g = − 4rᾱsδ2A2Ge2η
$ y

0

dy%e2ω0 y
"+2 γ(ω=ω0) r . (50)

The factor r in front arises from the double pole in the f variable. The answer clearly satisÞes the

boundary conditions. We derive further

∆g(y, r, η)

g(y, r, η)
" −2ᾱsr

ω0
δ2eη · F

2(y, r) − F 2(y = 0, r)

F (y, r)
. (51)

This implies
∆xBG(xB , Q

2)

xBG(xB , Q2)
= − 2ᾱsr

ω0
δ2 · 1

Q2R2N
xBG(xB , Q

2) , (52)

if the value of the structure function is large enough in the region of low xB . Recall that the correct

deÞnition of η is eη = 1/(Q2R2N ). Substituting in eq. (52) the value of gluon structure function from
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HERA data [3] at Q2 = 15 GeV2 and xB = 10
−4 (xBG ∼ 30) and a typical value of R2N = 5GeV

−2 we

obtain (with αs = 0.25 )
∆xBG(xB , Q

2)

xBG(xB , Q2)
∼ 0.4δ2 ∼ 6 · 10−3 .

It is more instructive to compare the above correction to the gluon structure function with the one

due to the GLR equation. In this case we consider both the correction to the GLAP equation due to

the GLR shadowing and due to multigluon correlations as small. Thus we try to Þnd the solution to the

GLR equation in the form:

F (y, r) = FGLAP + ∆FGLR.

For ∆FGLR we can write the equation:

∂2∆FGLR
∂y ∂r

= ᾱS∆FGLR − α2Sγ

Q2R2N
F 2GLAP (53)

The solution is

∆FGLR = − α2Sγ

Q2R2N

$ y

0

dy%
$

df

2πi

$
dω

2πi
eωy

"+ fr ω
�F 2GLAP (ω, f)

ωf − ᾱS
, (54)

where �F 2GLAP is the Laplace image of function F
2
GLAP (y, r). Again using (49) we get

∆FGLR = − 2ω0α
2
Sγ

3ᾱSQ2R2N
A2G

$ y

0

dy%e2ω0y
"
[e2γ(ω=ω0) − eγ(ω=ω0)] (55)

Assuming that the second term in the above equation is much smaller than the Þrst we have

∆FGLR = − αSγπ

3Q2R2NNc
F 2GLAP (56)

Finally, we can get for the ratio

∆xBG(xB , Q
2)

∆(xBG(xB , Q2))GLR
=

6N2
c ln(Q

2/Q20)

π2ω0γ
δ2 (57)

which gives a value of the order of 0.04 if ω0 ∼ 0.5. We will return to a discussion of the corrections to
the GLR equation in the next section where we will consider the general solution to the new equation at

Þxed αS.

The above estimates seem in contradiction with the estimates in [14], where a large contribution from

multigluon correlations was found. The method we use here is however quite diffent from the one in [14].

There the effect of including the new (pole) singularity in f (the Laplace conjugate variable to r) that

results from the resummation of bubbles associated with the 4-Pomeron coupling was contrasted with

the contribution from the two Pomeron cut at the level of the Green functions. Although the location

of the singularities is quite close, their nature and residues are very different. This led to a large ratio

of the contributions of these singularities to the Green functions. In the present case we include in our

estimates the two-gluon source, i.e. the initial gluon distribution, and renormalize it in both cases to the

same physical initial condition (here the EKL ansatz), thus absorbing the residues. As was remarked

in [14], one can absorb the residues alternatively in RN . Further, in closing the contours involved in
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performing the inverse Laplace transforms we closed on the singularities of the initial condition (being

the rightmost singularities), and not on the propagator poles. Therefore our renormalized R 2
N has no

extra dependence on ln(1/x). We believe that our method is in the above sense more physical.

5.4 Numerical Estimates

In this subsection we will solve eq. (47) numerically. The method we use goes as follows. We Þrst perform

a Laplace transform with respect to y on (47), which leads to

∂∆F (ω, r)

∂r
=
4ᾱS
ω
∆F (ω, r)− 4ᾱSδ

2

ω
F 2(ω, r) . (58)

Using various ansätze for F (y, r) we solve this equation using Numerov�s method, and perform Þnally

the inverse Laplace transform with respect to ω 2. For the various ansätze we Þt a parametrized form to

F 2(y, r) of which the Laplace transform can be taken analytically.

We will investigate three cases. The Þrst is the EKL ansatz from the previous subsection

F (y, r) = AG e
ω0y+f0r , (59)

where we take ω0 = 0.5, f0 = ᾱS/ω0, and ᾱS " 0.25. To correspond with the numbers given in the

previous subsection we put Ag " 0.07. We will use this case to check the accuracy of the estimate given
earlier, and drop for this check the requirement ∆F (y = 0, r) = 0. Let us denote the numerical answer

by ∆FEKL(num). Then for the pole answer we Þnd

∆FEKL(pole) =
−2ᾱSδ2
ω0

r e2ω0y+2γ0r , (60)

and for the leading term of the saddle point contribution

∆FEKL(saddle) " 2ᾱSδ
2

ω0

*
f3S

16πᾱSy

1

(fS − 2γ0)2 e
4
√
ᾱSyr (61)

where fS =
'
4ᾱSy/r. Note that both contributions vanish as r → 0. In Table 1 we list these three

contributions for various x at a Þxed Q2 = 15 GeV/c2. It is clear from this table that ∆F EKL(pole) is a

very good approximation to ∆F EKL(num), in fact better than one might expect from ∆F EKL(saddle).

Next we treat a more realistic case. We now use for F (y, r) alternatively the MRSD0� and MRSD-�

[15] gluon distribution functions, which are, at the starting scale Q0, constant as function of x, and behave

as x−0.5 respectively. They are both parametrized by

xG(x,Q2) = AGx
λg (1− x)ηg (1 + γgx) , (62)

with the coefficients AG,λg, ηg and γg given at Q = Q0 in [15]. We kept this parametrization up until

Q2 = 15 GeV/c2, but reÞtted the coefficients for every step in the Numerov procedure. The Laplace

2We thank Keith Ellis for providing subroutines that perform this last step.
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transform of this parametrization is easily determined. Following the methods described in the above we

determine ∆F (y, r). We checked that ∆F vanishes for small y. Furthermore eq. (58) was solved under

the condition ∆F (y, r = 0) = 0.

Similarly to the previous subsection we determined at Q2 = 15 GeV/c2 for values of xB from 0.01

down to the LEP⊗ LHC value of 10−5 the ratios
∆(xBG(xB , Q

2))

xBG(xB , Q2)
=

1

Q2R2N

∆F (y, r)

xBG(xB , Q2)
(63)

and
∆(xBG(xB , Q

2))

∆(xBG(xB , Q2))GLR
=

∆F (y, r)

α2Sγ(xBG(xB , Q
2))2

. (64)

These ratios are given in Table 2. We infer from this table that corrections to the gluon structure function

from multigluon correlations beyond the next-to-leading twist are small, at most 5% at small x. We see

that the MRSD-� distribution leads to larger corrections than the MRSD0� one. As a fraction of the GLR

correction both ansätze are small, about 10% for the MRSD-� case and 10-30% for the MRSD0� case.

Thus we conÞrm here the rough estimates from the previous section. However we note that estimates

of the gluon correlation radius RN range from 1 fm to 0.3 fm. The numbers in table 2 are accordingly

easily adjusted.

6 The General Solution (for Fixed αS)

In this section we will discuss the general solution to eq. (18) and its consequences for the gluon structure

function.

We start by noting that the equation (18) can be written, at Þxed αS, as

∂2xnBG
(n)(xB , r + η0)

∂y∂(r + η0)
= C2n · xnBG(n)(xB , r + η0) − (65)

n · α2Sγe−(r+η0) x
(n+1)
B G(n+1)(y, r + η0),

where we used the fact that that xnBG
(n) only depends on ln(Q2/Q20) with an arbitrary Q0. The above

form of the equation reßects the choice η0 = − lnQ20R2N . We focus now on the hypersurface η0 = η. The
evolution equation (see eq. (21) ) can then be written in the form:

∂2g(y, ξ, η)

∂y∂ξ
= ᾱs

∂2g

∂η2
+
ᾱsδ

2

3
(
∂4g

∂η4
− ∂2g

∂η2
)− α2s γ e−ξ(

∂g

∂η
− g) , (66)

where ξ = r + η. The advantage of this form is that all explicit η dependence such as exp(−η) has been
removed.

We can Þnd g(y, ξ = r + η, η) using a double Laplace transform with respect to y and η, namely

g(y, ξ, η) =

$
dω d p

(2πi)2
eω y + p η g(ω, p, ξ) . (67)
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The function g(ω, ξ, p) obeys the equation

ω
∂g(ω, ξ, p)

∂ξ
= { ᾱS p2 + ᾱSδ

2

3
(p4 − p2) − α2Sγ(p − 1) e− ξ } g(ω, ξ, p) (68)

The solution to eq. (68) is:

g(ω, ξ, p) =

$
dω d p

(2πi)2
g(ω, p) · e( ᾱS

ω p2 +
ᾱSδ

2

3ω p2(p+1)(p−1) ) ξ + ᾱ2
S
γ

ω (p−1) (e− ξ − 1) (69)

The function g(ω, p) must be determined from the initial condition, eq. (23), for |η| ' r, r + 1 and

y = 0 where the solution looks as follows:

g(y = 0, r, η) =

$
dωdp

(2πi)2
g(ω, p) · ep ηe(r+η)φ(p) +

α2
S
γ

3ω ( p− 1 ) ( e−r− η − 1 ) , (70)

where

φ(p) =
ᾱS
ω
p2 +

ᾱS δ
2

3ω
p2 (p+ 1)(p− 1) .

We now assert that

g(ω, p) = Γ(− f(p)) · d f(p)
d p

e
α2

S
γ

ω (71)

satisÞes the initial condition of eq. (23) with gLLA(xB , Q
2
0) = δ(y) at r = ln(Q2/Q20) = 0. Here

f(p) = p + φ(p) and Γ(−f) is the Euler gamma function. We will prove this shortly.
Thus, Þnally, the solution to eq. (66) looks as follows:

g(y, ξ, η) =

$
dω d p

(2πi)2
Γ(−f(p)) · d f(p)

d p
· ef(p) ξ +

α2
S
γ

ω (p−1) e− ξ − p r + ω y (72)

or changing the integration from p to f ,

g(ω, p, ξ) =

$
dω d f

(2πi)2
Γ(− f) · e f ξ +

α2
S
γ

ω (p(f)−1) e− ξ − p(f) r + ω y , (73)

where p(f) is determined by

f = p(f) + φ(p(f)) . (74)

The contour of integration over f is deÞned in a such a way that all singularities in Γ(−f) except the
one at f = 0 are located to the right of the contour.

We can now verify the claim made in eq. (71). At y = y0, |η|' r, ξ " r + 1 we have

g(y0, r, η) "
$
dω df

(2πi)2
eωy0Γ(−f) e−rp(f)+ξf . (75)

We now close the f contour in the right half plane. Neglecting the δ2 term we have φ(p(n)) " ᾱSn2/ω,
and we get indeed

g(y0, r, η) "
∞%
n=1

(−)n
n!

enη
$
dω

2πi
eωy0+

ᾱSn
2

ω (76)

The structure function can be found from eq. (73) putting ξ = 0 (see eq. (20)). We obtain

g(y, ξ = 0, r) =

$
dω d f

( 2π i )2
Γ(− f) · e

α2
S
γ

ω (p(f)−1) − p(f) r + ω y . (77)
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Eq. (74) implies that p(f) → ( 3ω fᾱSδ2 )
1
4 . Therefore we can close the contour in f over the singularities of

Γ(−f). Next we must integrate over ω. We evaluate this integral using the method of steepest descent
and the large f approximation for p(f). Neglecting terms proportional to αS in the exponent we Þnd the

saddlepoint ω = (p0r/4y)
4/3 where p0 = (3n/ᾱSδ

2)1/4. Then

g(y, ξ = 0, r) =

∞%
n=1

(− 1 )n
n!

C(n, y)e
− 4− 1

3 3
4 (

3n

ᾱSδ
2 )

1
3 ·( r4

y )
1
3

,

where C(n, y) is a pre-exponential, smooth factor. The above series clearly converges and the typical

value of n in this series is of the order of unity. We thus conÞrm the estimates from the previous section,

and see that we could trust our calculations of the anomalous dimension γ2n. We note that this series

has an inÞnite radius of convergence. Thus for the simpliÞed model we consider and for the case of an

eikonal initial condition we conclude that there is no analogy to a renormalon in the Wilson Operator

Product Expansion.

Now we wish to consider the solution near f → 1, to understand under which circumstances it

suffices to take only this singularity into account. Note that this corresponds to the leading twist case,

with GLAP evolution. In this region we can rewrite the solution in the following form. Substituting

f = 1 + t we obtain:

g(y, ξ = 0, r) =

$
dω

2πi

dt

2πi

1

t
· eΨ (78)

where

Ψ = ω y − r +
ᾱS
ω
r + t r { 2ᾱS( 1 +

δ2

3 )

ω
+
α2S γ

ω r
− 1 } (79)

¿From this form of the exponent we see that for ω smaller than ωcr where

ωcr = 2 ᾱS( 1 +
δ2

3
) · { 1 + α2S γ

2ᾱS(1 + δ2/3) r
} ≡ ω0cr { 1 +

α2S γ

ω0cr r
} (80)

we cannot close the contour in t over singularities at positive t. (Here we introduce the parameter ω 0cr in

order to separate the effects of γ and δ.) For such ω one would need all singularities in f . To understand

what happens in this region let us expand Ψ by writing ω = ωcr + ∆:

Ψ = ωcr y − r +
ᾱS
ωcr

r + ∆ ( y − ᾱS
ω2cr

r − t r

ωcr
) (81)

Integration over ∆ 3 gives rise to the delta function δ[ r
ωcr

(t − t0 ) ] where

t0 =
1

ωcr r
[ω2cr y − ᾱS r] (82)

Carrying out the integration gives

g(y, ξ = 0, r) =
ωcr
2πr

· 1
t0
· eωcr y − r +

ᾱS
ωcr

r (83)

3Alternatively one may expand to O(∆2) and use steepest descent.
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Let us deÞne the �critical line� [4] by

ycr =
1

ω0cr
r − ᾱS

(ω0cr )
2
r (84)

The gluon structure function is on this critical line

xBG(xB , Q
2) = R2N Q

2 (ω
0
cr )

2

2 ᾱSr
[
δ2

3
+

α2Sγ

4πᾱS r
]−1 (85)

For δ = 0 this becomes

xBG(xB , Q
2) = R2N Q

2 2

γ

N2
c

π3
. (86)

Note that this is similar to the solution of the GLR equation with running coupling [4], but not quite the

same.

Thus, the structure of the solution to the new evolution equation with the initial condition eq. (23)

looks as follows. In the kinematic region to the right of the critical line we can in fact solve the linear

GLAP equation, but with the new initial condition eq. (86) on the critical line. To the left of the critical

line we need the solution to the full equation. Note that if we would change the initial condition of the

full evolution equation the value of the structure function on the critical line would also change.

We have thus achieved a new understanding of the role of the initial condition in the problem. In

particular, we conclude that the solution on the critical line depends only on the initial condition in the

region of f → 1, i.e. it depends only on the initial condition for the GLAP equation. Implicitly we have

used here the assumption, expressed in our initial condition (23), that the multigluon correlations are

sufficiently small at large x. We recall that the original derivation of the GLR equation was based on

this same assumption. We are not restricted to such an assumption for our equation. Clearly, if there

were strong correlations between gluons at large x it would change the explicit form of the solution of

our evolution equation. Nevetheless, the line of reasoning followed in this section would continue to hold.

For δ -= 0 we have two different situations. In the Þrst, for

δ2

3
' α2S γ

2ᾱS r

the solution on the critical line is the same as in eq. (86). I.e. the only change that occurs in the solution

of the case δ = 0 is that there is a new equation for the critical line, eq. (84). Note that the HERA

experiments correspond to this situation.

At very large values of r (Q2 + Q20) , when

δ2

3
+ α2S γ

2ᾱS r
,

the solution on the critical line looks as follows:

xBG(xB , Q
2) = R2N Q

2 3ω0cr
2πδ2 r

(87)

In this case we must solve the GLAP equation using eq. (87) as the boundary condition.
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7 Conclusions.

The main result of the paper is the new evolution equation (21). It allows us to penetrate deeper into

the region of high density QCD because we incorporate multigluon correlations into the evolution, and

to answer questions which could not be answered before. For example one could now investigate the

question of how well the Glauber theory for shadowing corrections in deep-inelastic scattering with a

heavy nucleus works.

This present equation solves two theoretical problems which arise in the region of high parton density:

(i) It takes induced multigluon correlations into account, which originate from parton-parton (mainly

gluon-gluon) interactions at high enegy and can be calculated in the framework of perturbative QCD,

and (ii) it allows for an arbitrary initial gluon distribution, which is nonperturbative in nature.

We have found the general solution to the new equation for the case of an eikonal initial condition

and Þxed αs. We found no evidence for a �renormalon� in the twist expansion.

Our numerical estimates show that the effect of multigluon correlations is rather small in the accessible

region of energy. We have seen evidence for this by using approximate methods and the general solution

to the new equation.

We have shown that the general solution conÞrms the strategy developed for the GLR equation:

we have calculated the new critical line for the generalized equation and shown that to the right of this

critical line we can solve the linear GLAP equation with a new boundary condition on this line. We found

this boundary condition taking into account the multigluon correlations. This approach, developed in

this paper simpliÞes also the solution to the GLR equation and allows us to understand how solutions to

the GLR equation depend on the initial conditions. This is essentially a consequence of the linearization

of the GLR equation in 21.

We have not discussed here the behaviour of the solution in the region to the left of the critical

line, where multigluon correlations should come more forcefully into play. We plan to do this in later

publication. We hope that the solution in the latter kinematic region will have a signiÞcant impact on

understanding the scale of the shadowing correction and the importance of multigluon correlations in the

so-called Regge domain. This must be understood in order to provide a matching between soft and hard

processes.
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FIGURE CAPTIONS

Figure 1.

Rescattering of Pomerons in the t-channel.

Figure 2.

Pictorial representation of the generalized evolution equation.

Figure 3.

�Fan� diagram.

Figure 4.

Production of three gluon shadows in a parton cascade.

Figure 5.

Example of type of multigluon interactions that the generalized evolution equation takes into account.
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x ∆FEKL(num) ∆FEKL(pole) ∆FEKL(saddle)

10−2 −3.26 · 10−2 −3.41 · 10−2 8 · 10−3
10−4 −3.44 −3.41 2 · 10−2

Table 1. Comparison of various contributions in the EKL approximation. Here Q 2 = 15 GeV2/c2,

αs = 0.25 and R
2
N = 5 GeV

−2.

Ansatz x ∆(xBG)/xBG ∆(xBG)/∆(xBG)GLR

MRSD0� 10−2 −1.4 · 10−3 0.11

10−4 −8.9 · 10−3 0.29

10−5 −14.7 · 10−3 0.31

MRSD-� 10−2 −1.2 · 10−3 0.084

10−4 −13.5 · 10−3 0.1

10−5 −40.5 · 10−3 0.09

Table 2. Correction to the gluon distribution function for two different ansätze. Here Q2 = 15 GeV2/c2,

αs " 0.21 and R2N = 5 GeV−2.
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