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ABSTRACT

The exact characteristic penetration length & associated
with both simple and multiple incoherent elastic scattering
in semi-infinite one-dimensional discordered media is estab-
lished as a function of p(concentration of scattering centers)
and fo (transmission coefficient of a single center). Thenwe
exhibit how these phenomena can be seen as critical ones, and
the corresponding £ are reobtained within convenient real
space renormalisation group frameworks. Finally we discuss
a generalized model where the single center transmission coef

ficient f can randomly take two different values f1 and f2.
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I INTRODUCTION

The basic scattering theory can be considered by now as
a satisfactorily developed one (see, for instance, Refs. @,Zﬁ
This is particularly true for ordered media; the problem for
disordered media presents a higher degree of difficulty. The
scope of the present work is to exhibit how this . type of
study can be usefully undertaken from the standpoint of the
critical phenomena theory (see, for instance, Ref. ]:3]): no
such trial has been attempeted before, although the corre-
sponding treatment of diffusion is already availablel:4’5].
We illustrate the approach on simple one-dimensional ' models
of incoherent simple and multiple elastic scattering.

In Section II we establish exact results concerning the
dependence of intensity I on distance £, and the associated
penetration length £; in Section III we reobtain & within
convenient real space renormalisation group (RG) frameworks;in
Section IV we extend the discussion to generalized models, and

we finally conclude in Section V.

ITI SCATTERING MODELS
b ]
Let us consider a semi-infinite regular linear chain (with
crystalline parameter equal to unity) of elastic scattering
centers which scatter afong the chain; we note fi the intensity

transmission coefficient of the i-th center (0 £ fi < 1, Vi;
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l--fi is the fraction reflected backwards).

By assuming s4{mple scattering regime along the entite ‘semi-space,
the intensity ratio I(!_)/IO after crossing the £ first cen-
ters (I, being the initial incident intensity of whatever is
scattered) is given by

£
I{?’ = I f (simple) (1)

0 1 i

If the transmission coefficient is fo’ one and the same for

all the centers, then Eg. (1) can be rewritten as follows:

I(L)/I, = e—£/€ (simple) (2)
where
1l
£ = (3)
1
Zn—f—g

If we assume instead that the scattering regime is multiple a-
long the entire semi-space, the establishment of the ra-
tio I(K)/IO demands a small development. Consider the first
two scattering centers, with coefficients f1 and f2; they

constitute a composite scattering center with equivalent coef

i

ficient fé I(2)/1I, given by

Hh
I

= £,£, {1+ (1-£,) (1-£,) + [(1-£,) (1-f2)]‘°‘ +...}

i flf2 )
l-(l—fl)(l—fz)

This expression can be conveniently rewritten as follows:
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e 1 2 (4|)

The recursive use of Eq. (4') leads to the following general

expression:

1-£f.

L
I = (multiple) (5)
i=1 i

1-I(L) /T
(&) /1 B

If the transmission coefficient is fo’ one and the same for

all the centers, then Eg. (5) provides

I(L) 1 .
i = TiI/E (multiple) (6)
where
fo
£ = (7)
I-f

Note that the multiple process hypothesis leads, in the long
distances limit, to a power law (I(E)/Io'bi/ZL in contrast to
the exponential law corresponding to simple scattering.

Let us now consider the case where there is a dilution
of scattering centers on the linear chain, i.e. to each center

we associate the following distribution law:

P(f) = (1l-p)S&(f-1) + p6(f—fo) (Oﬁp,foﬁl) (8)

This new situation is nothing but the previous one (p=1) with rescaled dig
tances (note that the intensity I(£) does not depend, for £> 1, on the or
der of centers and vacancies as long as their respective concentrations are
preserved) consequently Egs. (2) and (6) are still valid but £ becomes £/p,
i.e. RBys. (3) and (7) are respectively extended into
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1

£ = 1 (simple) (9)
pﬂnf—
o]
and
fo -
g = E_(TT)— (multlple) (10)

ITT RENORMALISATION GROUP APPROACH

Consider the case where all centers are identical (fi =
fo,Vi). Following the standard RG procedures[:3j, we re-
.normalise a "block” of b scattering centers into a
smaller "“block" b' centers; the penetration length

£ scales as follows
£'/b' = £/b (11)

The question is whether this equation and those (to be estab
lished) renormalising fO and p (into fé and p') enable us to
calculate the function E(fo,p).

Let us first treat the pure case (p=1). The RG recursive

equation for fO is given by

L]
féb - fg (simple) (12)
or
l—fg l—fO
b' —ET— = b - (multiple) (13)
0} (@]

We immediately verify that Egs. (11) and (12) (Egs. (11) and
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(13)) lead, 4on alf b and b', "to Eg. (3) (Eg. (7)) excepting
for an arbitrary multiplicative constant. Note also that both
Egs. (12) and (13) provide a stable (triwial) fixed point
fo = 0, as well as an unstable (cadiftical) fixed point fo==l.

The RG discussion of the diluted case (p < 1) is less
straightforward and unambiguous than the previous one (p=1).

The binary law (8) becomes, for a "block" of b scattering cen

ters, a complex one, namely

P (f) = E ®) (1-p) P ipis (£-F. (£ )) (14)
b - PP —P p “titto
where
£l (simple) (15.a)
fi(fo) = .
(multiple) (15.b)

0
fo+1(1—fo)

A fully satisfactory b + b' RG would demand to identify P =
Pb(f;fo,p) and P', = Pb,(f;fé,p'), which is of course impos-
sible because the two distributions have different amounts
of §-functions. Consequently, if we do not intend to fol
low the complete and rather complex evolution,under successive
renormalisations, of the distribution law, an approximation

has to be done. Our present choice will be to approach the

actual renormalised distribution by
P'(f) = (1-p')S(£-1) + p'6(f—fé) (16)

In other words, we replace the 4Aimpossible identification of
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P, and Pé, by the possible identification of P and P', while
preserving as many moments as we can (fwo in our case, because
we have only fwo parameters, namely p and fo). Then the recur

sive relations for p and £ are constructed by imposing

<g(£)>,, = <g(f)>, (17)
b' b

and

<Ig(R)17>p, = <(g(E)17>, (18)

where g(f) is an arbitrary (in principle) function to be cho-
sen. By using Eq. (14), we may rewrite Egqs. (17) and (18) as

follows:
b' b Bioi i
' -1 41 = .
izo(i ) (1-p") p' g (E, (£))

b b-i iz
(1) (1-p) " “*prg(E, (£)) (19)

[o]

1}
[/ o= vy

i
and
L
b!
'(i

¢y b -1 |l = ' 2
&) R g (F (£

1

Il T

]
[l aeeley

i 0(?)(1—p)b‘ipi[gxfi<fg>12 (20)
These equations determine (at least implicitely) p'::p'(p,fo)
and fé::fé(p,fo), as soon as we have chosen g(f). The simplest
choice one can think of is g(f) = £ (we denote by f-RG the cor
responding recursive relations): it yields quite reasonable re-
sults over the entire (p,fo)—space (see Fig. 1), as well as the

exact "critical" behaviour (namely £ « 1/p if p+0and 0 <:§)<L
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and & « l/(l—fo) if fO + 1 and 0 < p < 1) for both simple and
multiple scattering models. However the simplest choice is not
the best one: if we choose g(f) = s(f) (we denote by s-RG the

corresponding recursive relations), where

Kn% (simple) (21.a)
s(f) =
1-f (multiple) (21.b)
£
we verify that g(fi(fo)) = ig(fo)ﬁmfboth simple and multiple

scatterings. By using this property, Egs. (19) and (20) can be

straightforwardly summed up, and we obtain

b'p's(fé) = bE)S(fO) (22)

and
b'p'(l--P')[S(fé)]2 = bp(l—p)[S(fo)]2 (23)
Equation (22) together with Eq. (11) immediately yield (ex

cepting for an arbitrary multiplicative constant)

1
- N (24)

which is the exacf answer for both types of scattering. 1In a
certain sense it is astonishing to verify that a relatively
simple choice of g(f) exists, which exactly compensates the er
rors introduced by our rough (in principle) approximation, name
ly the replacement of a rather complfex distribution law by a

simple binary one. Finally it is worthy to note that Egs. (22)



CBPF-NF-012/84

and (23) provide a fo—independent recursive relation for p,

namely
P I = _R__

which presents the fixed points p = 0 (unstable) and p =1

(stable). This equation is quite different from the typical
1

percolation one, namely q'b = qb, where we have 1introduced

the variable g = 1 -~ p corresponding to the concentration of

"holes" of scattering centers.

IV GENERALIZED MODELS

Let us now extend the scattering models we have been con
sidering by associating, with each scattering center, the dis

tribution law
P(£) = (1-p) 6 (£-£;) + P& (£-f,) (0<f,f,<1) (26)

which, for f1 = 1 and f2 = fo’ recovers Eq. (8). Egs.

(2) and (6) still hold, with expressions (3) and (7) gener-

ralized into

1
(l-p)S(f1)+pS(f2)

(27)

with s(f) given by Eq. (21).(for an arbitrary distribution P(f),

Eq. (27). would become £ = l/<s(f)>P).

If we want to approach the present extended model whithin



CBPF=NF-012/84

a RG framework, we can follow along the lines of Section III,

and introduce the renormalized distribution law
P'(f) = (1-p")8(£-£]) + p's(£-£)) (28)

which generalizes Eq. (16). We have now a three-dimensional

parameter-space (namely p, f1 and f2)7 consequently, to Egs.

(17) and (18) we add

<[g(£)1%>,, = <[g(f)]1°>, (29)
Bl Py

Pb (and analogously Pg,) is now given by

b
= b b-1i i -
P, (£) = igo(i)u-p) "pre(£-F, (£,,£,)) (30)
where
£ hed (simple) (31.a)
f.(fllfz) =
1 .
» l—fl, l—f2 (multiple) (31.b)
1+ (b-1) 5 +1 7
1 2
If we choose g(f) = s(f) given by Egq. (21) (noted s-RG), we

verify that g(fi(fl,fz)) = (b—i)g(fl) + ig(f,) for both simple
and multiple scatterings. By using this property, Egs. (17),

(18) and (29) provide

b'[(1-p)s(f]) +p's(£5)] = b[(1-p)s(f;) +ps(f,)] (32)
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-10-
b'p' (1-pNs(£3) - s(£])1% = bp(1l-p) [s(£,) -s(£,)]" (33)
b'p' (1-p*) (1-2p")s (£3) - s(£)1> =  bp(1-p) (1-2p) [S(£,) ~s(£) T’

(34)

Eg. (32) together with Eg. (1l1l) provide (excepting for an ar-
bitrary multiplicative constant) the exact answer, namely Eq.

(27).

V CONCLUSION

We have discussed simple and multiple incoherent elastic
(one-dimensional) scattering in pure, diluted and center-mixed
(binary distribution which recovers the pure and diluted cases
as particular ones) semi-infinite linear chain. This model is
equivalent to a situation in which the beam which is being
scattered has a normal incidence into a stratified semi-infinite
medium composed by scattering slices. The main eact results
we have established (re-established for the most trivial among
them) are:

i) The dependence of the intensity on distance for scattering

centers of arbitrary transmission coefficients (Egs. (1)

and (5)); in the case of identical centers, the laws are

respectively exponential (Egs. (2) and (3)) and power-like

(Egs. (6) and (7)) for simple and multiple scatterings.
ii) The extension of point (i) to the diluted (Egs. (9) and

(10) for the simple and multiple models respectively) and
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center-mixed (Eqg. (27) together with Eq. (21)) linear chains.
We have also argued that these phenomena can fruitfully
be seen as "c¢ritical" ones, and as such, should be tractable
within renormalisation group frameworks. We have exhibited
how this can be done in the one-dimensional systems menticoned
above by using standard real space renormalisation techniques.

In this sense our main results are:

i) By renormalising "blocks" of b centers into "blocks" of
b' centers (b' <b), we have obtained, 4or all values o4
b and b', the exact penetration length £ for the pure lin
ear chain.

ii) In the case of the diluted and center-mixed linear chains,
we approximate the complex distribution (of the transmis
sion coefficient f) which .emerges under successive renor
malisations, by a binary one. There is no unique way to
do this: we choose to preserve as many first momenta (two
in the diluted case, tﬂree in the center-mixed one) of
g(f) as we can, where g(f) is an arbitrary function. The
simplest choice g (f) = f is already quite satisfactory
(see Figs. 1l.b and 1l.c). However the best choice is g(f) =
s(f) where s(f) is additive (in the sense that s (i cen-
ters) = i s(one center); see Eq. (21)): for this choice

the exact penetration length £ is reobtained, {or all val-

ues 04 b and b', for both the diluted and center-mixed
chains, and both simple (exponential law) and multiple
(power law) scattering models. In a certain sense, it is
surprising that a function s(f) does exist which exactly
compensates the error involved in our approximation where

only a f4indite (instead of aninginite) number of momenta is
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preserved. However such convenient functions have already
been pointed out for a variety of systems, such as the
Ising [sl ,  TPotts C7,8] , Z(N) Lo ana  resistor-10J
models.

iii) The geometrical nature of the present scattering pro
blem in the diluted chain is different from  that of
(standard) percolation, as can be seen through the way the
concentration p renormalises (see Eq. (25)).

The extension of the present ideas to more complex types
of scattering (D-dimensional, anisotropic, inelastic, coherent)
in d-dimensional systems would be very welcome. We are presently
working 1in some of these extensions.

We have benefitted from interesting remarks from A.M. Ma
riz, A. Coniglio, H,J. Herrmann and E.M.F. Curado; one of wus
{LSL) acknowledges useful discussions with S. Muto, W. Klein,
H.E. Stanley and M. Mendillo; CT acknowledges with pleasure
warm hospitality received in the Physics Department/UFRN (Bra
zil) during part of the present work. This work has been par-

tially supported by CNPgq (Brazil).
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CAPTION FOR FIGURE

FIG.

1

(a) Indicative RG flow, in the p (concentration)
-f, (transmission coefficient) space, for both
f-RG and s-RG for simple as well as multiple
scattering diluted models (o denotes fixed points;
the line p=0 and 0<f <1 is a 1line of fixed
points). Typical iso-& Tines (the value of the
penetration length £ is indicated on the curves)
corresponding to simple (b) and multiple (c)
scattering models: full lines are the exact re-
sult (reobtained by the s-RG, W(b',b), and dashed
lines correspond to the f-RG with b' =1 and b=2
(note the improvement when & increases: for £ =100

no graphical discrepancy exists).
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