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ABSTRACT

It is shown that the Einstein Universe is stable by a large class
of exact perturbations, which are made starting from a detailed
exam of the topology of the model, and vhich include perturba-
tions of the type considered by Lemaitre. The problem is reduced
to the one-dimensional motion of a particle, in a potential well
whose minimum correéponds to the configuration of the Einstein

Universe.



A meaningful concept of stability of a Cosmological Model can
be satisfactorily introduced in the context of the Perturbation
Theory of Cosmological Models. In this way, Lifshitz [1_|, and
 Lifshitz and Khalatnikov [ 2] analysed the stability of Cosmolo
gical solutions of Einstein equationé by developing a general
method of treating first-order perturbations of isotropic models.
Hawking [ 37| also treated perturbations of cosmological models
by the use of the quasi-Maxwellian formulation of Einstein field
equations. A final and complete review of the subject was re-
cently given by Novello, Salim and Heintzmann E4].

In the same scheme of first~order perturbations, the original
idea of stability seems however to be due to Lemaltre [53, who
examined the Einstein universe and showed that it was unstable-—ac
tually Einstein equations imply that the amplitude of the ini-
tial first-order perturbations of the matter density of the mod
el increases exponentially with time, the rate of increasing de
pending only on the matter density present in the original mod-
el. In all the papers cited above merturbations are nevertheless
first-ordexr, that is, only linear ;erms in the perturbations are
kept and the dynamics is given by &he linearized field equations
over the unperturbed background.

In the present paper we consider a class of exact perturbations

of the Einstein Universe, which are made starting from an anaiz
sis of the global (topological) structure of the model. We show
that the Einstein model is stable with respect to this class of
exact perturbations (which include perturbations of the type con
sidered by Lemaltre). This example motivates not only a program

of making exact merturbations in cosmological models, generating




by this procedure new stable structures, 'but also the reexam of
previous results of perturbation theory in the light of .exact e~
quations.

The procedure to make these perturbaf.ions involves a detailed
exam of the topological structure ot: the model to be perturbed.
To this end we characterize here the Einstein Universe as the sim

3

ply connected Lie group Rx S~ on which we introduce a left-in-

variant lorentzian metric, which is solution of Einstein equations.
s3 isthe torological 3-sphere, which is a Lie group acting on

3 the

Euler coordinates (x,68,¢), with 0<8<w, O <X ¢ < 2w, the left

itself by left multiplication [6], [7]. Introducing on §

invariant vector fields on S3 can be expressed

2.
9X

X1=

X2=cosx 2 + sinx 8 _ cotgh siny 2
20 sin® 3¢ ax
X, = =siny 2 4 gosx @ . cotgb cosy 2
a6 sin® 3¢ Y

with corresponding left-invariant dual l-forms
, }

wl =dx + cosf d¢
w? = cosy d9 + sinb siny d¢

w3 =-siny d6 + sinb cosy d¢
which satisfy the algebra of S3,

- _ i _ijk 3, k :
[xi,xj_l Eijkxk ¢y Qu” =-~¢ w~ Aw (1)



On the manifold R we introduce the coordinate t (~w<t<w) with

vector field X°= 3/3t and dual l-form dt, and satisfying obvi-

ously

[xolxij =0 , i=1,2,3 (2)

3 is the covering group of the algebra (1),(2),

and (xo,xl,xz,x3) and (dt,wl,mz,w3) constitute bases respective

The manifold Rx S

ly for vector fields and l-forms on RJ<S3. The Einstein model is

obtained by introducing on R:<s3 the left invariant Lorentzian

metric

2

g(X,,X,) =diag(l,-2?,-2%,-x%)  a,b=0,1,2,3 (3)
or equivalently
ds?=at? -2\ hH?+w2)2+@w3?] Y

where‘kz is a constant parameter. The geometry (3) or (4) is so
lution of Einstein equations with the cosmological constant term,

ﬂx-kp=-2A==—li , where p is the mass density of the pressureless
2)

fluid, as measured locally by the comoving observers with four-

-velocity field 3/3t. By construction the space-like sections t=const

have the topology of S3. Now S3 has the structure of a fiber

bundle, with base space s? and fiber homeomorphic to SIEBJ; In

other words s3 has the local decomposition Sl}(Sz, this decompo
sition being realized by splitting the tangent vector spaces of

S3 with respect to the vector field X1f=8/3x. We have a wvertical



space V spanned by the vector X, with corresponding dual l-form
wl; and the horizontal space H orthogonal to X, spanned by the
vectors Y2= 3/36 and Y3= 3/3 ¢~cos8 3/3%, lwith corresponding dual
l-forms 02= de and o= d¢. The metric on 7 is exoressed as gv(_xl,x1)=1,
and gives the geometry of SI; the mc;tric on H is expnressed -as
9yt gH(Yz’Y2)=1p gH(Y3'Y3)=sin26, other components zero, and
gives the geometry of SZ. The geometry of the Einstein Universe
is then split into

d52 = dt2

12 1,2 ERPR I
A {gv(xlrxl)(w )T gy (Xm'xn) oo} (5)
according to the fibering Rx Slx Sz, where m,n=2,3,
Now starting from the geometry (5) we make the following per
turbation: the radius of the 2-sphere S2 is made time-dependent.
We then obtain a new manifold with the same topology Rxs3, and

time~dependent geometry by givea

2 2 2 2 2 ‘
ds®=at” ~Og (x; X (h 7 +B%(8) gy (x x.) 00"} (6)
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The spatial sections t = const. have the topology of SB, analo-
gous to the static Einstein Universe. The dynamicé of the per-
turbed models are described by Einstein equations with the cos-
mological constant term. We take for the matter content of the
model a perfect fluid, with matter-eneréy density o and pressure
"7, as measured by the comoving observers with four-welocity field

39/3t. We distinguish from (6)




1) Einstein Universe
B = BE= const.
and Einstein equations imply

ka=-2A=-33- ., B.2=1 (7
23

2} Einstein Perturbed Universes

Einstein equations for (6) reduce to three independent differen-
tial equations. Two of them define p and w, and the third one
yvields the differential equation for B(t)

B, B2, 1

2
‘-i' "2\‘2;- =0 : . (8)
B B B B '

where a dot denotes t-derivative. Equation (8) has the first in

tegral
.2 e L
B ="l + -—--—2-—-—- +—-i ' (9)

W
w

where C is an integration constant. Introducing the new variable

q==B2(t), egs. (8) and (9) can be rewritten as
.'ci—--2+—--- ' (10)

—i—c’;2=-2q+2}\2£nq+2c (11)



The dynamics of the models as given by egs. (10) and (11) can be
reduced to the. 1-dim motion of a particle in a potential well,

described by the Lagrangean

L= 1% EIZ -V(g) : (12)
2

where

Vi{q) =2q - 2A2£nq (13)

The graph of the potential (13) is depicted in Fig. 1. The mini

mum of the potential occurs for A= 12= BE2' that is, the configg

ration of the Einstein universe is a point of stability of the

class of models (6).

~—asympt {2q])

ba o e s e —

719, 1. The graph of the potential V(g}, with the asynptotic be

saviour for small and large q.



The value of Vmin is given by

v =922 1ops 2
Vo o =Vp =232 (1-tm?)

Introducing the canonical nronmentun p='§—I;‘-=c'1 , the Hamiltonian of

3q
the system is a constant of motion given by

2

H= =p+V(q) =2C (14)

N

The trajectories of the system in the phase plane (g,p) are closed,
the turning points given by qy and d, {c£. Fig.l). In fact from

the autonomous system of equations of motion

(15)

the trajectories of the system can be drawnas in Fig. 2. The ar

row describes _ }_:_hg direction of increasing time.
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Fig. 2. The trajectories of the system in the {g,») ~ ghase plane,



At this oeint we can discuss the meaning of exact perturbations
and stability of the Einstein universe: each trajectory of Fig.2-
- characterized by the "energy” parameter 2C - correspcnds to a
model which is an exact perturbation of the Einstein geometry,
anéd is stable in the sense that its phase-plane (g,p) amplitude
about the stability point {qw=qE,p==O) is always bounded. The
point (q==qE,p==0) - which corresponds to the configuration of
the Einstein universe -~ is a stability point of the system. By
decreasing the value of the "energy" 2C to the value Voin = VE
(cf. also Fig. 1) we can confine the trajectory to any neighbor
hood about the stability point (q==qE,p=:0). On the other hand
any infinitesimal perturbation of the Einstein model cbtained by
taking the "energy" 2C==VE+EZ(€ positive and infinitesimal) is
stable and corresponds to an exact bounded trajectory about the
stability point, and infinitesimally close to it.
Expanding V(g) about Vmin=\ﬁz we obtain

1 2
Vi{g) =VE+-;\-2 (q-qE) + . (16)

For 2C close to VE we obviously have that T-dg is small and the

motion is a sinusoidal oscilation about dy described by

g(t) - = £ sinvo t

~1 . e

where v =X/v¥2, and the amplitude £==A¢2C—VE. For oscila-
tions about (q==qE,pE=0) with large amplitudes, we use action-
angle variables in the Hamilton-Jacobi formulation of the sys~

tem and we can express (t) as a Fourier series in the funda-



mental frequency given by

L)
v 1= j dq _ arn
a, [4q+4l2£nq+4c

Using (10) and (11) we express the matter-energy density o}

and pressure 7 as

_ 2 %engr2c-a?ts2

Ko + A
242 (18)
2 2 '
ko = 22 &ng+2C-S52"/2
2q2

For q-q; infinitesimal, namely 2C=VE+ € with ¢ infinitesimalwe

obviously have that p=9¢_+ 8p,1=0+8n, where §p and dr are infin

E
itesimal perturbations to the corresponding.valt;es of the Einstein
model, and bounded for all t. Nevertheless for each trajectory
g (t) we must garantee that p and v satisfy the energy oonditions
971 0>0, [nl<p ana !g——gld for all t. In the scheme of perfect
fluid it is easy to verify that tﬂese conditions are always sat
isfied for a large range of the "energy" 2C. We note, for small
oscilations about (q=qE,p =0), that we must change the valueof
A in case we also demand that &ém>0, for all t.

We make some final comments. Each trajectory of Fig. 2~ which
can be obtained by continuously increasing the "enefgy" param-
.eter 2C, starting fror;t Vmin= VE — correqunds to an exact so-
lutionof Einstein equations, with p and © given by (18). In the
verfect £fluid scheme such models satisfy reasonable physical con

.ditions for a large range of the "energy" 2C. The effect of in-

troductionof viscosity terms in the behaviocur of the fluid must
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be examined. If by some physical process the geometry could fluctu-
ate and the.curvature of the 2-sphere changed sign (in other words
if the topoclogy of S2 changed to give a 2-dim open space) we can
show that the future of the system wguld be to expand indefinite
ly to g+, in which the quantity (17) would be a measure of a "re
laxation time" of the system.

The class of perturbations we have considered are spatially ho-
mogeneous, or have infinite wave-length (in the language of Refs.
[C1]] ana [2]), but at least the small exact time-dependent per-
turbation q-qE=£ sinvot can be properly localized. Our result poses
the striking question that the program of the theory of perturba
tions of cosmological models, and its eventual applications to
the theory of galaxy formation, should then be reexamined in
the light of the exact dynamics of the perturbations.

We thank M. Novello for stimulating discussions on the subject

of this paper.
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