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ABSTRACT
The dynamic evolution of visco-~elastic and purely
elastic bars hitting rigid and elastic obstacles are

studied, from either the theoretical, numerical or computa-

tional point of wview,

1. INTRODUCTION

Many interesting problems in,6 the Engineering Sciences

reduce themselves to the study of the quasi-static or‘demMp

This research was supported in part by the Comissao Nacio-
nal de Energia Nuclear (CNEN) through contract n. 103989/77
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évolution of a continuoés medium in the presence of obstacles,
the constraints imposed by those obstacles being of unilate-
ral type. For equilibrium problems, and for the quasi-stafic
evolution, there are adequate results available. However, in

many concrete situations, it is necessary to take into account

. the dynamic character of the evolution., This is the case, for

example, of an elastic body hittipg a rigid or elastic obstaf‘
cle in the course of its evolution: a dynamic version of
Signorini's problem, whéfe solutions with "shocks" should be
expected,

. That ié the question we shall discuss in the present
paper, with the restriction'of a‘unique space dimension and
the assumption of a visco-elastic behavior for the body,

_ * More complex‘examplég, but realistic, appear in.the

structural analysis of nuclear power plants. For the so

‘called "pipe whip problem", explained in [ 5], the plastic

behavior of the material ought to be considered.

In the case of an elastic obstaéle, the problem dées
not pose any major difficulty. It deserves howevér being
mentioned, in_view of the faat that the rigid obstacle case
is treated as a limit case of elastic obstacle, when rigidity
tends to infinity;

In the case of a rigid obstacle, the force law asso-

ciated to the constraint can be written in the form
-R € an(U) ’
¢ Dbeing the indicator function of R+, and U * the displa-

cenmient of the particle getting in contact with the obstacle.
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Problems of this nature'have appeared in the 1iterature since
long ago (J.L. Lions [4], H. Brezis (1]), and recently

M. Schatzman [ 7] treated the problem in a finite dimensional
setting. From the point of view of Mechanics, this cbrre-

sponds to the problem of motion of a rigid solid in the pres-

.ence of a rigid- obstdcle. Passage to an infinite dimensional

situation, to be pursued’ in this piece, may present new dif-

ficulties, and being. insidg less severe hypothesis than in
[7] is advisable. We sﬁall note that the presence of visco-
sity terms will be valuable for the mathematical analysis.
The solution, as in [7], will exhibit a bounded measure to
répresent the rigid obstaclé reaction. Through the computa-
tional simulations, based on the elastic obstacle apﬁroxima—
ti§n (rigidity as parameter); we will be able to approaéh the
pufely elastic body case, |

We shall also observe that the probleﬁ can be formu-
lated in terms gf a variational inequality, when the solution
presents some regularity. | | |

The plan of the article is the followihg:'

2. The physical problem.

3. Basic theoretical results,

L, Proof Qf Theorem 3,1,

5e Proof of Theéreﬁ 3.3.

6. A variational inequality.

7. A numerical scheme. Convergence.
8. Proof of Theorem 7.1.

9. Results of some numerical simulations. -
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é. THE PHYSICAL PROBLEM
The bar occupies, in its natural-state,-the domain -
0 = (0,L); x denotes a-generic point of Q. The'displace—
Jments do occuf along the bar axis, and are characterized by
a uﬁiQue scalar function f{u(x), x € Q}. Naturally, u is
also a function of ﬁime t din the dynamic problems to be
considered in the sequel. |
The density p is taken to be equal to 1 in the
theoretical analyéis. The stressAfield inside.the bar is a
- scalar denofed by 0. |
. The bar is supposed td preseﬁtwa visco=-elastic behév-

‘ iour, so that the constitutive equation is written

(2.1)° ¢ = aE + bE, a>0, b>o0,
with
. ’ au
| E=u =3x
(2.2)
. 3E
The situation of an elastic material is the limit case b = O,

The object of this study is to analyse the evolution of
the bar, under the action of a certain load, when its motion
is constrained by the presence of an exterior obstacle at

X = 0, The obstacle will bé elastic or rigid. We put

(1)

In ‘what follows the dot will denote partial differentiation
in time and the prime differentiation with respect to x.

'



(2.3) S u(t) = u(o,t),
v and
(2.4) R =‘-o(0),

which is‘the’support reaction on the bar. Besides R the

only external action to be considered will be a body force .

!
AX

L L»+u(L,t5
1

|
!
]
I
|
I
l
I

[1] 0+U(t)

: J
////////////////////q'////////////////////

I
Figure 1

described by a density f = f(x,t). In particular, particle

x = L is supposed free, that is

(2.5) , ‘ | c(L) =0, - ¥V t,

and the evolution disothermal.
The formulation of the problem depends on the situatioh
to be considered: in the elastic obstacle case, it is legit-

imate to search a motion in which the velocities are continuous.
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In the case of the rigid obstacle, the possibility of shock

~waves ought to be allowed (at least for éiastic bars), and

a Weak formulation in time is inaicated, even though para-
site solutions could be introduced, as observed by P.D. Lax

L3].

Thé fo%lowing notation will be used:

) : L
-a(u,v) = a E(u) E(v) dx, .
or | ' |
(2.6) - 4 b(a,v) = b E(u) E(v) dx,
O - .
: | L
o (f,v) = (' £ v dx.
| - o ) -

~ And the initial data uo(x) = u(x,0), ﬁo(x) = ﬁ(x,Q) Wili.
" be supposed to satisfy
(2.7) , u(o) = o.

In the case of an elastic obstacle, with rigidity k,

the force law associated to theiconstraint is wfitten

R=0_ if U=z 0,

R = -kU if U< 0,

that is, denoting by ¢+((resﬁ. ¢”) the positive part (resp.

negative) of V)
(2.8) ‘R = kU™,

The theorem of the virtual powers implies
(2.9) o (ue),v) o+ a(u(t),v) + bla(t),v)
= (f(t)’v) + kU—(t)V! MoV,

where V = v(0). The functional framework for relation (2.9)
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will be made precise in the variational formulation of the
problem (Theorem ‘3.1).
In the case of the rigid obstacle, the force law

associated to the constraiﬁt is written

(2.10) U= 0, R2 0, RUG=O,

.which is equivalent to

(2.11) U= 0, R(W-U)=2 0, ~ W=2 O, :

The weak formulation in time of the theorem of the

virtual powers then leads to

T
(2.12) ( -(E(0),9(8) + alu(e),v(6))
) |

+ b(a(t),v(£))}at + (Gg,v(0))
T o
= ( L (£(t),v(t)) + R(£)V($)}dt,
0]

v (v(t), t € (0,M)], v(1) = o,

with
(2.13) . ; u(O) = u(;s
and
T .
(z.14) R(t)(w(t)-u(t))at = o, ¥ W2 0 on (0,T).
o ,

For this problem, the functional framework will be made

precise in Theorem 3. 3.
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3., BASIC THEORETICAIL RESULTS

We first introduce the notation to be used. We, put
¥ = LZ(Q), and denote by (+,-) the usual scalar product on
H, with I-I the associéted norm. On the other hand, 'U
will stand for Hl(Q) and its usual norm denoted by “'“.
The bilinear forms af(u,v) and b(u,v), defined in (2.6),
~are continuous bﬁ vXt . Furthermore, given k'>.0, 'theré

exists. & > 0 (resp. B > 0) 'such that

a(v,v) +,A|v}2 > QHVHZ; ¥ v e v
(3.1) | o 0 _
(resp. b(v,v) + Mv[® = 8liv|", ¥ v ev).

The result\deScribing the mathematical properties of
the problem with an elastic obstacle (2.8)-(2.9) is the

_following.

Theorem 3.1 - Let k > O, T > O, u, € v, ﬁo €H and

2 .
f € L°(0,T;8) be given.  Then there exists a unique function

u such that

(3.2) - | u € L7(0,Tsv),

(3.3) | a2 e L7(0,T3H) h L%(0,T;v),
(3.4) (o) = u,

(3.5) - u(0) =4,

.which verifies relation (2.9) for every v € Yy and for almost

every t € (o,T).

Remark 3.2 -~ The solution put in evidence by this theorem

depends, naturally, on k. It will be noted oy from now on.



Problem (2.10)-(2.14), which corresponds to the rigid obsta-
cle, will be treated as a limit case, k =+ .

The result relative to this problem is the following.

Theorem 3.3 - The data are T > O, u € ¥, with U0 > 0,

ﬁo €4 and f € L2(O,T;H). Then there exists a function u,

and a bounded measure R on [0,T], such that:

(3.6) we r"(0;T3u), @€ L7(0,m4) n L¥(0,15u), U e cUa),

(3-7) ) -u(O) = uo,
(3.8) . U= o,
(3&9) ( {-(1,v) + a(u,v) + b(a,v)}dt ~ -
10 . T .
+ -_(I:IO,V(O)) = ( (f’v)dt + (R,V),
o) .

¥ V€ LZ(O,Tﬂ;), with v € Ll(o,T;u),

ve c’(o,1]), w(T) = O,

(3.10) (R,W-U) = 0, ¥ we c°o,T]), :W‘z 0.

Remark 3.4 - The support reaction appears here as a measure
on L0,T]. Relation (3.10) is a weakened form of (2.11) (or

(2.14)).

Remark 3.5 - ( ,15 is the duality between the space of

bounded measures on [0,T] and CO(EO,T]).

L4, PROOF OF THEOREM 3,1

This theorem is probably classical, or almosi, the

demonstration being built through standard arguments.
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For the sake of simplicity.we take k = 1.

Uniqueness.- Let. ul and u, be two solutions, and put
u = u,-u,. For A > 0 fixed, define
-t '
za(t) = e A ua(t), o = 1,2,
z(t) - o= e")\t u(t).

Writing (2.9) successively for u;, u taking the differ-

29
ence and choosing v = %, we obtain

(z + 2hz + Xzz, z) + a(z,z) + b(z + Az, z) = (ZI-Z;)Z,_
~ that is,

U212 #3212 v alz) + A b(2)) + &A2]? 4 b(3) <

W=

< |z|1z ),
pbéérving that
| z]-23] = |z, -2

2] 2l

It follows then, using z(0) = 0, =z(0) =0 and (3.1),

t
|
v ’ 1/2 K 1/2
< C(f 2] ® ar) ([ 2% ar)™ ",
0] ‘ -0

Since A is positive, all the terms in the left hand side

(#.3) 1317+ aflzl® + an(3) N3N ar

+

have the same propérty. In particular
t

e t _ t
8 %)% ar < C[[ I zHZ_d'r]l/2 [ f 2|2 ar) 1/2,
. /o 0 .

0

(*).

We put ,a(v,y) = a(v), b(v,v’ = b(v).



11

~fhat is,
-t

t . _
Bl 2% dT]l/z < C[/ I I} ? d"rJl/Z.
0 : o

Hence the second member of (4.1) is bounded by
t

C “z”2 dar .

1
0]

We have then, from (4.1),

allz2< ¢ | J2* ar,
0]

from where we get 2z = 0, and the uniqueness resulf.

Existence - It is based on the Faedo-Galerkin method, the

.

1imit in thé non-linear term taken through compacify argumenfs.

Let {wi, i-> 1} be a sequence of independent vectors

in Yy,  with linear combinations dense in VU. The initial

data u and 1 are approximated by u and 1u__:
o o : om om
, ¥ . U i i i i . i
u - (resp uom) is a linear combination of the-{wl, 1< i<m}
and u__ 4+ u in . 1 2 U i ’ .
a om o T v (resp uon u 1@ H) as m - f
Let now.

. m
u (t) = i gjm(t)wj

be the solution of the problem g!.;
(k.2) G (6)5w,) + alu(6),w )+ B () )

= (f(t),wj) + U;(t)wj,, 1< j< m,

(4.3) - u(0)

il

u ’
o

(b.h) ' ﬁm(o) .

om

We first establish a priori estimations for u . We

multiply (4.2) by éjm(t), sum on j, and integrate from

s,
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0O to t, to obtain:

(4.5) 3 8,017 + a(u (£)) + V()17
e
o[ wtag(ryar -
0 o :
t
=( (£(r),8,(r))ar +
(O : :
|2

v 3 {lagyl® + alug) + Tus(0)1%).

Since wu__+ u_ in VY, U (0) » U(0) in R; hepce, the

majoration _
v (0) < [u, (0)]
assures that the terms in the right:hand side of (4.5)

corresponding to- t = O  are bounded independently of ﬁ.

On the -other hand we have
‘ t

(4.6) 'lf (£(r),8 (Par| s L |£]2, )

, |
o L=(0,T;H)
t . . )
1 g 2 ‘
o |
Relation (4.5) then fournishes
t.

G, (6) 1% ¢ v | [a ()] ar,
. o |

so that
(&.7) , [a:(t)] < Cy

where Cl ='const%nt in t ¢ (0,T) and m = 1, Further,

a(um(t)) and K; b(ﬁm(T))dT are bounded, and then, by

(3.1):
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(4.8) - lug ()] s cps
. T . .
(1.9) [ 102 ar < o
. ' 0
Finally,
(k.10) U (t) = ¢y, .

with all thé constants being independents of t € (0,T) and
m2 1, - | »
| From estimates (4.7), (4.8), (4.9) one can deduce the
existence of a function u € Lm(O,t;U), with 1 € La(O,T;ﬂ)

n LZ(O,T;U),_ such that, at least for a sub—seéuence,

(4.11) w4 u  weak* in L”(0,Tsv ),
“(4.12) G+ G weak* in L”(0,T;4) and-
- weak in LZ(O,T;U).

- On the other side, it results from (4.8) and (4.9) that

(4.13) ' v, (t) | = ¢,
. t )
(4.14) i {- Ui(r)ar < c..
. - o 4
Hence
Up @ U weak* in L7 (0,T),
0+ U weak in L1%(0,T),

which implies

n* U weak in Hl(O,T).

But in one ‘dimension,

H'(0,T1) ¢ ¢°([0,1]),
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with compact injection. Then

(4.15) U+ U strongly in "~ ¢%(fo,T]).

From this we deduce
(4.16) U~ 4 U” strongly in ¢°([0,T]).
Convergences (4.11), (4.12) and (4.16) imply, for j .
fixed, that
a(u_,w.) =+ a(u,w,) weak* in L”(0,T),
m’"j | i’
. . . 2
b(um’Wj) - b(u,wj) weak in L(o,T),
U- W, o+ U W, in c°([o,T]),

J.

2 : . ‘
L1 d. .
(um,WJ) -» -;t—Z‘ (u,wJ) in @,(O,T).

Taking the limit m =+ o in (4.2), we obtain
U, w, a ) o+ b(a,w.) = (f,w.) + UW,,
.(u.’WJ) + (u’WJ‘) ( ’ J) ( ’ ‘])4A i’
j= 1, a.e. te€ (0,T).
Hence, by the density in Y of the linear combinations of
{w.,j =2 1}, we deduce (2.9) valid for every Vv € ¥ and
J .
almost every t € (0,T).

By classical arguments we can also get (3.4) and (3.5).

Then u is the desired solution.

5. PROOF OF THEOREM 3.3

The proof consists in showing the existence of a
solution of problem (3.6)-(3.10) which is the limit, as
k » o, of solutions of problem (3.2)-(3.5), (2.9). Here

-the notation of last section will be modified: the solution
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generated by Theorem'B.i is indicated by v (Cf. Remark

3.2).

A priori estimates I - We choose vV = ﬁk(t) in (2.9) to get

3 5 Uind0)]® + alu () + x(O(6)% +

+ (i () = (£(8),8,(5)).
Integrating this relation over (Q,t) and taking (2.7),
(3.4), (3.5) into account (U_(0) = 0): |

(5.1) 1o, ()% + a(u (+)) + k(UD(+))?

t
+ 2 fﬁ b(uy (t))dr =
t o . ‘

-2 (f(%){ﬁk(T))dT'+ Iﬁolz +bé(ﬁo).
/ o . : .

. ‘'The terms in the left hand side being positives, we

eXplore this relation in the following way. First deduce

t R
[, (8)[% s ¢ + 2 ( >|?(T)|lﬁk(7)|d7
‘0 )

t
< C, + o, (r)|? ar
2 k LN
. 0 A .
which implies, by_Gronwall's‘lemma,

(5.2) la, (£)] = ¢ (constant in k and ).

Now the right hand side of (5.1) is bounded, implying

(5;3) | k(U;(t))z < Cy,
t .
(5.4) | f b(a, (1))dr s § C,
_ | A .

(5.5) C aw(0) < o

Lo g
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After (5.2), |u, (t)| is also bounded independently
of k and t, and hence, by properties (3.1),
(5'6) ”uk(t)”'s 05’
T

(5.7) [*'uak(t)\\z at s cg,
o

with constants in k and t. Those estimates, together with

the trace theorem, yield
(5.8) . lu, (t)] = 97

(5.9) , [ T3 (t)at s Cge

" A priori estimates II - We choose in (2.9), for the virtual

motion v, a tfanslation in the direction ’'x <'O,. that is,

v(x) = v<o, V c;nstant. We get
+ i T

-V k U _(t)dt = { (f(t),v)dt -
0 ' o :

= (T) V) ¢ (B,v).

After (5.2):

(T
(5.10) i ) k U;(t)dt < Cye
' 0]

The above collection of estimates imply that:



remain in a
" n n "
jil n " "

Therefore we can concl

(5.12)
with |
(5.13)°
(5.14)

(5.15)

and a bounded

sequence,

(5.16) <

o
u € L~

“u e 1L”(0,T;

17 ' ‘

. . w
bounded set of L (0,T;v),

v (0, ),
moon L”(0,T5v),
noom L”(O,T);
now L (0,T),
L L?(0,T),
_ Ll(o,i).

ude the existence of an element

(O’T;U)’

¥) n L?(0,Tsv),

v e L°(0,T),

ﬁ'e L2(09T),

measure R, such that, at least for a sub-

u weak¥* in-
u . weak¥* in

weak in

U weak¥* din

U weak in

R vaguely in
on [0,T].

Those roperties guarantee
) ¥ b

L”(0,T;5y),
L”(0,T;4), and
L (0,T3v),
L”(o,T),

2
L"(o,T),

the space of bounded measures

in particular (J. Necas, [ 6]),that
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(5.17) U, + U strongly in c®([o,1]),
and U= 0, due to (5.3).

Let now v be a function in LZ(O,T;U), with
v e tr(o,m5u), v(T) =0 and Ve c°([0,1]). We test (2.9)
with the virtual motion v(t) and integrate on (0,T), to

get
L (- (3 (8),7(8)) + alw(8),v(8)) + B(&y (+),v(t))}az

T
= ( (£(t),v(t))at - (4,,v(0)) +
o . ' S

T
+<I, k Ui(t) v(t)dt.
0 .

" Now we take the limit in this expression, using (5.16), to

obtain
T

(5.19) {=(&,%) + a(u,v) + b(d,v)}dt =
= (f,v)dt - (ItIO,V(O)) + <R9V>-
0]
'On the other hand, (3.7) is satisfied, since uk(O) = u, for

all k.

Let now W be taken in C°([0,T]). The function

(gz
E;“ if ‘E £ O
e(g) =<«
o) if E 2 O,

is convex, hence

PO

LoD o () = 0] (v -u), on [0,

iy

.
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~in particular, if we choose W2 O on _[O,T],

U;(W-Uk) = 0, on [0,1], -
so that T
k U;(W—Uk)dt > 0.

0

If k + «», we deduce from the last relation in (5.16) and’

from (5.17) that

(R,W-U) = 0,., ~we c°(o,T]), W= O.

6. A VARIATIONAL INEQUALITY

We gd Back to the problem of’the rigid obstacle
described in séctign 2 for some general coments.

"Let u be the configuration of the system at time t;
the set of the virtual motions compatibles with the imposed
constréint, denoted by K(u), dependé on -the actual bonfigu—
ration, that is, on the dispiacement field wu, -existing at
time t. More precisely, the compatibility of a virtual
motion (that is of a virtual velociﬁy field) is described in

the following way:

v o€ [K(u)
if and only if
U= 0O,
(6.1) , Vzo0 if U = O,

VeER 4if U > 0.

Observe that those conditions imply

S

il

S AT R T
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K(u) = ¢ 4if U< 0.

Naturally, for every u, K(u) is a convex set.

The force law associated to the constraint imposed by

the presence of the rigid obstacle is described in (2.10) or

(2.11); R(t) 4is the obstacle reaction at time t. We have

the following

Lemma 6.1 - Let R be a function a.e. defined on “(0,T) ahd'
u a.e, differentiable. ~Then, to say that u. and R are
associated by the force law (2.11), a.e. on (0,T), is equi-
valent to

= u(t) € K(u(t)) ) -
- (6.2) .
' R(t) (v-U(¢)) = o,

¥ V€ K(u(t))’ .

a.e. on (0,T).

Proof: 1) Let us assume (2.11), and let t be a point where

u is differentiable. We test (2.11) with U(t+h) and

U(t-h), h ; O; dividing by h each relation, we get
R(t) U(t) = o.
Let now v € K(u(t)); we have

R(t)(V-ﬁ(t)).= R(t)V = O, .

which is (6.2).

2) Conversely, if (6.2) is assumed, then U(t) = 0, after
(6.1), since K(u(t)) £ ¢. Furthermofe, in view that
K(u(t)) is a.cone, the second relation (6.2) implies

RU = 0; it is"eqﬁivalent then to

i g e

e
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R(t)V = O, v v e K(u(t)).

Hence, if U(t) > 0, V can have any sign and R = 0; if
U(t) = 0, V can take only non-negative values and R = O,
We obtain then (2.10), which implies relation (2.11).

In view of this lemma the ﬁroblem of the rigid obsta-

- cle can be formulated in a different way. We have the

following .

Corollary 6.2 - Let R .be & function a.e, defined on (0,T)

and u a function a.e. differentiable on (0,T). The couple

(u,R) is a solution of problem (2.11), (2.12), (2.13) if and

only if,
(6.3) A € K@),
(6}&)_; _ u(d) = u,
.(6.5) {-(a,v-1) + a(u,v-1) + b(hd,v-0) - (£,v-a)}dt
: 10

+ (8g,v(0)-,) = o,

-

¥ v, such that v(t) € K(u(t)),

a.e. on (0,T).

Remark 6.3 -~ In the framework defined by Corollary 6.2,

problem (2.11), (2.12), (2.13) is posed in terms of a quasi-’

variational inequality, to use the terminology of J.L. Lions

[=2].

Remark 6.4 - The solution of problem (2.11), (2.12), (2.13)
exhibited by Theorem 3.3 is not related to. the above corol-
lary: the support reaction appears as a measuré on the

interval (0,T), and not as a function.
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>7. A. NUMERICAL SCHEME. CONVERGENCE

The process itself of pfoving existence of a solution
for problem (3.6)-(3.10) euggests a natural scheme for the
computation of  that solution: to interpret {uk(t), k u£(0¢)}
as a regularization of the solution u(t) R(t)}, end make
dlscretlzatlons in (2 9) to define the approx1mated solution
{uh At(t)’ h At(t)} The "convergence" in the regularléatlon
parameter k (4») would be guaranteed by the argument of
Theorem 3.3,

The d1scret17et10n of (2. 9) is done in the follow1ng
way. At flrst we make a change of variables, z(t) = "thuﬁﬁ,

‘A > 0, transforming (2.9) into- the problem

(1) (B(8),v) + A 3(2(t),v) + a(z(t),v) + Ab(z(t),v)

+

+

A (3(t),v) + B((t),v) + 5 2(0,t)v(0)=

(7.1) 'Gu»w+§lﬂmwwwp'vvgh

(ii) =z(0) = u_,

(iii) z(0) = u_ - Au

where f(t) = e—}t f(t). After that we define

2|t

' x. = jh, 0< j< M, h =

t_ =nAt, O< n< N, At = %.,,

o (1) = 1 4if  te [t tn+l)’

0] otherwise,



h

and, as the

(7.2) - ¢

v, = {v € CO(O:L) I Vl[x.,x.

23

] is a polynomial
Jj’ i+

of degree < 1, 0< j< M-1},"

approximation to z(t), the function

‘ N-1 - 2 ﬁ :
(£) = = {¢™7(x) + (t-t,)6, ¢7(x)}e, (¢),

n=0

N
where {gn(x)}o .satisfy

4

‘-' (ii)

(iii?

(%.3)<

In the above

(1)

| v

¢ e Vi 0< n< N,
¢® €.V, such that g°(xj) = u,(x;), OsisM,
gl € V 'such that gl(x ) = u (x );Zt a (x ),
’ h . J7 7 Tor7g o’
0< js M,
' 2 . ’ . , ) .
(at Qn:v) + Kz(gn G’V) + a(gn Q’v) +

+ Ab(c™% )+ 2a (e, ¢Tv) +Ab(s, (Thv)
+ 3 ¢""%(0)v(0)

.= (f‘n,a,v) + l{z— Ign(O)lv(o), ¥ v e Vh.

equations, the notation used is

1 -1
6. (Mo (ol _ e
t ’
| 270+
n+l -1
ai Cn _ €n+ _ 2€n N gn ,
(at)=
¢™% 2o ™y (1-20)M v o ™Y, o0s5as %.,
n+1 n
n C - C
04 € 7% A

N

i
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The approximation (7.2) is.well defined by conditions
(7.3), the implied algorithm being unconditionally stable and

convergent. We have. the following

Theorem 7.1 - Assuming the same hypothesis as in Theorem 3.1,

and defining

g ' N-1 \
(7.%) 2 C(8) = LI 8,(t)s
N-1 n
(7.5) b c(s) = I by 6,(t),

we have that, for 0 < a < 1/2,

(7.6) | ¢ + 2z weak* in - ?w(O,T;U),
(7.7) a‘tg? > weak* in L“(o,i*;,u),
(7..8) .‘ 5,0 » = wea.k.‘ in 12(0,Tsv),
(7.9)  x¢7(0,7) » kz7(0,*) strong in ¢°([0,1]),

independently of the manner as h and At ge to zero.

Remark 7.2 - We observe that the approximation to u(t) is

k At ' ‘ . k
uh,At(t) = e c(t), and that to R(t) is Rh,At(t) =

=k ' 7 (0,%).

8. PROOF OF THEOREM 7,1

The first step in proving (7.6)-(7.9) is to obtain

basic a priori estimates, For this we test equation (7.3)(iv)

at v = ét gn, getting

e AR el D @ T R A e A e

vt

S gt e s B O

A e R G



2 -l.2
(8.1) s (™™ - 1™+
‘n+1 2.
2At {[k lg l' +

Y b(gn+l)] _ [x2 Ign_l'Z N a(gn-l) .

a(€n+l)

R (S I

| | . , o 2
(1-za){xz(g“,stgn)+a(g?,atgn)+xb(en,6t@?)?fzxIﬁtgnl.t}h(bfgn)+

+ 5 ZAt (L™ 00?2 - (™03
v (1-2) £ ¢ (o) 8, (™(0) =
(F%, 8,™) + 3 1C7(0)] 8,7(0),

~because of the identities

n’ n-1
32.n 03 - 342
& = AT ’
L 3@+ D a1
6 a =
t 2 !
) u - . . .
A(a™ ;6tan) = 2At [A( n+l) - A(a" l)] + (l-ZQ)A(an;étﬂn),

valid for any sequence {a"} and every bilinear form A{(u;v).

Now assuming O < a < 1/2, multiplying (8.1) by 2t

and summing from n = 1 to n = m, we obtain

| 5 :
(8.2) ]atgm|2 £ o™ v aa(c™?1) + aan(c™t)

=

S YO N L IV I W I ¥ b(6,¢)
J=1 J= A

‘+ EE-Egm+J(o)] C. + C

L+ 0, T oatlcd)?

1

N ™Mg

J
2
-t € Z At ”6t€ “ s
o Jj=1

e s

el g AR e A R s
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where ¢ > 0 is arbﬁtrary and the constants depend on the
initial data, f, @, k and A. To reach inequality (8.2),

oné should observe, the trace theorem for Hl(ﬁ) was used,

as well as the standard estimation a+*b < caz + ﬁ%—bz, e > O.

Choosing an appropriate value for ¢ in (8.2), it
yields

2 2 i 2
e S T4 A A L e

Mg

j=1

|3 .C
. o |
at ¢, ¢y > o,

< C, + C
4 1

W™

5 .
J
which implies, coupled with the discrete form of Gronwall's
- lemma, the basic.a priori estimate

, n2 a2 . n | 2
(8.3) 2 ¢l +llcHl + g Zot l6 g ll" = cpn €y > 0,
for n=1,2,...,N. In view of (7.2), (7.4) and (7.5), (8.3)

can be presented as

(8.4) o |atg| - < const.,
- i o L'(O’T;H)
(8.5) 7‘ lc| © < const.,
‘ ’ L (OsT;U) V
(8.6) | |6tgl ¢ const. .

2
L=(0,Ty)

The second step in the proof is to éxfract a convergent
sub-sequence of {c =¢(rt,h) | At > 0, h > 0}. Estimates
(8.4)~(8.6) imply the existence of % € L™(0,Tsv), 2, €
€-L (0,T;4) and 2, € L (0,T5v), such that

¢ Z weak* in Lm(O)T;U),

(8.7) . Bfg - El weak* in Lm(O,T;N),

Gtg - %2 weak in‘ L2(O,Tﬂ;),
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-when h and At approach zero.

We claim that 2

1= %

= Z. Indeed, since

9(0,T) = {y € c(0,7) | T 6 = 8(4) > 0

such that | = 0},
(Ls,1-8]
we can choose At small enough so that, by summation by
parfs, 1 T
(3,0,¥) = 3, C(t) ¥(t)at =
0
t
n+1
N-1 n _
= 3, ¢ (x) y(t)dt
n=0"
tn
tn+1 th " .
N n - :
== ¢ (x){ y(t)dt - y(t)at}/at
n=1 : t ' t aE
' n n-1
= '<§’atw>’ ¥y € &(O,T).

But 3,y + § strongly

in Ll(O,T), hence

(3,0,4) + ~(5,) = (Z,¥),

.
~

that is El = Z.

.
C ~
A similar reasoning implies z, = 'Z,

On the .other hand it follows from Sobolev's embedding

theorem and (8.5)-(8.6)

(8.8)

3

[¢ (0,t)

| < const.,

T ‘
>(8.9) . ‘ [‘ (6tg)2'(O,T)dT < const. .
0

Hence, as ;h, At » O,

"g(o?-) + %(0,+) weak* in L”(0,T),

5,0 (0,-) =

Z(0,*)

weak in L2(O,T),

PR VIR R DT ACE R

i A R
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which implies

c(0,+) » Zz(0,+) weak in.‘H;(O,T).
since HY(0,T) c¢ ¢c°([0,T]), with compact injection, then

¢(0,+) » £(0,+) strong in c¢°([0,1]),

=

that is,
(8;10) | ¢~ (0,*) » 27(0,*) strong in c°([6,T]).

The last step in %he proof consists in '‘showing that
z 4is a solution of (7.1). Because'of the uniqueness property
we would‘havg then 2z = z,v so that (8.7) and (8.10) would"
imply the theorem. | :
To check this fact, test equation (7.3)(iv) at he
' interpqlant vy, € Vh. of a given Vv € v, multiply by. en(t),
and add from O to N-1. After that take the limit h,
At +» O, Since

LE (8-t) 8, C™(x) 8 () » O

pointwise,
Vi 4+ v strong in V\,
and

M2(Cvy) + alcavy) + A b(C,vy) & AP(E,v) +

+ a(z;v) + A b(;,Q) weak¥ in'_Lm(O,T),

2%(6tg,vh) + A b(étg,vh) - Zx(é,v) + N b(z,v)
weak in LZ(O,T),
N~
<

2 (00 = 3 T IO 8, (v (0)

ot

~

a Qk 27(0,+)v(0) strong in co(fo,T]),
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2 a® .
(@%¢vy) » —= (2,v) in g’ (0,T),
dt | |
are implied by (8.7) and (8.10), it is clear that 2 satisfies
(7.1). ' '

9. RESULTS OF SOME NUMERICAL SIMULATIONS

In this section we preseht two results obtained by

imblementing algorithm (7.3) as a finite element code. In

-both examples a 100-element regular partition was used, and

the calculations were performed on the IBM 370/145 at CBPF

with double'precision. The parameter @ was chosen as 1/4

-and At = 0.01, The values ) = 0 and X\ = 0.25 were

tested in both cases, with no distinction between the cor-

responding solutions appearing at the adopted scale.

Example i

We simulate an elastic bar with a = 1; b = Q, p=1
and L = 1, The external body force f was taken zero and
the obstacle spring constant k = 100. The.problem consists

in computing the - motion of the bar when it is submitted to

the initial conditions uo(x) = 0 and ﬁo(x) = =1. The exact

solution of this problem is known, given by (see Fig. 2)

X A
! ! . T
! ! i !
R; ' R | !
Ru ! Rz :
450 | , ! R
C i : S
Figure 2

BN N Wb o7 s e o

“rengns: o

R T R T
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[ u(x,t) = -t it (x,t) € Ry,
u(x,t) = -x +-%~[ek(x‘t)-1] if (x,t) € Rips’
1) 4 : - k(2-x- -
(9.1) (i t) =t + L [ek(2mxmt) k(x t)]_2(1+%),
if (x,t) € Rprys
etCevae

This 'example is to be pnderétood as a test case for

validating the code. 1In Figure 3 we have plotted the exact
Ay ’

5 1. 1.5 t
u(o.1,t)
u(0.5,t)
u(1,l)
Figure 3

solution (continuous line) as well as the computed points,
.Example 2

The same as before, with only one difference: the
action of an external field f = -1 4is taken into account.
In this situation no exact solution is known in analytic

‘form., As we can obhserve in Figure 4, the bar, after
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. separating from the obstacle, comes back again to hit it

for the second timé, due to the effect of the field.

u(o,t)
5 1 1.5 2. 2.5 ~

-1 — 3. 3.5

-5

-1

-15) .

‘ Figure 4

One last remark: the consideration of a viscosify

b > O in the bar implies a smoothing of the curve corners,

[P

)

Lok

TN YR R« B S

e
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