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ABSTRACT

The conduction electron spin polarization, produced by a magnetic rare-
—earth impurity in a transition metal-like host, is calculated, using the

Green's function formalism. The s and d magnetization are obtained to first

order in the exchange parameters. Corrected susceptibilities are derived,
which includes the difference in valence between impurity and host ions, via

the phase-shifts associated to the spin independent potential.
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I. INTRODUCTION

The conduction electron spin polarization associated to a localized
spin embedded in a metallic environment has been the subject of much work[1,2].

In particular the combined effect of a charge impurity and a localized spin is

a quite interesting problem.

When a magnetic rare-earth impurity is placed in a rare-earth metallic
host (e.g. Gd in Lu) there occurs no significant change on the spin
independent potential, so the scattering processes involving conduction states
take place only via an exchange coupling among the localized spin and the
sea of the conduction electrons. However, the situation becomes different if we
consider an f-moment impurity placed in a normal or transitional metal. An
important effect arises from the fact that the impurity introduces also a charge
difference. One expects then additional scattering due to the impurity
potential, the conduction states being now scattered simultaneously by the

exchange coupling and a spin independent potential.

Blandin and Campbell [3] have recently discussed the effect of a
localized potential acting on a s-like band which is polarized by the spin
impurity. Our purpose is to discuss the electron spin polarization induced by

a rare-carth magnetic impurity in a transition metal-1like system.

The plan of this paper is a follows: in Sec. II we formulate the
problem under the assumptions that screening is entirely performed by the
d-electrons and the mixing between s and d-bands induced by the impurity
occurs only at the impurity site. We calculate the Green's s and d-electron
propagators and, in order to compute the spin dependent impurity effects, one
developes a first order (on J parameters) perturbative approach. In Sec. III

we calculate the s and d magnetizations in terms of the phase-shifts[4]
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associated to spin independent scattering. Some limiting cases are presented.

IT) FORMULATION OF THE PROBLEM

a) Hamiltonian of the system

Consider a system of conduction s and d electrons described by
two overlapping bands (which for simplicity we assume non-hybridized) and an
impurity, placed at the origin, which exhibits a localized magnetic moment

(say, an f-moment).

We start describing the host s and d conduction states; in the

Wannier representation the unperturbed Hamiltonian reads:

;ﬁ% = 1 T(S) C:ocao * LT 10 diq (M

ijo 130

The perturbative charge potential introduced by the impurity

gives the terms

+

45? 1m2 2 {vdd o0 doo + Vsd oo doo + vds dos Coo ! (2)
po '

The above terms involves two effects: firstly the excess charge due to the

impurity introduces an extra potential which is assumed to act only on the

d-electrons at the origin. Screening is then performed almost entirely

by the d-states [:5] . Furthermore, the s-d hybridization between s and d

bands is induced by this impurity potential and occurs only at the impurity
site [5].

Finally, the impurity spin is coupled to the conduction states
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through:
jmp

B = 1 IRRe <P el g v TIDRLRY) osaid (3)
exch ijo ijo

where J(A) (Ri’Rj) s A =5,d is defined by:
: -ik.R; ik'.R.
oM (R;:Ry) = 1 I, ke e
k,k'
coupling being assumed).

(a k, k' dependent exchange

Thus, the complete Hamiltonian is written as:

- 4: + -;/—rimp + /"’1mp
’”éb "!pot exch (4)

In order to calculate the spin polarization associated to <S% >

ss _ L+ - Lt
one needs the propagators Gij(w) = <<Cio’cjo>>w and (m) <<d10 d\]o "

These¢ ropagators are calculated to first order in the exchange parameters.

b) Determination of the equations of motion

Using the Hamiltonian (4) one gets:

G?g(m) - ;i ) T(d) Gdd( )+ Vg 6 G??(w) + Vg 8y GSd(m) +
2
+ E KD (R Ry B0 633 (w) (5.2)
(5.b)
w 6%%(w) = L T{s) Gpg(w) + Vgy &5 G?g(m) s ZRJ(S)(Ri,Rz) S

1J
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The coupled equations (5.a) and (5.b) determine completely the propagator
dd
Gij(w).

Similarly:
(6.a)
'l .
SS S) ASS ds, S Z_ SS
0 G = ey 4] 168 6550w + vy 6y, Gij(w)+'zzd( VR, ,R,)<S >0ty (1)
ds d) .d d sS
w 653 (w) = Z {4 g (0) + Vg 850 T5(0) + Vg &y G o) +
d ds 6.b
+ Zz a )(Ri,Rl) <s%>g 6 3(w) (6.b)
determine the propagator G1J(w)
c) Calculation of the d-electron propagator in the Bloch representation.
Fourier transforming equations (5.a) and (5.b) one has:
(d) _ dd sd
(Q’-e ) G kl(w) 'é; Gkkl + Vdd Ek“ Gk||k|(w) + Vds zk" Gknk|(w) +
+ 7 Iy st 60d 1 (w) (7.a)
kll

G LHICIER) . Gy (1) + L, B (k) <sBo 64 W) (7.0

Introducing the notation:

o) = T, Gy (8)
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d
g's(?(w) = Z o Gi"k'(w)

Q) = 1 ok <o 6l (w)
kk. kll

(s)sd
Xkt (@)

) " 1) (k") B 6891 (w) (8)

equations (7.a) and (7.b) become:

1 1 v

)
dd dd dd ds sd :
G (w) =—35,., + g (w) + g . (w) +
kk kk k k
em w~e(d) w—s(d u)-el((d
1 (d)dd (9.a)
x  (w)
w—eéd) kk
d a4 1T (s)sd (9.b)
Gik'(w) = gk'(m) + X '(w) )
el®) e(s) K
(c.i) Zero order solution
Taking 3(8) = 5(d) . 0, one has: (10.a)
d ! ! 'ad dd(o Yds  sd(o)

Gkggo)(“’) = -—-Gkk. + g .( )(w) + 9y (w)

2m C) wel® K w-e
and:

)
Gt (W) = ___2%27 g09(°) (w) (10.b)
w-gy
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Introducing the definition:

:
Fo(w) =} L A= s ord (1)
A K u)_el((x)

it follows from (10.a) and (10.b):

dd(o)(m) _ ] 1 | 1 (12.a)
o 1o Vg Fa) = V|2 Fw) Fo(w) o= eld)
dd Fd sdl Fs(w) Fy k'
V_, F_(w) 1
400y - 1 | sd s (12.b)
K 2n

1 - Vyq Fylw) - IVSdl2 Fe (w) Fyq(w) w -eﬁé)

Hence, the zero order propagator de( )(m) is:

] 5

kk' 1 1 1
SRR "= e —— (13.2)
2w w_e(d) 2m e(d) w_e(d)
k & k'
and for the zero order propagator kkSO)(w) , one has :
S90) (4 = L L sy ! (13.b)
Sick 2m (s) (d)
(D'Elk w-Ekl

where we have defined:
vV, + |V |2 F (w) F (w)
d sd s d
19 - (14-a)




Tlu(m) - s (Au = s,d, X #u)
1 - vdd Fd(w) = |de|2 Fd(w) Fs((ﬂ)

(14.b)

It should be emphasized that equation (13.a) provides the exact solution

for spin independent 1mpurity effects, the strength of the Vdd scattering

being determined through the screening condition of the extra charge introduced
by the impurity [6 ].

(c.ii) First order perturbation solution

We solve in this paragraph, to first order in the exchange parameters

J(A), (A = s,d), the propagator Ggg.(w); from equations (7) one gets the

following results:

v
My o dd) B a0 M)+ o D)
"k (@) K (@) k' (d)y K
U)‘Ek U.)'Ek w-ek
(15.a)
v 1 (s)sd(1)
G (o) == gy T (15.b)
w‘eks (.I)‘EI(<S
Let us introduce the notation:
1 (d)dd(1)
d
(ARIOED — e W (16)
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1 (s)sd(?)
1
W = I —— xye () (16)
, k- eés)
where in the XLi' the corresponding propagators should be taken to zero

order, and consequently these quantities are known,

From equations (15) one has:

Vo )+ Vg Foo) vi ) (w)

¢4 () - (17.a)
1 - Vyq Fa(w) - lvsdl2 Fo(w) Fy(w)
(1 - (@) v3 ) + vy Flw) y3) (w)
&4y - Vad Fa Yo W sd "s'7/ Yk
k 1= Vg Fylw) = IV ]2 Fe(w) Fylw)
(17.b)
1 d)dd( 1 1
gggl)( yo x(k)k' ( )(w) b iy YdSl)(w) .
w - eld) w-eld X
k K
: Vgs 1ot (W)
+ (18)

w - eﬁd) 1= Vg Fa(w) = [Voyl® F(w) Fyluw)

Performing explicit calculations involving x(d)dd( )( ) Yd( )(w), yk( )(w)
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and after some algebraic manipulations, one finds the final result for the

first order correction:

dd(1) 1 1 d) . 1
g 1 (©) = 1D (kra k) 80— 4
9> em e e(d) w - eld
k+q k
+ L y J(d)(k+q,k') <s%>q S Tdd(m) L +
em w-eéié k' w-eé?) w-eéd)
4—-1--————1—-—— Tdd(w) Y _ J(d)(k‘,k) <sbhg —1 4
o w - S&E% k' w - eé?) w - eéd)
L L ii ) IO N | C)FORE) IPEC SRR By LT,
2n w-eéfé k'k" N'Eé?) u)_eéﬁ) w-aéd)
1 1 1 1 1
Fo— — Tds(w J(S)(k',k") <SZ>0 —_— TSd(w)
Zm w—eéi()q k'k U)-S‘SS,> w-e'(ﬁ) (.U-E'((d)

(19)

In a diagram picture equation (19) Tooks as:
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d‘/
}‘/ d ,,,,//k+q
d_ __d d / k+q d’ “ N L &7,‘
T T — —»_J:“‘ Tdd/ "y a’
k b k o / J( /
k k+q (.‘ (d)
&LJ
234D
) d d 5.
d("@/ \\'\ d - R ” "‘q‘_,/\ d
kK - k T i k+q
i
{
2
)i
A

s / s
d oy ///,4/ \\\\§\;\7f"\\ d
+ —-——--»——c»-——-—w—( :Fds/\’ k

k' ¢ sd) -
k T\) k+q

whare we adopt the following notation:

A

stands for the exchange coupling 3is) o J(d), {fdd? 78d and
-

. BN .. i X T
\I>>; are the collision matrices (T-matrices), corresponding respectively

to intra d-scattering and s-d scattering.

A convenient approximation is to regard the exchange interaction as
being k,k' independent so that: J(A)(k,k')=J(k), (A=s,d). In this simplified

situation, the propagator Ggggka(w) reads:

I T et L C LA
_ 7 (20)
Zm w-s&i) _j'vdd Fd(m)-!VdSIst(w) Fd(w{} w-eéd)
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(d) Calculation of the s-electron propagator in the Bloch representation

The approach is absolutely similar to the paragraph (c). Fourier
transforming equations (6.a), (6.b), one has:

1 ] 1 1 ss
Grpe (W) = — + — ggf(w) Ay (:lk'(w) (21.2)
2m w - eés) w - eés) w - eés)
1 1 1 (d)ds ,
Ggi.(m) s —_— gds(w) Y — 9i§(w) + X:k' (w) (21.b)
w- el K e o= e
where:

G+ () = Lo Sergn (@)

9:?(w) ) » Ggik.(w)

ISy = 1 38k sBo 65 (u) (22)
kk' k“ k"k'
(d)ds

x (w) =7 o I (k,k") <o 65, (w)
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(d.i) Zero order solution for the coupled system (21)

Taking again a(s) - J(d) = 0, one obtains:

8 . v
1 kk ds 4 (o)

Giifo)(w)=-—— + o (w) (23.3)

v
gds(0)y - g8 (0) ) (23.b)
kk (@ k
k
which leads to:
(24.a)
gss(o)(w) . _]_ 1 - vdd Fd(w) 1
kl
2m . Vaq Fq(w) - lvsdl'2 Fg(w) Fy(w) w-eé?)
(24.b)
1 V.. F.(w) 1
QE?(O)(W) = ‘;; ds 4

1= Vgg Fgl®) = Voy Fo(0) Fy(u) weY)

Hence, the zero order propagator e§§€°)(m) reads:

Sy
655{%) (w) =.E% k:S) +.%; .__l_a;)Tss(w) ] - (25)
w—ek U)‘Ek m—ek,
where:
Tss(w) _ 'Vsdlz Fd(w) (26)

1= VgaFg(w) = [Vg4l® Fo(@)Fy(w)
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(d.ii) First order perturbation solution

Solving equations (21) to first order in the exchange parameters

J(A), (A =s, d) one has:

i 1
() - st sy, 1 Gk (27.)
m-eés) w—e&s)
(27.b)
d)ds(?
Gia(w) = de() gy, Vs 5w+ —1— G
w-eéd) w-eﬁ ' m-eﬁ )
Introducing the notation:
. 1
830 ) (w) = 3 (iiZf(l)(w) (28.3)
k' gy el8)
k
1 (d)ds (1) 3
9V = 1 () (28.b)

X 1
kk
k w_géd)

and using equations (27), one gets:

g0 (W) vy Fytw) 850 ()
T - VygFglw) - lvsd(2 Fg(w) Fy(w)

g (o) = (29)

Thus, the eiiﬁ‘)(w) propagator is written as:
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. 1 (s)ss(2 1
HARICR w19y 80y
w-e(®) w - &)
(30)
1 1
+ %) vy P 85 ()
w - E(S)
k

Again we must proceed some algebraic manipulations involving expressions 1ike
xii(‘_)m), ei?’)(u), B_ggl)(w), and one has the final result for the first

order corrections, namely:

(31)
GSs(l) _ ! ! J(S) k) <s% ]
kg k) =5 Ty T k) G
w-€k+q w=gy
1 1 1 1
b= ] 0 gk) 5B 1Sy
oaels) K w3 wel®)
1 1 1 1
y @ ] ——— ek sBo
e i o
1 1 1 1
fm—— TR0 T —— 0o k) B 155y *
2 w—eéi% k7K w-eéf) w-eéﬁ) w-aés)
1 1 1 1
r— —— 1 Mk kry <50 —— 185()
e e L T

Equation (31) corresponds for s-electrons to equation (19) which holds for

d-electrons and the diagrammatic expansion is formally jdentical.In the case of

k-independent coupling parameter J'(S), equation (31) simplifies to:
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e = — 1) sho [ggfg(w]’ L,
e el [ ov ) - VI F(w) F(w)]  eel®)
k+q Yad Fd sd s d k
1 I 25 v 12 [F(w)] ]
X <$%>0 | sdi [ d(w)] (32)

T uels) [1 - Vg Fylo) = 1V 1% F(w) Fd(m)]z wel®)

ITI) SPIN POLARIZATION

It will be supposed for simplicity, that J(x)(x = s, d) is
k-independent; we expect that such approximation will not destroy the main features
of the problem. Thus, one adopts equations (20) and (32) to describe the

propzgations of d and s-electrons respectively.

Let us denote:
1 - Vdd Fd(w) = K(w)
1 - Vdd Fd(m) - lVSdl2 Fs(m) Fd(w) = X(w)

Introducing the phase shifts[ 4 ], one has:

F) = (F(w)]e 5"
Py = [Fg(wle o (33)
Ko) = IKw)] o de®
) - @] e
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where IFS(U’)I ) IFd(w)I ’ IK(w)I > IX(U))I )

65(‘”): Gd(w)’ ”dd(“’)’ n(w)
are defined in Appendix A.

(a) Calculation of the ¢ magnetization

If one takes into account definitons (33), equation (20) reads

1 1 1 2 i
6 () = — sBo [y g L BT
2m w, eéfc)] w,-€{9)
+;1 «Z>5g _]_(d__ !tds(w)ld(s) . 2i [ﬂ(w)- 65(00)] ’
T d
k+% wi—eé )
w, = wt 16 (34)
where:
]
OIS
[X(w)|?
[F (w)]?
[t5 W) = v ,lz —=
|X(w)]?

Remembering that:

L Fu [Gggé ?((w)} a2 ()

the symbol Fw being defined as usually by i f+ dw f(w) [é(w +i8)~G(w -iG)J R
one obtains after some algebra: (f(w) 1is the Fermi-Dirac distribution
function)
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where we
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dd, (d) (d)
fo(ep,s) - f (E )
= <sZgg(d) )) i +
k (d) - (d)
k+q k

riiert)) - el

+ <§%gy(d) Y

+
k d d
9
e(d) (d)
+ <sZ>g 3(5) 3, f ( ki) ~ f (e )
d
£+g - Eé :
(d) ¢(d)
£35(eld)y - 5 (e
v st o8 g, e " (35)
c(d) _ (d)
€k+a k

construct the functions:

#99w) = [t%%w)| cos [2n(w)] flw)

9 (w) < [t%(W)] cos [2nw) - 2 8 (a)] Flw)
de' f(w) [t%%w)] sin [2 n(w)]
0w =1 P (36)
’ w' - w
‘ r de' f(w) ltds(m)l sin [2n(w) - 2 §_(w)]
fgs(w)=-l—Pf' - [ >

w' - w
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in osder to rewrite equation (35) in a more compact form we can define the

susceptibilities:
dd, (d) (d) dd, (d) dd, (d)
S (%) + Falteo)]- R0 + 2% ) o
k (d) _ o (d)
k+q k
ds, (d) (d) ds, (d) ds, (d),-
S ; (5 (ebeh) + 125l I] - [R5 (e( ) + 1585 )] 5769
« (d) _ _(d)
k+q k
Thus, one obtains:
@ = 2 s 9l Mgy + 2 5B 9 (B (q) (38)

(b) Caiculation of the s magnetization

Proceeding exatly as in the case of d-electrons, equation (32) may be rew:itten

as:
1 1 +2i[n(w) - n_ {w)]

is( a( ,) = — <S50 SE— Y R 1) A — adr

4, 2m _ (s _ e(s)

@ Ek+q Wy k
| . 1 21 [n(w) = 8, (w)]

+-—l.<SZ>o —_——— |t§d(w)| gtd) — e d + (39)

o ¥ T el(:u)q 0, - o)
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where:

[K(w) [

1t%%(w) | = _
|X(w) |2
IF (w)]?

189w = —d
[X(w) |2

The fluctuation of the occupation number is:

1o (epag) = 123(e))

Ang(s) = B ofs) 7 1 ke
; (s) _ (s)
k+q €k

GRS I Q)

+ <s%g 3(8) 3 Y g
e(s) _ (s)
k+q k
el - B9l
+ <$%s¢ J(d7 v ( ) (s)
: S
k k+q €k
d d
+ <sZsg gld) ¥ . (eéig - f (€£S))
‘ c(s) _ (s)
k+q €k

where:

5(w) = [t°%(w)] cos [2n(w) - 2 naq(@)] flw)

cont.

(40)
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ffd(w) = ltSd(w)l cos [2n{w) - 2 Gd(w)] f(w)
do' f(w) [£55(w)| sin [2n(w) - 2n4,(w)]
e = 1 e
m w' - W
d' F(w) |£%w)] sin [2n(w) - 2 6 4(w)]
ffd(w) = %» P f

w' - w
Defining the susceptibilities:

[f?s(eﬁi%) + fzs(aéiéﬁ - 1155(els)) + £55(e))

XSS(q) = zk ( \ ( )
s S
®keq %k
d d od. .
) = 3 i (E'(:*Zx’ s (eﬁi?q)] O SRR AR
k
42 -

one finds the final result for the s magnetization:

més) = 2 <«sZs g4(s) $5(q) + 2<% g(d) de(q)

(¢) Limiting cases

(c.i) Absence of induced s-d hybridization

In this paragraph we consider the situation where induced

(41)

(42.3a)

(82.b)

(43)
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mixing vanishes. Although such an assumption seems to be merely academic, (since

both VSd and Vdd originate in the same potential), this procedure exhibits the

behaviour of the s band when isolated from the rest. One has:
t5@ 1= 189w 1= 0 > #2500 = £3%w) = 90 = 15(u) = 0
11 - Vgg Fg@) = IX(w)| = [£%5(w)] =1
Ss
ngglw) = nlw) = 7 (w) = f(w)

and the susceptibilities (37.b), (42.a), (42.b) reduce to:

sd
x (q) =0

xds(q)

Flefe)) - fef)

X °(q) =

!
~1

ECRED

Thus, the s magnetization becomes:

MONEPNE
G s = U

(44)
k (s) _ o (s)

®k+q ~ Sk

which is just the classical independent electron spin polarization due to an

external magnetic field. In fact, if we switch-off the induced s-d mixing, the

s-1ike electrons cannot "see" the perturbative charge effects produced by the

impurity.

(c.ii) Absence of perturbative charge potential (V4 = Veg = 0)

A further simplification occurs when we consider also Vdd=0. Hence:
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ndd(w) = n(w) =0

1t9%(w) ] = 1

which implies that:

f900) = f(w)

1

So, one gets for the susceptibility (37.a):

fefih- fel®)
K d )
eI(<+q B Eéd)

x3q) = 1

The ~d magnetization becomes:

eeldy o g (d)s
nld) =2 sz ; flegg) = g ) _ (45)
a k NCHCY
K+q k

and for the s magnetization one obtains (44) . Expressions (44} and (45) are just

the usual ones employed in the case of independent banas.

DISCUSSION AND CONCLUSIONS

The effect of a spin independent iocalized potential acting simultaneously
with a localized spin on a band of s-d conduction states. was discussed in terms

of the band parameters, impurity matrix elements and the exchange couplings. The

-

general case of k,k dependent exchange_coup‘iingss although more realistic [1’
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turns out to be mathematically very difficult to handle.

A simplifying approximation of constant J(S) and J(d) was then adopted
in order to derive simpler expressions. The main advantage of‘this simplificat-
ion is that the usual results for spin polarization problems, namely, the product
of an exchange constant times a "susceptibility" charateristic of the host metal,
is recovered. Since now the host is perturbed by an extra spin independent

potential, the usual form of non-interacting electron susceptibility is not

‘ obtained.

However, expressions (42), (37) show that the same formal result is
obtained as in the pure host case, provided that "new" Fermi distributions
functions are introduced. These new distribution functions include scattering
effects through phase-shifts and the strengths of the T-matrices. One
consequently associates, in a pictorial fashion, these new functions to
" deformations” of the Fermi distribution function due to the scattering via
the impurity charge potential. These functions reduce to the Fermi one in the
Timit ¥ zero charge potential.

A final word is necessary respect to the role of Coulomb interactions.
Since the effect of these correlations (besides Hartree-Fock renormalization of
energies) is to introduce a new source of scattering through the coupling to
occupation number fluctuation [2], the effective impurity potential is now k,k'
dependent and only approximate solutions can be obtained (e.g., Born approximation).
Hence, the treatment discussed above, excludes strongly exchange enhanced hosts
like Pd, for instance. Only formal results (envolving a summation over an infinit

series) can be obtained for this general problem, subject to certain assumptions

concerning the nature of the screening. [7]



233

APPENDIX A

PHASE-SHIFT PARAMETERS

Taking into account definition (11), for w + i8§ 1in the 1limit 6 -~ O,

one has real and imaginary parts. Hence:

Fylwi8) = Faw) 31 Fi(w), (A =s, d) (A-1)
where:
FR(w) =Py H FI(w) = mp, (w) 2
(.D'Ek

px(m) denoting the density of states of conduction electrons. If we introduce

the phase shift, one may write:

716, (w)
Folw +i8) = |Fy(wj] e (A-3)

where:

IFy @)= (PR + (Flw)?) 7

(A-4)
Fg(w}
cos 6x(w) = A
|F)\(w)]
F) (w)
sin §,(w) = ———

IF ‘w)]
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It is clear that:

71 (8 (w) + 6, (w)]
Fs(wtiﬁ) Fq(wig) = IFs(w)lle(w)l e+ s d

(A-5)
Similarly:
. Fingg(w) -
1 - Vyq Fyletis) = |1 - Vag Fylw)] e (A-6)
where:
- R 2 I 211 /2
1= Vaq Fg(w)] = [0 = Vgq FG@))? + (Vyy Fi())?)
R
1 -V, Fiw)
cos ndd(w) = dd "d'*
I] - vdd Fd(w),
VagFa(v)
sin Ngq{w) =- (A-7)
[1 - Vyy Fylw)]
And finally:
Fi6(w)
1= VygFglwsis) - [v |2 Fo(wris) Fy(wis) = |X(w)| e (A-8)

where:



X(w)] = {01 - Vg FRGw)- [Voyl? (FR(w) Fa(w) - Fi(w)Fi(w)]?  +

+ [Vyq Falw) - V412 (FR(w) Fi(w) ¥ Fg(w) FE(wX]z} ',

1= Vg FR() = 1V g 2(FRw) FRw) - Fi(w) Fe(w))

cos n(w)

(A-9)
| X(w)]

I 2R I I R
sin n(w) Vg Faw) = [V 412 (Fg(w) F(w) + Fy(w) Fo(w))

| X(w)]
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