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ABSTRACT

Within the ‘framework of Harari's conjecture and the constraints provided by
duality we investigate the consequences of a non - SU(3) singlet Pomeron in deep
inelastic lepton = hadron scattering., The corresponding distribution functions
of the quark parton model are discussed.
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I - INTRODUCTION

The present experimental data(l) for deep inelastic electron nucleon
scattering seem to the indicate that the sum rule of Gottfried is violated(z).
As in the Q.P.M. (Quark Partoh Model) the Gottfried intearal is a measure for
the non diffractive contributions coming from the sea of quark - antiquark pairs
(qq - sea) wich is supposed to make up the nucleon in addition to the three quarks
of the low energy quark model, this can be inferpreted such that the qq - sea

does carry quantum numbers different from those of the vaccuum.

Harari(®) has put forward the hypothesis that the qq - sea is related

to the Pomeron singularity known from high energy hadron - hadron scattering.

To formulate this hypothesis it is not necessary to invoke the Regge
description, it suffices to make use of the fact that any amplitude can be
decomposed into a resonant part and a background part. Utilizing strong
interaction duality it is then clear that Harari's conjecture should apply to the

background term in general, not only in a specific kinematical limit.

So adopting Harérifs idea does not imply the validity of the Regge
description of the deep inelastic data. Although the data indicate a Regge - like
behaviour for the case where the parton momentum is a small fraction x of the
nucleon momentum there are good reasons to believe that this will not remain true
down to the wee \r-egion(11 ), at least not with a Pomeron being a simple pole wich
leads to the by now well known 1/x behaviour of the parton distribution
functions. One would expect this behaviour to be changed in the wee region such
that the number of wée parions is finite(*Y9 | Especially when the qq - sea
is not neutral with respect to isospin(z) one must be prepared not to extrapolate
the data to small and wee x with the usual Regge formula, because then the

Gottfried integral does simply not exist.
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So it is necessary to stress that Hararis conjecture although originally
formulated in the framework of the Regge model can be expressed in a model

independent general way.

Within the Q.P.M. this means especially that our formulae are valid for

x>0, as well as for x - 1.

When equations show up which are only correct in the Reage regime we will

explicitly say this.

We will continue to use the term Pomeron, but it is understood that it

means the background contribution defined in eVeryAkinematicél‘region.

If we accept Hararis conjecture in conjunction with a oq - sea not
neutral with respect to inner symmetries it has the consequence that the
background and hence 3 forteriori the usual Pomeron have an  additional
nondiffractive component. This conclusion fits well into what is  known from
strong interaction physics. There it turns out that the cross sections ctot(w+p)
and otot(k+p) are not equal at high energies, so that the Pomeron cannot be

an SU(3) singlet(s)a

Summing up what we are going to do in this paper is the following:

In the framework of the duality constraints for deep inelastic lepton-hadron
inclusive processes as formulated in ref. 4 we introduce non-SU(3)-singlet Pomeron
terms (terms which are not constrained by duality) in addition to the SU(3) -

- singlet Pomeron term.

We find (among others) that we can reproduce the sum rule of Adler,and

we are able to fit the Gottfried sum rule to its experimental value.

We would like to mention that it can be concluded from the work of ref.
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4 that there is avclose.tonnection between the sum rule of Gottfried and the SU(3)
properties of the Pomeron. This conclusion works on a rather general basis without

invoking the Parton Model.

Most'easily this can be seen by leaving aside in ref. 4 the conditions
coming from the light cone algebra of bilocal currents(]o). Then the Gottfried sum

rule follows if the Adler sum rule is required from the SU(3) - singlet character

of the Pomeron.

To‘havefanbeasy_way of speaking we introduce the following definitions:
pvﬁ SU(S)féinglet Pomeron part

(identical with the conventional Pomeron)
\pQ: Non%SU(3)-singlet Pomeron part
The paper is oréanized as follows:

In section II wéjfix our notations and kinematics. In section III we
specify the propertigs of the pQ so far, as we need for oUr-purpose° Then using
duality constraints wé'express the structure functions in terms of reduced

matrix elements §%(FF), ai(Dﬁ) etc. In section IV we discuss our results.

IT - NOTATION AND KINEMATICS -

We study. the absdrpiiVe parts of the scattering amplitudes of the

process:
%@ + hy(p) + °(a) + hy(p) | 1)

(320, currents, 'h9535‘hadrohs; %8, a,b: SU(3) indices) in the forward direction:
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] igx 1 [.2 b 4.
o= [ ml [20.80] | onge) > dh (2)

Confining ourselves to those parts which are measured in electron resp. neutrino

reactions modulo O(m ) their expansion in Lorentz invariants reads (average

lepton
over target spin is taken):
W= W (v,q2) (- o M2 W, (v,q° i )+
bo T M0 (o9, # ———) + T Uy (v,07) (B - ——q,) (p, - — 1,
q q q
. o B
=1€ Pq
+ Wy(v,0%) (—HE (3)

G

: . . ‘e 3 (3),2_2
with v = pg, and the states covariantly normalized <p|p's = (27)° 2E.8'°/(p-p')
The metric is (1,-1,-1,-1),

Experimentally these functions seem to approach limiting forms for large

- . - 1
values of v and q2 depending only on the dimensionaless variable: w: = —gE- = "

(w > 1 by kinematics). ‘
S0 in the 1imit v » o , w fixed (Bjorken Limit) we expect

Uy (v,07) > F(0)
'vwz(v,qz) > Fz(w) o (4)

vw3(v,q2) > F3(w)

In the following we assume the Callan-Gross relation

ZF](w) = W Fz(w) (5)
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which is valid for spin 1 Parton models. In these models there are further
. 2 v .
relations between Fi(w) and F3(w) which are displayed explicitly in ref. 4) to

which we refer the réader. We further generally ignore contributions from the

Cabbibo angle,

II1 - DEFINITION OF THE POMERON PROPERTIES AND DUALITY CONSTRAINTS

Expressing‘thé SU(3) structure of F?bag in the form (Dictated by group
theory) ; |
F20 = 0 (FF) 1£%0C §£%8C 4 o (FD) §£%0C 4% 4 4 (0F) ¢®C §£95C 4
1,08 :
+a;(0D) (1-5%°) ¢ ¢%BC 4 4 (s5) 6% %00 ¢80, (6)

duality will give constraints for the functions a;(FF), a;(FD), a;(DF), a;(DD),

a;(SS) which for the case of an SU(3)—sing1et Pomeron are explicated in ref. 4).

Now we will introduce the basic properties of pQ;

Q

a) p° should dominate over all resonance contributions in the high

energy region. (In Q.P.M. this means dominance for small and wee X)
b) p? is assumed to be non dual to resonances.

These are the non controversial properties-of the conventional Pomeron
pv, which cannot be said of its SU(3) structure as already mentioned in the

introduction.

We conjecture now that the Pomeron will not only contribute to the SU(3)
singlet parts a,(SS) and aZ(SS) in eq. (6) but also in some of the octet

coefficents aT(FFf. etc. To decide where such non-singlet Pomeron contributions




227

are possible we proceed in the following way;

In order not to invalidade the relation

Fep(x) - Fen(x) >0 for x- 0 (7)

which seems to be supported by the present data(])ﬁMe only possibility

is that pQ does not contribute to the electromagnetic structure functions at all.

So pQ can only show up in F¥’5', i =1,2,3, the data of which are presently

not available.

. . 4
With the usual SU(3) singlet Pomeron one has the following relation’)

F?p(x) - F¥p(x) >0 for i =1,2
X > &
(8)
F?p, ¥p > const # 0
F3* (x) > 0
X > o

Now we assume that the non-neutrality of the gg-sea with respect to

quantum numbers of inner symmetries will show up in the structure functions in the
form

Tim  (FP(x) - F{P(x)) = const # 0 for i = 1,2
X+ 0

(9)
lim  F%(x) = Tim FP(x) = const # O.
3 3

X 5o X >0

With this assumption and the relation (7) there is only one way of

introducing pQ, namely pQ contributes to the following functions only:
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1,2 (10-a)

ai(SS) i=
a;(FF) i=1,2 (10-b)
a,4(SS) (10-c)

As only the resonant parts are constrained by duality we separate out the

pomeron contributions:

.
ay.(SS) = a?,z(SS) +ay 5 (SS)

(11)
ay,o(FF) = af ,(FF) + a$,2(SS)

a3(S5) = aB(ss) + ai(ss)

denotes the non resonant continuum, hereafter refered as pomeron

where as a. denotes resonance contributions.

e g =T

; v
a?(SS) are the contributions from the conventional pomeron p' whereas

a? 2 (FF) and ag(SS) are.the now additionally appearing terms of pQ.

Duality imposes the condition that the S-channel ‘non pomeron part must be
non exotic. This means that in the case of Baryon target no 27 and TO

representations are allowed to appear.

This implies the following set of constraints:

R ,
(no 27)-% a;(s$) +-% a;(00) + al(FF) =0 for 1 =1,2,3 (12)
(no T0) é-a?(SS) - §. a;(DD) + a,(FD) + a,(DF) =0  for i = 1,2,3 (13)

The quark-mode1 rule that currents with (¢,f') - quantum numbers only
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couple to particles with strangeness give the further relation(4)

2 R 1 _ .
S 2{(59) + a;(DF) t< ag(0) =0 i=1,2,3 (14)

Compatibility of the general form of eq. (6) with the quark parton model
finally gives the following equations (4):

a, (FF) = -% a5(DF)
a)(FD) = - 1 a (o)
2 (15)
a (DF) = % a5(FF)
a, (D) = --;- a5(FD)

Using the eq

(7]

. (12) to (15) we can express the structure functions in the

following way:

F?P -8 a]p(SS) - 2 a;(DD) - 2a$(FF)
9 9
F" = 2abiss) - & o qom) - 2 aR(rr)
9 9 3
PP =8 4P(ssy 4+ 2 af (FF) ; 4 a,(DD) - 4 a\(FF)
1T 73 9 1 1 1 (16)
— p p R
P - 8 31(SS) - 2 a;(FF) - 9 a (FF)
3
FpP =8 a3(SS) + 8 a;(DD) + 8 a(FF) + 4 a} (FF)
3

PP = & aBss) + 16 aR(FF) + 4 aB(FF)
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In the rest of the paper we mainly discuss the consequence of this system

of equations.

IV - DISCUSSIONS

IVa) Pomeron dominance‘region. (x + 0)

For small x where the Pomeron terms dominate we have the following

relations between the structure functions

]
=)

P00 - ().

"
o
o]
>
o

)

w

S
o
-

-

ng('x), - PP (x) 3 #0 (17)

]

F \fvp»:(ﬁx) - F;{tp’(x)‘.' 4‘->‘a‘]’-‘(‘FF),.l B

The eXPfES§iOHS F¥p,v F?P ‘from eq. (16) give us the possibility to make

a statement about the x+dependenéé’ofi ag(FF)Vin the small x-region:

FYP(x) = -g aB(ss) + 2 af(FF)
| | (18)
Py =2 dfss) - 2 af(r)

First-we know tha:t_; F\{p and F\{.p are positive semi-definite. On the

other hand a?(FF) is supposed to dominate over any resonant contribution. Thus
we are led to the'fol1owihg'ansati: -
o c | €2 o
2af(FF) = L (14 ——)
,x#O‘; X (109 x)e .

(19)

where € > 0, c]; ¢2 5are~éonstanﬁ;f‘a?(35) haSLthé‘usuél Pomeron dependence:
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% aB(ss) = £ and c >0 (20)
x>0 '

For simplicity we put C, =0 *). Inserting eq. (19) and (20) into (18) we obtain:

'va c. %1 1

= =+ —==(Cc+¢)
1 X X X ( 1
(21)
- c
1
F\])p=£--;(—=—(c- c;)
The positivity condition for FP imp]ie§f?wf?f' N
c + c] >0
(22)
C-cCy> 0

. Y
Not knowing the sign of Cy we can only predict that the difference F;p - F2
approaches the constant 4 < for x > 0. This difference is a direct measure

for the assumed non neutrality of the qa-- sea and can be measured experimentally.

In accordance with what has been stressed in the introduction eq. (19) is

expected to hold in some region of small x, but not down to wee x.

IV b) Sum rules

From eq. (16) one can derive sum rules. In general one can say that
sum rules which are independent of core structure must be the same in our approach

as in the approach with SU(3) singlet Pomerons <

*) This term would violate the Feynman scaling logarithmically.
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For example the L1. Smith sum rule:
P _ SFV.pV .
12(F - /) = F3¥ - Fy (23)
1s also valid in our. formalism which can easily by derived from eq. (16). Utilizing

eqs. (28), (29) we also easily derive the Adler sum rule from eq. (16).

Any sum rule which depends on a.neutral qq - sea must have a correction

term, which amounts to separating out the deviations from neutrality.

We will bring here two examples:

FY(0) = F(x) + 6(FP(x) - FM(x) = 4 aP(FF) (24)
Fy 4 Fy - 36(FP + F) + 12(F4 FY)e 2 aB(s5)48 af(FF) (25)

Eqs. (24) and (25) can in principle be used to determine aap(SS) and 'a1p(FF)

experimentally.

Using the Adler sum rule which is true in every reputable model, and the

Callan-Gross relation (5) we derive from eq. (24) the corrected Gottfried sum rule:

1 ]
[ dx ,- p n . p \
3 | B (FP) - () =1 4 j 2,P(FF) dx (26)

0 : - 0

1 .
For J a1p(FF)dx = 0, eq. (26) reduces to Gottfried sum rule.
0

1V ¢) Estimate of alp(FF)dx
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The present experimental data for the left hand side of eq. (26) is about

0.5(]). This fixes the value of the integral of the right hand side to

1
J a,P(FF)dx = - 1/8 (27)
0

To determine the integral of the respective resonant part we use the first of the

following two relations:

1
-1/4 = J dx a](FF) (28)
! |
1
0= f dx 2,(FD) (29)
0

These relations follow from the identific tion of the bilocal current with the

local corrents(42. From eq. (27) and (28) we obtain

1
j a R(FF) dx = - 1/8 (30)
0

The integral over a3p(SS) can be determined from eq. (16), the quark sum rule
1 _ .
J (F3"(x) + F3¥(x))dx = -6 (31)
0

and the duality relation a](FD) = al(DD):

1

J a3p(SS) dx = - (32)

0

o |w

We should like to mention here that the (10b) implies (10c). Otherwise the sum
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rule (31), which is ontained in the quark parton model, cannot be fitted into our

scheme,

From egs. (30), (32) one obsérves that pQ does not share an important
property with pv, namely it cannot be po§1tive in the whole x-region. Of course,
this does not come as a surprise because correcting the Gottfried sum rule amounts
to Towering the value 1 to 0.5. This implies from eq. (24) that there must be a

finite x intervall where the following inequality holds:
Fro(x) - F%(x) + 6 (FPx) - FMx)) <0 (33)

This relation can be tested experimentally.

IVd) Comparison with SU(3) Singlet Pomeron core

Utilizing the sum rules (27) - (30), (32) and eq. (16) we derive the

following relations:

1
J (F,P - 3 al(ss)dx = 1/4 = 18 (1/2) (38-a)
0

1

f (F," --S- a,P(s$))dx = 1/6  (1/3) (34-b)
0

] —

J (FYP - 3FS™)dx = 34 (1) | (34-c)
0

1

J F‘gp dx =-5/2 (-2) (34-d)
0

] e .

J (ng dx = -7/2 (-4) (34-e)
0
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1

J (F - F3P) ax

0

(2) (34-F)

]
—

*.
The values in the brackets are the SU(3) singlet Pomeron case, for example in Ref.4..

IVe) Some remark on Bloom-Gilman duality

6
If Bloom-Gilman dua]it; ) is believed to be the usual two component form,
then we expect it to hold better for combinations of structure functions which have

been chosen such that all Pomeron terms have been cancelled.
[}

For example, we expect is to work better for (F?p - F?") than for

= S Vi 7
(F\]’p - F¥p) and better for (ng - ng) than for ng, gp seperate]y( ).

IVF) Parton Distribution Functions

From eq. (16) and the corresponding expressions from the Quark Parton

Model we derive the following relations:

Lu(x) =2 a,P(s8) - a,P(FF) - 4 a,R(FF) - %-a3p(SS)
2 3 ,

lUU)=3%W$)+ﬁWW)+l%W$)
2 3 3

*) The experimental evidence that xF3:/F2 #£0 for all x and that F3 is quite
large can also be interpreted as being due to a Pomeron term in F3(a3(SS)

carries G = -1).




236

;-d(x) . -23- a,P(ss) - %'aSP(SS) - 2 a,(0D) - 2 a,\(FF)

L0 = 2aP(ss) + 1 a,P(ss) (35)
2 3 3

L(s(x) +3 (x)) =4a,P(s9)

2 3

u(x), d(x) and s(x) are distribution functions for the p- n- and A-quarks in

the proton and u(x), d(x) and S(x) are those of the corresponding antiquarks.

For the 1imit x >+ 0 where the Pomeron dominates we obtain from eq. (35)

u(x) + u(x) = d(x) + d(x)

s(x) + S(x) (36-a)

]

u(x) # u(x)

U]

d(x) # d(x) = s(x) + S(x) (36-b)

The equality u(x)=d(x) would imply a'{’(FF) = 0,in the small x-region where it should
dominate. We furthermore see that the Gottfried integral exists and has a known
value, namely |

]

_ 1
j (U(x) = d(x)) dx = = — (36-c)
‘ 16
0

This is of course only the quark parton version of eqs. (26), (27). Furthermofrje

the following pattern to realize a non-neutra] qq - sea

u(x) = u(x)

d(x) = d(x) for x + 0 (37)
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and  u(x) # d(x) i excluded |

is excluded in our approach as a direct consequence of pure FF and SS coupling.
This model (37) would be valid in a pure DD-coupling. Here it leads to a]p(FF)=0,
and a3p(SS) =0 for x » 0. |

On the other hand the case

u(x) = d(x)
for x + 0 | (38)

u(x) = d(x)

can be nontrivially realized if a]p(FF) and a3p(SS) are correlated by the

equation a]p(FF) + g-a3p(SS) =0 for x - 0. So we can imagine that the core
3 | +

is made up of (p,n) and (P,n) pairs which have the quantum numbers of p~ mesons

+
and 7 mesons.

This core-structure is reminiscent of nuclear physics, where the hard

core is believed to be made up from vector mesons.

V - POSSIBLE ROLE OF pQ IN STRONG IMTERACTIONS

We have used Harari's conjecture to justify (to some extend) the
application of duality principles to current-hadron scattering, and to be able to
identify those parts of the reduced matrix elements in eq. (6) which are not
constrained by the duality equations (12), (13) and (14) with the Ppmeron.
Logicé]]y however our procedure can be completly decoupled from Harari's conjecture.
We are then dealing purely with properties of current - hadron (resp. current -
- quark) scattering, without any immediate connection to strong interaction physics.
(See also ref. 4) Physically it would of course be more satiesfying to be able to

maintain Harari's hypothesis.
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That this in our case will be much more difficult to do than with an
SU(3) singlet Pomeron is apparent from the result of the last chapter. There it

turned out that as a consequence of our assumptions the qg - sea will in general

carry charge.

Within the Q.P.M. this is acceptable because only the average charge of
the nucleon is defined, and from egs. (27), (30), (32) and (35) one easily derives
J (u(x) - u(x)) dx =2, and } (d{x) - d(x))dx=1, and in addition we may put

s(x) =s(x) 1in eq. (35), without running into any contradiction.

Thus we have a model where the proton's quantum numbers are well defined

and the gq - sea carries charge.

On the other hand we do not know of a charged Pomeron in strong interac-

tion physics. This may be a hint that Harari's conjecture does not apply in our

Case,

But we may be bold enough to speculate where pQ could show up in strong

interactions if we tentatively believe in Harari's hypothesis.

As the cross sections of exclusive hadronic reactions where quantum
nunbers different than those of the vacuum are exchanged decrease rapidly as the
energy increases, pQ cannot contribute to these because according to eq. 19 it
would lead to a constant high energy cross section or if (19) is relaxed somewhat

one would encounter to slowly a decrease with energy.

Hence we can exgect pQ te appear at most in inclusive processes. If
this is the case then in crder to keep it off exclusive processes, it must not

factorize between strong vertices.

Feynman(g)has«classif1ed Regge po}es;according:to,wether they are
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exchanged between vertices (1like virtua] emissions in field theory) or appear
through hadronic Bremsstrahlung (real emission) In this understanding pQ is
of Bremsstrah]ungiorigin. Most easily pQ should be dectable in the triple Regge

- )
limit (e.g. in = p +m° x) when there is a tr1p1e Pomeron coupling prQp

VVy

(This is not compTetly unreasonable as, there 1s some evidence for a p'p p
coupling in pp » pX). If pQ has a actually prOpert1es like a p meson it may
couple to inclusive spin flip amp11tudes(9?,and thus have considerable influence on

the spin dependence of inclusive processes.

Wi thin the framework of this paper the spin properties of pQ can also

be investigated. But for the time being there is not.much use doing this because

no polarization data from deep inelastic lepton - hadron scattering are available.

We finally mention that due to duality principles by studying the
missing massbackground of inclusive hadronic reactions one could in principle also

detect pQ.

So presently we can not come to a final conclusion concerning the

validity of Harari's conjecture.
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