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ABSTRACT

The class of solutions represented by Hermitian two-by-two matrices asso
ciated to time independent metrics possessing a symmetry Euclidian Killing
vector are derived. This class of spinor fields are solutions of the gravita-
tional spinor equatton proposed by Sachs. More general radially symmetric
spinor fields, as for instance the class of spinor fields associated to the
gravitational field of a charged massive particle, are obtained directly from
the spinor class associated to the Schwarzschild field by using the property
that the Hermitian two-by-two matrices cm, describing the field, form a basys
in the space of the complex two-by-two matrices. The properties which appear

due to the covariance of the theory under the group SU\2 are analyzed.

1. INTRODUCIION

In this paper we treat the problem of determination of spinor solutions
which are associated to radially symmetric time independent metrics in
general relativity. This problem was already treated in the literature l,

however, presently we use a general approach for deriving these solutions. As

* Partial support from the National Research Council of Brazil is acknowledged.
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result the whole class of solutions is consistently obtained. Since the three
dimensional spherical symmetry : is a nrstrical symmetry we have to start with a

given general radially symmetric metric field, and lock for the 2 x 2 Hermitian
m’
%

whole class of such matrices, since given a metric tensor we will get a class

matrices corresponding to this metric. As it is well known, there exists a

of spinor solutions. The elements of this ¢1ass being related by internal uni
modular transformations under which the metric components are invariant. Thus,
we may consider these internal transformations as a group of gauge transforma-
vf;iens, the &y being gauge invariant. It is also known that the interaction
of .gravitation with fermion fields is described by the 9y not by the B> 3
consequence it may happen that differents elements of the class of o, correspand
ing to a given metric, conduct to inequivalent results which eventually may be
abgerved,

The method presently used for deriving these spinor solutions is the three
dimensicnal group of motions generated by the Euclidian Killing vector of the
rotations in three-dimensions. This is done in the Sect. 2. In the Sect. 3 it
i¢ shown that the general class of spinor solutions conducting to a radially sym
meeric AN it is solution of the field equations of Sachs 2. In Sect. 4 two
di.fferent solutions of these field eguations are presented, and the connection
between them is stablished by means of a pseudo-orthogonal internal matrix. In
Sect. 5 a general procedure is stablished for the cbtention of more general
pwdially symmetric metrics, in terms of the associated spinor fields. Presently

we generalize the Schwarzschild metric by allowing the source particle to be
charged.

The notation used is the following: the local Minkowskian metric is taken
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with signature -2. For convenience, in Sect. 2 we start with the tetrad field
of basys vectors which are associated to the Hermitian matrices O'u., The reason
is that it locks easier to work out the Killing equation first in terms of the
tetrads and at the end to translate the results for the cu. The notation used
for the tetrads is that usually found in the literature, that is, the internal
degrees of freedom are denoted by letters inside of a bracket. Greek letters

run fram 0 to 3, and Latin letters fram 1 to 3.

2. TETRADS CORRESPONDING TO RADTALLY SYMMETRIC METRICS

Starting with the equation of the tetrad calculus,

_ of
g ® Bucay Dy M (1)

we i;npose invariance of. gy under the infinitesimal transformations
x'© = x°
x'i=xi+ slkxk, eik= - eki

which gives rise to the Killing equation

‘ Ggw(x) =0 ' (2)
for the Euclidian Killing vector E,‘u = (0, elk xk). Since the nuB are coordina
te scalars with constant numerical value, we have

E’nas = 0
Using that
fhegy, = - £ - h 2
8w v ) " Rev,a

we get for Egs. (1) and (2)

2 1) -
Motor * Doty Bo ),k £ =0 (3)
() g (s) _
Qiogey My ) g & Doge) M £y = 0 (1)

N (s) - (s)
thy h(s)j),k-tEk * hi, Reedk E]:J" )

+
=2
Cle
15
~
A~
2
M
i
O
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For cobtaining these relations in this simple form we have made use of the condi-
tion

This condition imposes no restriction on the metric camponents, and is usually

used in the literature. 3

In this paper we will use this possibility of simpli-
fying the calculations by means of (6). However, the choice (6) implies that
the degrees of freedam for taking rotations in the '"planes.(o)(i)" are dropped,
that is, the tetrad fields satisfying (6) contain only three internal degrees of
freedom, corresponding to rotations. in the "planes (i)(j)". Also as consequence

of (6) we have

O -

The solutions of the Egs. (3), (4) and (5) are

2 (i) _
hoo) * Doct) Bo = £(r) (8)

(s) _ i
ho(s) hi = g(r) xX'/r (9)

(s) - i3

hy h(s)j = -p(r) Gij + qlr)x'x /r2 . (10)

We can still perform coordinate transformation which keep unchanged the spherical

symmetyy of gw, they have the form

S
X

i

Fl(r' s x'%)x!®

o
X

]}

F,(r', x'°)

The functions Fy and F2 can be chesen such that in the new frame
g=0
p=1

That is, we may write the relations (8), (9) and (10) as

= /2
heoyo F (£(r)) 1D

h(s)o =0 (12)
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(s) - _ i3,.2
he% hegyg = =854 + a0 x X /r (13)
The relation (13) is satisfied by the '_tétrad field
n{® = 65 + o(r) o x/r? (14a)
- m_i, 2
h(s)i =Ngg + Ny o(r) x° x/r (1ub)
where ng; = - Gsi’ and we call attention to the fact that in this section we work

in cartesian coordinates. Thus, the disfance r here means the Euclidian distance
E xs)l/ 2

The tetrad camponents defined by (11) through (14), give according to (1)

the correct metric components 4
= 1l = '
€ © h(o)c:: = £0r) (15a)
g, = 0 (15b)
. (8) - _ ij, 2 :
g5 = h, h(s)j = Gij + q(P)x"x /v (15¢).

However, the tetrad vectors of (14) are not the unique possible solutions of the
equation (13), or equivalently, are not the unique solutions for the three dimen

sional metric CAFE Indeed, the whole class of tetrad fields defined by

(s) _ (s) (n)
Bi™ =M () Pi
with M an arbitrary point dependent matrix satisfying
MT nM=n
will be also solutions for the same metric gij 5. Since n = -1, the matrices M

will be orthogonal. Therefore, the selutions corresponding to radially symmetric
time independent metric fields, as given by the relations (15), will contain three

arbitrary functions given by the independe_nt matrix elements of M.

The only condition which has to be satisfied is the asymptotic limit.of a
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flat space. This is cbtained by imposing that for large values of r,
f(r) 1

¢(r) + 0

(s) s
’(n)(r)-- ~R

where R is a rotation matrix belonging to the sub-grouwp of the Lorentz group which

M

is associated to 802 in special relativity.

The contravariant tetrad vectors take the form

By = 6 = x* o8/ Qe (16a)
o = ‘ ‘

: ) ,

h ) = 0 (16c)

and we also have the class ﬁl(k) defined similarly to before. Given the solu-
tions (11), (12) and (14) for the h(u‘)v and the solutions (16) for the h(u)v we

can write down the correspondent Heymitian matriees in the two-dimensional com-

plex internal vector space o, = CE()) M2 30 (17a)
o; = 8i + 78 ¢(r)xk c°k (17b)
and
o® = V@) § (182)
oF = 8 - drleaeey ™t K EE (18b)

vwhere the ?50 is the two-by-two identity matyrix and %i are the Pauli matrices 6.

Introducing the matrices

o %* ¥
= € = g
T, €0}, i
whidlwillgive% =~& and ¥ =81,mcanwriteforthenetrictensorthe

expressicn
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—ZgW = Tr(o‘u'rv) (19)

By the same type of conclusion as was obtained before for the tetrad
field, it is possible to show that for a given v there exists a whole family
of q (and T \)) which satisfy the relation (19). Since for our case the only
arbitrary degrees of freedom belong to the spatial indices, this class of
Hermitian matrices satisfying (19) will be the family of Hermitian matrices
which are transformed one in the other by a unimodular unitary matrix which
depends on the coordinates
+ -1

g, =No N, N =1, N =N

In this situation there will be no distinction between the o, and 1., that is,
both will transform similarly, and we may as well write the Eq. (19) for u = i,

v = j only with ¢ matrices standing on the right hand side.

It can also be shown that the group SU2 acting on the complex two~-dimen-
sional vector space is directly related to the group of local rotations of the

fourlegs.

3. THE FIELD EQUATIONS IN SPINOR FORM FOR THE EXTERIOR SOLUTICNS

The matrices cy‘u (and o) corresponding to a possible solution for a time
independent radially symmetric metric, depend on two arbitrary functions of r.
In this section we will obtain a definite value for these functions by using
the field equations. As it is known, the Lagrangian density for the gravita-
tional field may be written in terms of the o, and T matrices and their

derivatives 7. The field equations which foldow from variations in oA (or oﬂ)

have the form,

8L

i (TO‘P+ +P ™)Y=0 (20)

Mo e ]

==
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(where we have set equal to zero the Ricci scalar since we treat with the ex-

terior field).

The expression of the Ricci tensor written in term of the spinor variables
is,
_1 L A A_ ) V
Rig = 7 Tr (P}‘u(c Tg =0T ) + (’I.'B o T GB)PAU) (21)

Using the property that the 011 and T, are Hermitian and P " is antisymmetric we

P\
may write this as

_1 8L
RUB = '2— Tr .OB ET—U (22)

Since the 6.5/<S'ru as given by Eq. (20) is Hermitian, the right hand side of (22)
is symmetric over the indices u, B8 as it should be since the Ricci tensor is
symretric. Thus, we may use as the field equations for the exterior field the
rélations

*

o o+
(1 Pua + Puoc T

=0 (23)
In this section we show that the o, of (17) are solutions of these equations,
the resulting differential equations for the two functions f(r) and ¢(r) be-
ing the differential equations for the Schwarzschild radial functions.

Transforming to the spherical coordinate system, we get for the oy

p
1 -
oy =0, (24a)
» - -
o] =+ (1+¢) & » —;— (24b)
4 _ & -
0, =-1raJ -+ ey (2u4c)
' - . T >
0'3--—rs:1.neo-e¢ (244)
L

>

where G = (3»‘», o, O For our practical purposes it will be more convenient

to use instead of (23) the equation
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+  _a o -
Puao + 0 Pua-—o (25)

which follows from variations in the g, The spinor curvature Pua being

defined by
P =T -T + -
o = Ty ™ Tagn * Toly ™ Tl
r = —-l—Er o + {pv,p} 7° oV
u L Lp M i
Writing the relations (24) as
1 - V/2 0
o, = e oo+ (26a)
ol = - M2 8 Hr (26b)
P,
o!l=-n»o g-ge (260)
3 >
g} = - r sin@ 8-e¢ : (264)

1 v/2 o g ~v/2 o g —v/2 @
' = ~¢e g g'? = e o 19 =—e g
0 0 o) o)
->
2 0 > -2/2 3 -A/2 & >
T, = - eM o /v o'l = e M §P/r ™ =e M ger/D
. »
4 > >
- < lo > lO >
= - G 12 2 = Geg ﬁ 12 - — G
T, oee g rc 8 T roeG
T, = - rsin © §~g o'? = t gfe’ '3 = - §-g
3 ) . 2 0 s 2 ¢
r sin“® r sin<o
\. . .

We find after a straightforward calculation that the field equations (25) give
the two differential equations for the functions v and A,

v+ At =0

which are the equations for the Schwarzschild problem, the primes indicating dif

ferentiation with respect to r.
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4. THE INTERNAL DEGREES OF FRE

poM FOR THE SOLUTIONS OF THE FIELD EQUATIONS IN

SPINOR FORM

The field equations (25) are cevariant with respect to the arbitrary group
of coordinate transformatiens: et general relativity, but they are also covariant
with respect to the local unimedular group SLZ’ For the problem presently
studied this group was reduced te the ' SU, by means of the condition (6).
Thus, we should expect that several 'sol&timS*ef (25) do exist for any given.

system of coordinates. These saveral selut:.ms are then related one to the

other by unitary unimodular cge: dependent matrices in the two-dimensional
camplex vector space. In this sectien we present two of such possible solutiens. -
For convenience we work in spherical ooerdinates. These internal degrees of
freedom will be presented here net dimectly in terms of the elements of SU2, but
in terms of the "rotation" matriceg for the associated tetrad vectors. As was
said, these "rotation" matrices are directly related to the matrices of SUZ,'
~case where they are really matrices of rotation, that is orthogonal four-by-four

matrices.

Another possible solutiens ef (25) for the Schwarzschild problem are given

by.
. s eV/2 8, (27a)
o, = M2 8 = e V2 &, (27b)
402 =P 82 (27c)
Lcs =rsing 8, (27Q)

The tetrad campcnents associated te the solutiens given by (26) and (27) respec-

tivelly, are
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v/2

0 euzsineoescp rcosfcos¢ -rsindking
hVCa) -
U
0 e)‘/2sinesi;n¢ rcos@sing rsinbcosé
0 e)‘/2 cos0 - r sin®@ - 0
A/2
L@ 0 e 0 0
M
0 0 r 0
0o €] 0 r sin®

These two matrices are connected by means of a pseudo-orthogenal intermal matrix,

(a) _ () 8
Ry =M e By
MT nM=z=n
Its value being
1 aQ 0 0
0 sinBcos¢$. cosBcosd -sing
M =
0 sinBsing cesOsing cosé
0 coso -sin@ 0

As it is easily seen, the sub-matrix correspending to the transformation in the
spatial indiees (i) =((1), (2), (3)).is orthegonal, this sub-matrix corresponds
to one element of SU, in the complex two-dimensienal internal space.
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5. GENERALIZATION OF THE SPINOR CLASS OF SOLUTIONS ASSOCIATED TO THE SCHWARZS-

CHILD PROBLEM

The property that the Hermitian two-by-two matrices 9, which describe the
gravitational field in the spinor fornulation, form a basys in the internmal
space of the camplex two-by-two matrices allow us to obtain more general spinor
class of solutions. A general solution is.obtained as a linear cambination of
the o, which correspond to the Schwarzschild problem. In this linear cambination
the coefficients contain the new inforﬁation of the general field. Presently
we determine the gravitational field generated by a charged massive particle 8
in terms of the Schwarzschild field, by this.process. This method, in principle,
may be further extended so as to take into acéom‘t other physical properties
besides the charge. Nevertheiess, these fur'then.g?neralizations are not of use
presently since we do not know how other coupling “co,nstants , besides the charge,

are sources of gravitation.

The process outlined in this section may be carried out in any system of .
coordinates since it has nothing to do with coordinate transformations. However,

the use of spherical coordinates will simplify greatly the results.

Given the 9, corresponding to.the Schwarzschild problem (always under—
stood that this c-u is an element of the class 51} , We form the Eu belonging to -

the class associated to the Nordstrom field by writing
_ A
u= %%
For o, we take the simple form given by (27), where we have,

z (28)

e’ =1 - 2Gn/c?r= 1- 2a/r
G being the gravitational constant, and m the mass of the source. The matrix
a}\u which generates according to (28) the solution for the Nordstram's field

is,



Since we get a result similar to (27) for Zu, with a new function

- 2. 2
2
0
2a
1o F
1- 2a/r 12
0 .
0 = 1-2a/r + b/r?
0 0]
0 0

e\)N = 1-2a/r + b/r*2 , b= Ge2/c4
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