NOTAS DE FÍSICA VOLUME XV Nº 12

ON THE TOPOLOGY OF THE SPACE OF ALL HOLOMORPHIC FUNCTIONS ON A GIVEN OPEN SUBSET

by Leopoldo Nachbin

CENTRO BRASILEIRO DE PESQUISAS FÍSICAS

Av. Wenceslau Bras, 71

RIO DE JANEIRO

1969

ON THE TOPOLOGY OF THE SPACE OF ALL HOLOMORPHIC FUNCTIONS ON A GIVEN OPEN SUBSET *

Leopoldo Nachbin
Centro Brasileiro de Pesquisas Físicas and
Instituto de Matemática Pura e Aplicada
Universidade do Brasil, Rio de Janeiro

(Received August 11, 1969)

Let E and F be two complex Banach spaces, $\mathcal{P}(^{\mathbf{m}}\mathbf{E}; \mathbf{F})$ the Banach space of all continuous m-homogeneous polynomials from E to F (m = 0, 1, ...), U a non-void open subset of E, $\mathcal{H}(\mathbf{U}; \mathbf{F})$ the vector space of all holomorphic F-valued functions on U, and $\hat{\mathbf{d}}^{\mathbf{m}}$ the differentiation mapping from $\mathcal{H}(\mathbf{U}; \mathcal{F})$ into $\mathcal{H}(\mathbf{U}; \mathcal{P})$ ($^{\mathbf{m}}\mathbf{E}$, F)) of order m = 0, 1,

A seminorm p on $\mathcal{H}(U; F)$ is said to be ported by a compact subset K of U if to every open subset V of U containing K there corresponds a real number c(V) > 0 such that

$$p(f) \leq c(V) \cdot \sup || f(x) ||$$
 $x \in V$

for every $f \in \mathcal{H}(U;F)$. The topology \mathcal{T}_{ω} on $\mathcal{H}(U;F)$ is defined by all such seminorms ported by compact subsets of U. Each of the

^{*} This work was done when the author was at the University of Chicago and University of Rochester.

following conditions is necessary and sufficient for p to be ported by K:

(1) Corresponding to every real number $\varepsilon > 0$ there is a real number $c(\varepsilon) > 0$ such that, for every $f \in \mathcal{H}(U; F)$,

$$p(f) \le c(\mathcal{E}) \sum_{m=0}^{\infty} \mathcal{E}^m \sup_{\mathbf{x} \in K} \left\| \frac{1}{m!} \hat{\mathbf{d}}^m f(\mathbf{x}) \right\|.$$

(2) Corresponding to every real number $\varepsilon > 0$ and open subset V of U containing K, there is a real number $c(\varepsilon, V) > 0$ such that, for every $f \in \mathcal{H}(U; F)$,

$$p(f) \le c(\varepsilon, V) \sum_{m=0}^{\infty} \varepsilon^m \sup_{x \in V} \left\| \frac{1}{m!} \hat{d}^m f(x) \right\|.$$

U is ξ -equilibrated, where $\xi \in U$, if $(1-\lambda)\xi + \lambda x \in U$ for any $x \in U$, $\lambda \in C$, $|\lambda| \le 1$. If U is ξ -equilibrated, the Taylor series at ξ of any $f \in \mathcal{H}(U; F)$ converges to f in the sense of \mathcal{T}_{ω} . If U is ξ -equilibrated, the following condition is necessary and sufficient for f to be ported by f: corresponding to every open subset f of f containing f, there is a real number f c(f) of such that, for every $f \in \mathcal{H}(U; F)$,

$$p(f) \leqslant c(V)$$
. $\sum_{m=0}^{\infty} \sup_{x \in V} \left\| \frac{1}{m!} \hat{d}^m f(\xi) \cdot (x - \xi) \right\|$.

The compact-open topology on the vector space g(U; F) of all continuous F-valued functions on U induces a topology \mathcal{T}_o on $\mathcal{H}(U; F)$. We have $\mathcal{T}_o \subset \mathcal{T}_\omega$; $\mathcal{T}_o = \mathcal{T}_\omega$ if and only if dim $E < \infty$, or F = 0. Each d^M is continuous for the corresponding

topologies \mathcal{I}_{ω} ; continuity of d^{m} for some m>1 and the corresponding topologies \mathcal{I}_{o} requires dim $E<\infty$, or F=0. However a subset \mathscr{L} of $\mathscr{H}(U; F)$ is bounded for \mathscr{I}_{ω} if and only if it is bounded for \mathscr{I}_{o} . Each of the following conditions is necessary and sufficient for \mathscr{L} to be bounded for \mathscr{I}_{ω} :

- (1) Corresponding to every compact subset K of U, there is a real number C>0 such that $\|f(x)\| \leqslant C$ for every $f \in \mathcal{X}$ and $x \in K$.
- (2) Corresponding to every compact subset K of U, there are a real number C>0 and an open subset V of U containing K such that $||f(x)|| \le C$ for every $f \in \mathcal{X}$ and $x \in V$.
- (1') Corresponding to every $\xi \in U$, there are real numbers C > 0 and c > 0 such that, for every $m = 0, 1, \ldots$ and $f \in \mathcal{H}$,

$$\frac{1}{m!} \hat{d}^m f(\xi) \leqslant C \cdot c^m.$$

(2') Corresponding to every compact subset K of U, there are real numbers C>0 and c>0 such that, for every $m=0, 1, ..., f \in \mathcal{X}$ and $x \in K$,

$$\left\| \frac{1}{m!} \hat{d}^m f(x) \right\| \leq C \cdot c^m \cdot$$

(3') Corresponding to every compact subset K of U, there are real numbers C>0 and c>0, and an open subset V of U containing K, such that, for every $m=0, 1, \ldots, f\in \mathcal{K}$ and $x\in V$,

$$\left\| \frac{1}{m!} \hat{d}^m f(x) \right\| \leqslant C \cdot c^m \cdot$$

Let XCU be fixed, and suppose X meets every connected component of U. Then $\mathcal X$ is bounded for $\mathcal I_{\omega}$ if and only if $\mathcal X$ is equicontinuous on U and sup $\{\|f(x)\| | f \in \mathcal X\} \in \mathcal X$ for every $x \in X$. Denote by $\mathcal I_{\infty,X}$ the topology on $\mathcal K(U;F)$ defined by the family of seminorms $f \to \|\hat{d}^m f(x)\|$ for $m = 0, 1, \ldots$ and $x \in X$. If $\mathcal X$ is $\mathcal I_{\omega}$ -bounded, $\mathcal I_{\omega}$ and $\mathcal I_{\infty,X}$ induce the same topology on $\mathcal X$; also the uniform structures associated with $\mathcal I_{\omega}$ and $\mathcal I_{\infty,X}$ induce the same uniform structure on $\mathcal X$. If f, $f_1 \mathcal H(U;F)$ for $1 = 0, 1, \ldots$, then $f_1 \to f$ in the sense of $\mathcal I_{\omega}$ as $1 \to \infty$ if and only if $\{f_1\}$ is $\mathcal I_{\omega}$ -bounded and $\hat{d}^m f_1(x) \to \hat{d}^m f(x)$ in $\mathcal P(^m E; F)$ as $1 \to \infty$ for every $m = 0, 1, \ldots$ and $x \in X$. Also $\mathcal X$ is $\mathcal I_{\omega}$ -relatively compact if and only if $\mathcal X$ is $\mathcal I_{\omega}$ -bounded and $\{\hat{d}^m f(x)|f \in \mathcal X\}$ is relatively compact in $\mathcal P(^m E; F)$ for every $m = 0, 1, \ldots$ and $x \in X$.

BIBLIOGRAPHY

 A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné. Annales de L'Institut Fourier, 16, 1-95 (1966).

- 2. A. Martineau, Sur la topologies des espaces de fonctions analytiques. Mathematische Annalen, 163, 62-88 (1966).
- 3. L. Nachbin, Lectures on the theory of distributions. Department of Mathematics, University of Rochester, USA (1963). Reprinted in Textos de Matematica, no. 15, Instituto de Fisica e Matematica, Universidade de Recife, Brazil (1964).
- 4. ______, On spaces of holomorphic functions of a given type. Conference on Functional Analysis, University of California, Irvine, USA, 1966 (to appear).