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Abstract

Within the spirit of van Kampen’s “Langevin approach”, we discuss the limits of validity
of rephrasing the non-equilibrium problem of a particle subject to an external (work)
reservoir — a system where the fluctuation-dissipation is not verified — into the simpler
case with an internal (heat) reservoir for which the fluctuations and the dissipation arise
from the same source. Using a convenient mapping of the thermomechanical parameters
we show that, counter-intuitively, such approach is not only valid for steady state time
independent quantities, but also for time dependent thermostatistical quantities, namely
the injected and dissipated fluxes. We connect this result with the problem of large devi-
ations and conclude that, in this context, we can only distinguish reservoirs by analysing
the “fluctuations of accumulated fluctuations”. As a by-product, we learn that the best
reference approximation to the large deviation functions of a non-Markovian external
reservoir system is not the respective internal reservoir limit — as often assumed and sug-
gested by the Langevin approach — but its internal reservoir analogue system obtained
from the mapping of the original thermomechanical parameters.

Keywords: Non-equilibrium statistical mechanics, External reservoir, Effective
temperature, Large deviations, Entropy production

1. Introduction

One of the most typical ways of tackling a problem in Physics — and get the solu-
tion thereto — is to cast the respective model in a simpler way by redefining the vari-
ables/parameters or introducing a phenomenological approach which preserves the back-
bone of the problem. Concerning the latter, the use of models inspired in the Langevin
Equation (LE) is one of the most employed methods [1, 2]; it has a widespread field of
applications and has played a relevant role in surveys over the thermostatistical properties
of systems far from the thermodynamic limit [3]. Perhaps, the most striking feature of
the LE is that in problems of non-equilibrium statistical mechanics, it permits the direct
(statistical) characterisation of the position, x = x(t), and velocity, v = v(t) ≡ dx/dt, as
well as probing the relation between the fluctuation and dissipation in the system, which
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is the upshot of the fluctuation-dissipation theorem [4]. The way the two physical effects
are connected (or not) dictates the nature of the reservoir. Accordingly [1], a reservoir is:

• internal (IntRes) if it allows establishing the dissipation as a property of the reser-
voir, the fluctuation-dissipation relation is verified and the corresponding theorem
as well;

• external (ExtRes) if the effects of dissipation and fluctuation that are taking place
have different origins and thus the fluctuation-dissipation relation is not verified.

The quintessential IntRes corresponds to the diffusion problem of Brownian motion
as treated by Einstein, where the water acts as the reservoir. The random impacts of
the water molecules in the pollen grain are the cause of both the dissipation and the
fluctuations. Furthermore, since a pollen grain is weightier than water molecules,2 the
noise correlation function falls off very rapidly (typically 10−8 seconds) and thus the noise,
η, that is responsible for the fluctuation is nicely reproduced by a white noise,

⟨η (t2) η (t1)⟩c = 2 γ T δ (t2 − t1) , (1)

where γ is the dissipation coefficient and T is the temperature of the bath. For a signif-
icantly dense medium, η is Gaussian as well. Thence, if we consider a system composed
of a particle with mass, m, that is subject to a confining potential, V = V (x), we get a
dynamics is ruled by,

m
d2x

dt2
= −γ dx

dt
− dV

dx
+ η (t) , (2)

Later, Mori and Kubo [5] surveyed the problem of a reservoir the particles of which
have got a mass of the same order of magnitude of the focal particle. In that case, the
fluctuations cannot be white noise, but they have the same source as dissipation still. In
order to square such type problem within the IntRes scenario, Eq. (2) was generalised to,

m
d2x

dt2
= −

∫ t

t0

κ (t− t′)

(
dx

dt′

)
dt′ − dV

dx
+ ξ (t) . (3)

For this non-Markovian problem, the fluctuations — which although Gaussian are now
represented by ξ(t) — and the dissipation are defined by,

⟨ξ (t2) ξ (t1)⟩c =
γ

τ
T exp

[
−|t1 − t2|

τ

]
, κ (t1 − t2) =

γ

τκ
exp

[
−|t1 − t2|

τκ

]
, (4)

with τκ = τ , which guarantees that both spectra scale equally. In the limit (τ → 0, τκ → 0),
Eq. (4) reads,

⟨ξ (t2) ξ (t1)⟩ = 2 γ T δ (t2 − t1) ,

∫ t

t0

κ (t− t′)

(
dx

dt′

)
dt′ = γ

dx

dt
. (5)

2A typical pollen grain is 104 times as weighty as a molecule of water.
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like Eq. (1) and Eq. (2) is recovered [η(t) ≡ ξτ→0(t)].
It is not hard to grasp that when τ ̸= τκ, the source of the fluctuations has nothing

to do with the origin of the dissipation, resulting in a ExtRes situation. The simplest
ExtRes situation corresponds to τ ̸= 0 and τκ → 0,

m
d2x

dt2
= −γ dx

dt
− dV

dx
+ ξ (t) , (6)

and Eq. (4) keeps on being valid for ξ(t).
The definitive instance of a system described by Eq. (6) is a particle in a frictional

medium subject to a coloured random force [6, 7, 8]. This can be set up, e.g., by inserting a
charged particle in liquid helium (above superfluid phase though) — or any other situation
where thermal noise is negligible in comparison with the fluctuations bore by the external
source — and apply a coloured Gaussian electric field to it. Additionally, we can refer
to experiments with dye lasers [9] and laser gyroscopes [10] where this type of reservoir
emerges.

The description of IntRes and ExtRes cases helps understand that the two types
of reservoirs are often distinguishable by the way they affect the energy of the system:
while the IntRes is always a heat reservoir, the ExtRes frequently corresponds to a work
reservoir, i.e., it changes the energy of the system by performing work on it.

Herein, an important point pertains to calling the quantity T [Eq. (4)] the temperature
of the ExtRev system (6). Although its properness might be disputed within a cautious
Thermodynamical parlance, we will use that terminology upholding our decision on the
fact that T has energy units (kB = 1) and provides us with a typical scale of the fluctua-
tions of velocity and position induced by the ExtRes (e.g., in the form of positive/negative
work performed on the system). Such broad understanding of the concept of tempera-
ture has been recently employed in the statistics of vortices in superconductors whence
an athermal formalism — absolutely analogous to standard Thermodynamics — was de-
rived [11]. Moreover, alternative definitions of temperature concurring with equipartition
and fluctuation-dissipation relations were introduced in the field of stochastic dynamics
with non-Gaussian reservoirs as well [12].

1.1. The hypothesis

In the remaining of this manuscript, we focus on the IntRes, Eq. (3), and the ExtRes,
Eq. (6), systems with V (x) = 1

2
k x2. The choice for this potential has an experimental

justification; in thermostatistical oriented problems the system is frequently confined by
means of an optical tweezer that is very well described by the harmonic potential [20].

To solve the problem, we Fourier-Laplace transform Eqs. (2) and (6),

f̃ (i q) ≡
∫ ∞

0

e−i q t f (t) dt, (7)

and for t0 = 0, x0 = 0 and v0 = 0 we get,

x̃ (i q) =
η̃ (i q)

R (i q)
, x̃ (i q) =

ξ̃ (i q)

R (i q)
, (8)
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respectively, where,

R (q) ≡ mq2 + γ q + k = m (q − ς+) (q − ς−) ,

(
ς± = − γ

2m
± i

√
4
k

m
− γ2

4m2

)
. (9)

For both reservoirs, the velocity in the reciprocal space reads,

ṽ (i q) = i q x̃ (i q) , (10)

and the covariance of the fluctuations,

⟨η̃ (i q1) η̃ (i q2)⟩c =
2

i q1 + i q2
γ T, (11)

⟨
ξ̃ (i q1) ξ̃ (i q2)

⟩
c

=
2 + i q1 τ + i q2 τ

(i q1 + i q2) (1 + i q1 τ) (1 + i q2 τ)
γ T. (12)

The two cases give rise to a steady state and after the transient, we can apply sam-
ple and time averages interchangeably. Alternatively to the standard calculation of the
statistical moments of a quantity O by sampling in time,

On = lim
Ξ→0

1

2Ξ

∫ Ξ

−Ξ

[O (t)]n dt, (13)

we will resort to the extreme-value theorem [8],

On = lim
z→0

z

∫ ∞

−∞
e−z t [O (t)]n dt, (14)

which yields the same results.
Owing to the additive and Gaussian nature of the noise in Eqs. (2) and (6), the steady

state distribution is always Boltzmann-like, regardless of the colour of η(t) or ξ(t). That
independence is further extended to the form of V (x), as long as the potential bears a
stationary solution and is differentiable [22].For the harmonic optical tweezer potential,
the computation of the cumulants ⟨xn vm⟩c by means of Eq. (14) gives the generating
function of,

p (x, v) =
1

Z
exp

[
−Bv v2 − Bx x2

]
, (15)

where, for a ExtRes system,

Bv =
1

2

m+ τ (γ + k τ)

T
, Bx =

k

2

m+ τ (γ + k τ)

T (m+ γ τ)
, (16)

and for a IntRes system,

Bv =
1

2

m

T
, Bx =

1

2

k

T
. (17)

by making τ → 0. Both steady states are Gaussian and the average energy equals
(EIntRes = limτ→0 E),
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E ≡ K + V =
1

2

2m+ τ γ

[m+ τ (γ + k τ)]
T, (18)

Concretely, although Eqs. (2) and (6) represent different dynamics, we recognise the
steady state distribution of the ExtRes system as Gaussian; the same distribution as the
well-known stationary solution to the Fokker-Planck Equation of a particle subject to an
IntRes.3

To characterise a system from a thermostatistical perspective, one is not only interested
in the steady state distributions, but in the heat and work fluxes as well. However,
for ExtRes systems the formulae thereof are difficult to compute. Bearing in mind the
functional equivalence of the steady state solutions, Eq. (15), for both kinds of reservoirs
one is tempted to ask the following question: In order to circumvent the natural analytical
difficulties of an ExtRes system is it possible to represent it in the form of an IntRes
system, for which calculations are simpler, and therefrom reverse the thermostatistical
results to the original case?

The answer to that question is the aim of the present work, which was fuelled by other
papers on external noise [13], including surveys over the thermodynamical consequences of
the nature of a reservoir [14, 15], namely the approachability to absolute zero. Moreover,
our endeavour fits what van Kampen coined as “the Langevin approach” [1] to a system,
where the goal is to recast a system in a standard Langevin Equation reproducing drift
and diffusion properties. This approach was also conjectured for multiplicative noise cases
or to rephrase non-stationary into stationary models [16].

2. Hypothesis testing

On the one hand, let us assume that the ExtRes system with parameters m, T ,
γ, τ and k, Eq. (6), has its statistics replicated by IntRes system, Eq. (2), with proxy
thermomechanical parameters.4 From the steady state averages values of the total, kinetic
and potential energies, E , K and V ,

⟨v2⟩ = T
m+τ(γ+k τ)

= T ∗

m∗

⟨x2⟩ = T (m+τ γ)
k [m+τ(γ+k τ)]

= T ∗

k∗

E = 2m+τ γ
2[m+τ(γ+k τ)]

T = T ∗
, (19)

we get the following proxy-parameters,

m∗ ← m+
γ τ

2
, T ∗ ← m∗

m+ τ (γ + k τ)
T, k∗ ← m∗

m+ τγ
k, γ∗ ← γ. (20)

The relations in Eq. (20) state that the proxy IntRes analogue system must be colder
and the particle heavier. Note that these quantitative relations are not universal, 5 but

3That difference in the dynamics can be appraised in the long-term velocity covariance for the two
cases that we present in Appendix B.

4 Hereinafter, we will refer to this system as the IntRes proxy system and its parameters and quantities
marked with an asterisk.

5 And there is no reason whatsoever to be like that.
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the qualitative relation between real and mapped parameters are bound to go like that
for every confining potential case. From Eqs. (2), (15) and (16), we confirm that the
Gaussianity of the steady state is preserved, the moments of the steady state (kinetic and
potential) energies are unaltered and hence the mapping (20) is deemed significant from
the time independent point of view.

On the other hand, the energy, namely that of the steady state, E , ensues from the
superposition of the total injected, Jinj (Ξ), and dissipated, Jdis (Ξ), fluxes (up to time Ξ),

E ≡ lim
Ξ≫m

γ

Jinj (Ξ) + Jdis (Ξ) . (21)

For both IntRes and ExtRes cases, Jdis(Ξ) flows in the form of heat whereas Jinj (Ξ) is the
total work made by the ExtRes on the system when it corresponds to a work reservoir.
After the transient, we have up to time Ξ (see Appendix C),

E ≡ lim
Ξ≫m

γ

Ξ∫
0

⟨v (t) ξ (t)⟩ dt− γ

Ξ∫
0

⟨
[v (t) ]2

⟩
dt. (22)

For the ExtRes system, we obtain,

lim
Ξ≫m

γ

⟨Jinj (Ξ)⟩ = −
T γ τ (m− k τ 2)

[m+ τ (γ + k τ)]2
+

γ T

m+ τ (γ + k τ)
Ξ, (23)

and,

lim
Ξ≫m

γ

⟨Jdis (Ξ)⟩ =
T [m (2m+ 5γ τ + 2kmτ 2) + τ 2 (γ2 − k γ τ)]

2 [m+ τ (γ + k τ)]2
− γ T

m+ τ (γ + k τ)
Ξ. (24)

The time independent energy E [Eq. (21)] matches the steady state value given in Eq. (18).
For an IntRes system, namely one that is playing the role of proxy for an ExtRev situ-

ation, we replace the coloured ξ(t) noise by a white noise η∗(t) and from Eqs. (21) and (22)
we have,

E =
γ T ∗

m∗ Ξ +

(
T ∗ − γ T ∗

m∗ Ξ

)
. (25)

As also previously suggested in [17], Equations (8) and (10) clearly show that the
position depends on the nature of the fluctuations and so do the velocity and the time
dependent fluxes, or its assymptotic limit,

J (Ξ) ≡ Ξ lim
Ξ→∞

1

Ξ
J (Ξ) . (26)

But, what is the actual extent of this dependence?
At first glance, due to the different dynamical features imposed by η∗ and ξ, one ex-

pects a utterly different statistics of the time dependent fluxes for IntRes and ExtRes
systems, even for a proxy system, that must reflect its internal character. In other words,
in applying the mapping relations to the fluxes in the ExtRes case and taking into con-
sideration the time dependencies we have just mentioned, the best guess is a relation
like,

⟨J (Ξ)⟩ = ⟨J (Ξ)⟩∗ + φ (m∗, γ∗, k∗, T ∗) τ Ξ. (27)
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However, when we apply the mapping relations provided by Eq. (20) in Eqs. (23) and (24)
to assess the factual difference between the fluxes of an ExtRes and its proxy IntRes —
i.e., φ — we simply get,

φ = 0, (28)

and thus,
⟨J (Ξ)⟩ = ⟨J (Ξ)⟩∗ (after scaling) . (29)

Moreover the value of E is preserved. According to what we have said in the previous
paragraph this equivalence is against all odds and counter-intuitive.

From Eqs. (21) and (22), we identify the fluxes as quantities proportional to the
accumulated fluctuations, i.e., they behave in the form of a large deviation. Putting
together this feature with the mapping equivalence Eq. (29), we understand that, under
the conditions herein presented, the average value of the large deviation of the fluctuations
is in practice insensitive to the nature of the reservoir. In Fig. 1 (left-hand panel), we
show the evolution of Jinj (Ξ) and Jdis (Ξ) for the ExtRes system [Eq. (6)], which agrees
with the behaviour of its proxy IntRes problem defined by Eqs. (2) and (20).

At this point, we have found a reason for further checking the true impact of the
nature of the reservoir in the fluxes that guarantee the steady state. That is particularly
important for systems that are far from the thermodynamical limit and for which the
fluctuations of its thermostatistical quantities are crucial to a proper characterisation.
With that goal in mind, we can look at the large deviation function (LDF) of the fluxes,
L (J ), wherefrom the respective cumulants can be obtained. In accordance, should the
mapping between reservoirs be fully valid, the LDF of the proxy IntRes case will read [18,
19],

L∗ (J ) = 1

ZL

exp

[
−
(
J − γ T ∗

m∗ Ξ
)2

4T ∗ J

]
Θ [J ] , (30)

for either (injected/dissipated) fluxes.
More than concerned about the form of L (J ), we set our sight at the cumulants. This

means that instead of employing standard methods to find the LDF [21], we have opted
to successively compute the cumulants in a way that: i) dispenses with the hard task of
defining the propagator, ii) provides exact results, iii) allows obtaining results when one
has to deal with non-Gaussian (shot-noise) reservoirs [19]. That being said, we get for
the proxy IntRes case the second order cumulant,⟨

J 2 (Ξ)
⟩∗
c
= 2

γ T ∗2

m∗ Ξ =
γ T 2 (2m+ γ τ)

(m+ τ (γ + k τ))2
Ξ, (31)

whereas for the original ExtRes problem (see Appendix C),⟨
J 2 (Ξ)

⟩
c
=

γ T 2 (2m+ γ τ)

(m+ τ (γ + k τ))2
Ξ +

γ2 T 2 (3m+ τ (γ − k τ))

(m+ τ (γ + k τ))3
τ Ξ (32)

which are slightly different and unmappable. Qualitatively, the form of the relation be-
tween the variance of the fluxes Eqs. (31) and (32),⟨

J 2 (Ξ)
⟩
=
⟨
J 2 (Ξ)

⟩∗
+ φ2 (m

∗, γ∗, k∗, T ∗) τ Ξ (33)



CBPF-NF-012/15 8

is actually the relation we were already expecting for the average fluxes, a conjecture that
our calculations surprisingly proved wrong.

One might attempt to recast Eq. (20) in order to accommodate the fluctuations of
J (Ξ) — the fluctuations of the accumulated fluctuations — but all of them end up
hitting the buffers because they yield a wrong value of E . From these efforts, we learn the
key issue amounts to the fact that the parameter γ, which establishes the dissipation in
the system, is always invariant under mapping whatever the conditions we try to impose
to obtain it.

Besides the hypothesis we have probed, the mapping hypothesis — or “Langevin ap-
proach” [1] — furnishes a by-product for the treatment of LDFs of coloured ExtRev
systems. Specifically, as previously stated, solutions to time-dependent probabilistc prob-
lems within a ExtRev context are hard to obtain and generally achieved by approximative
methods [7]. In these circumstances, the white noise limit of a coloured ExtRes system6

is systematically assumed as the preferable zeroth order approximation to which higher-
order corrections are added. Our analysis points to a better proposal though: the proxy
IntRes system. For instance, in adopting an Edgeworth expansion to the LDF of the
fluxes,7

LExtRes (J ) = exp

[
∞∑
n=1

∆⟨Jn⟩c
1

n!

∂n

∂J n

]
L0 (J ) , (34)

the best(neatest) reference distribution, L0 (J ), is provided by Eq. (30) instead of its
“unstarred” version directly derived from Eq. (2); best because it already includes ExtRes
colour effects.

The dashed line in Fig. 1 (right-hand panel) represents the calculation of Eq. (34)
up to n = 2 (equivalent results for n = 3 are presented in Appendix C). Note that the
approximation involving the second order cumulant is in fact first order since the reference
distribution naturally embodies the colour effects of the reservoir on the average.

3. Concluding Remarks

Stimulated by previous works on systems in contact with external reservoirs — i.e.,
reservoirs for which dissipation and fluctuations have different origins and do not abide
by the fluctuation-dissipation relation — we have assessed the hypothesis of having the
long-term thermostatistical behaviour of a coloured ExtRes system represented by a proxy
IntRes system, after a convenient scaling of its thermomechanical parameters [Eq. (20) for
our case study]. That hypothesis fits van Kampen’s “Langevin approach”to a stochastic
system. At first, because of the Boltzmann weight nature of the IntRes and ExtRes steady
state distributions, the mathematical mapping is deemed plausible for time independent
quantities. Moreover, when we analysed key time dependent quantities like the average
injected and dissipated fluxes8 — that are the large deviation of powers and for which

6This is equivalent to a proper IntRes system governed by Eq. (2).
7∆⟨Jn⟩c is the difference between the nth-order cumulant of the actual LExtRes (J) and the reference

L0 (J) LDFs.
8That guarantee the existence of the steady state.
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the time dependent nature of the fluctuations [Eq. (4)] comes explicitly into play — we
verified that the establishment of a proxy IntRes system could yet be possible.

Only when we look at the fluctuations of the fluxes — which are in practice the
fluctuations of the accumulated fluctuations — the fluctuation-dissipation relation speaks
louder and the functional equivalence scenario breaks down. Although these facts could
be understood as a signature of a certain insensitiveness of the large deviation treatment
to the thermostatistical properties of a system, what the present result conveys is that
we can always rephrase the first order thermal properties of a non-Markovian Gaussian
system similarly to what we can do with a Markovian non-Gaussian IntRes system like a
massive particle in contact to an Anderson thermostat [12]. 9

Complementarily, the present analysis gave us arguments to claim that in a standard
approximative treatment of an ExtRes system, the best zeroth-order is not its white-noise
limit, but its proxy IntRes since it already includes colour effects in the form of the proxy
temperature, T ∗ and mass, m∗.

Still taking into consideration our mapping, we can look at the we look at the en-
tropy production/exchange that is related to the dissipated and injected fluxes. If the
system attains a steady state, then the relation between the total entropy, S, the entropy
production, Π, and entropy exchange, Ψ, is,

dS

dt
= Π−Ψ = 0 (t≫ m/γ) .

where Π and Ψ are associated with Jinj and Jdis, respectively. In other words, by assuming
our mapping hypothesis and an effective temperature T ∗ for our system, we can easily
verify that Π = Ψ = γ/m∗, which is exactly the same form obtained for thermal (internal)
reservoirs, and assert that T ∗ is an actually worth energy scale that retrieves the standard
form of long-term entropy production/exchange.

As a final side note, yet in a LDF context, if one reminds that the Jarzynski equal-
ity [23], for long trajectories, is nothing but the LDF of the power input to the system
by some external force, our analysis provides a different interpretation as to why that
equality fails for external reservoirs [24]. Putting it differently, one cannot circumvent the
umbilical link between the dissipation and the fluctuations of an IntRes system so that
the generating function of the work made by the driving a system from steady state A to
B is always equal to the ratio between the partition functions of those states, whatever
the reservoir.
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Appendix A. Poles location in complex plane

For the calculations expressed in the main text (MT) we used the poles structure
shown in Figure A.2. To avoid issues related to the Cauchy’s principal value we shifted
the moments q in Eqs. (8),(9) and (10) written in the MT by i ε, which is then made going
to zero at the end of all calculations. Hence, those formulae become,

x̃ (i q + ε) =
η̃ (i q + ε)

R (i q + ε)
, x̃ (i q + ε) =

ξ̃ (i q + ε)

R (i q + ε)
(A.1)

and, {
⟨η̃ (i q1 + ε) η̃ (i q2 + ε)⟩ = 1

i q1+i q2+2 ε
2 γ T⟨

ξ̃ (i q1 + ε) ξ̃ (i q2 + ε)
⟩

= 2+i q1 τ+i q2 τ+2 ε τ
(i q1+i q2+2 ε)[1+(i q1+ε) τ ][1+(i q2+ε) τ ]

γ T
. (A.2)

Appendix B. Calculation of velocity-velocity correlations

The long-term covariance of the velocity is defined as,

Cv(s) ≡ lim
Ξ→∞

1

Ξ

Ξ∫
0

⟨v (t) v (t+ s)⟩ dt. (B.1)

Using the Fourier-Laplace representation, the external reservoir system velocity covari-
ance, Cv (s), reads,

Cv (s) = lim
Ξ→∞

1

t

Ξ∫
0

∫
dt e(i q2+ ε) s

2∏
j=1

dqj
2π

(i qj + ε) e(i q1+ε) t

mR (i qj + ε)

⟨
2∏

l=1

ξ̃ (i ql + ε)

⟩
. (B.2)

Using the poles structure depicted in Figure A.2 and after some algebra we get,

Cv = T
{
e−

γ
2m

|s|
[(
m+ k τ 2

)
cos

(
s
Ω

2

)
− γ (m− k τ 2)

m2 Ω
sin

(
s
Ω

2

)]
− e−

|s|
τ γ τ

}
,

where,

T =
T

2∏
l=1

(
m+ (−1)l γ τ + k τ 2

) , Ω ≡
√
4
k

m
− γ2

m2
.

The same happens for the internal reservoir system, where the equation is basically
the same as Eq. (B.2), i.e.,

Cv (s) = lim
Ξ→∞

1

Ξ

Ξ∫
0

∫
dt e(i q2+ ε) s

2∏
j=1

dqj
2π

(i qj + ε) e(i q1+ε) t

mR (i qj + ε)

⟨
2∏

l=1

η̃ (i ql + ε)

⟩
. (B.3)

Because the noise is actually different the results of the integration is different and yields,

Cv, τ=0 = e−
γ
2m

|s|T

[
1

m
cos

(
s
Ω

2

)
− γ

mΩ
sin

(
s
Ω

2

)]
. (B.4)
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Appendix C. Calculation of the moments of the injected/dissipated fluxes

Hereinafter, we only present the calculations for the external reservoir system. For
the specific calculations of the internal reservoir system we refer the reader to Ref. [19].

Appendix C.1. Averages

The average injected flux, ⟨Jinj (Ξ)⟩, was obtained from the computation of,

⟨Jinj (Ξ)⟩ = Ξ lim
Ξ→∞

1

Ξ

Ξ∫
0

∫ 2∏
j=1

dqj
2π

e(i qj + ε) t i q1 + ε

mR (i q1 + ε)

⟨
2∏

l=1

ξ̃ (i ql + ε)

⟩
dt. (C.1)

In this case, we had to pay attention to the fact that the integral in q2 does not suit
the direct application of Jordan’s lemma. Because of that, the value of the integration
over the upper arch, which is finite, must be subtracted from result obtained from the
calculation of the residue. Taking this detail into consideration we got Eq. (23).

The average dissipated flux was obtained from,

⟨Jdis (Ξ)⟩ = −γ Ξ lim
Ξ→∞

1

Ξ

Ξ∫
0

∫ 2∏
j=1

dqj
2π

i qj + ε

mR (i qj + ε)
e(i qj + ε) t

⟨
2∏

l=1

ξ̃ (i ql + ε)

⟩
dt. (C.2)

In the dissipative case there is no problem with Jordan’s lemma and Eq. (24) is obtained
after some algebra.

Appendix C.2. Second order cumulant

The variances of both cases are obtained calculating,

⟨
J 2

inj (Ξ)
⟩
c

= Ξ lim
Ξ→∞

1

Ξ

Ξ∫
0

∫ 2∏
j=1

dtj
dq2j−1

2π

dq2j
2π

(i q2 j + ε)

m2R (i q2 j + ε)

×e(i q2j−1+i q2j+2 ε) tj

⟨
4∏

l=1

ξ̃ (i ql + ε)

⟩
− ⟨J (Ξ)⟩2 , (C.3)

and

⟨
J 2

dis (Ξ)
⟩
c

= Ξ lim
Ξ→∞

1

Ξ

Ξ∫
0

∫ 2∏
j=1

dtj
dq2j−1

2π

dq2j
2π

(i q2 j−1 + ε) (i q2 j + ε)

m4R (i q2 j−1 + ε) R (i q2 j + ε)

× e(i q2j−1+i q2j+2 ε) tj

⟨
4∏

l=1

ξ̃ (i ql + ε)

⟩
− ⟨J (Ξ)⟩2 , (C.4)

respectively.
Since the external coloured noise is Gaussian, we can dynamically define it as [22],

ξ (t) ∝
∫ t

−∞
exp

[
−1

τ
(t− t′)

]
dWt′ , (C.5)
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where Wt is the standard Wiener process. Thus, it is not difficult to verify that one can
apply the Esserlis-Wick theorem to break the nth-order moments of dW into sums over all
combinations of products of pairs ⟨dW dW ′⟩. It must be emphasised that for the variance
of the total injected flux the split into sub-terms must also take into consideration whether
ξ̃ (i ql + ε) comes from the velocity or else directly represents the effect of the external
reservoir on the system.

The successive computation of all the terms finally yield Eq. (32),⟨
J 2 (Ξ)

⟩
c
=

γ T 2 (2m+ γ τ)

[m+ τ (γ + k τ)]2
Ξ +

γ2 T 2 [3m+ τ (γ − k τ)]

[m+ τ (γ + k τ)]3
τ Ξ. (C.6)

Appendix C.3. Third order cumulant

In order to bring our analysis farther afield and to strengthen our assertion on the
superiority of the proxy IntRes approach in comparison to the white noise limit approach,
we computed the third order cumulant. Since the injected and dissipated LDFs are equal,
we centered our efforts in the (easier) injected case,

⟨
J 3

inj (Ξ)
⟩
c

= Ξ lim
Ξ→∞

1

Ξ

Ξ∫
0

∫ 3∏
j=1

dtj
dq2j−1

2π

dq2j
2π

(i q2 j + ε) e(i q2j−1+i q2j+2 ε) tj

m2R (i q2 j + ε)

⟨
6∏

l=1

ξ̃ (i ql + ε)

⟩
−3
⟨
J 2

inj (Ξ)
⟩
c
⟨J (Ξ)⟩ − ⟨J (Ξ)⟩3 . (C.7)

Following Ref. [19], we understood that only the closed diagrams G and H, emerging from
the first term on the right-hand side, have a non-zero contribution to the cumulant. The
former is defined by the pairs of ξ̃s coming from different times tj and associated with dif-

ferent quantities (velocity and fluctuations), e.g.,
⟨
ξ̃ (i q1 + ε) ξ̃ (i q4 + ε)

⟩⟨
ξ̃ (i q3 + ε) ξ̃ (i q6 + ε)

⟩⟨
ξ̃ (i q5 + ε) ξ̃ (i q2 + ε)

⟩
,

which zeroes out in the IntRes system case. The latter comes from pairs of ξ̃s from dif-
ferent times tj, but the pairings are different: one pair of ξ̃s from different quantities and
the other two pairs composed of ξ̃s from the same quantity, i.e., noise-noise and velocity-
velocity, e.g.,⟨
ξ̃ (i q1 + ε) ξ̃ (i q4 + ε)

⟩⟨
ξ̃ (i q3 + ε) ξ̃ (i q5 + ε)

⟩⟨
ξ̃ (i q2 + ε) ξ̃ (i q6 + ε)

⟩
. The end re-

sult is,⟨
J 3 (Ξ)

⟩
c

= 3
γ T 3 (2m+ γ τ)2

[m+ τ (γ + k τ)]3
Ξ + 3

γ2 T 3 (8m2 +mτ (7 γ − 4 k τ) + γ τ 2 (2γ − k τ))

[m+ τ (γ + k τ)]4
τ Ξ

+3
γ3 T 3 (8m2 +mτ (5 γ − 8 k τ) + γ τ 2 (γ − 3 k τ))

[m+ τ (γ + k τ)]5
τ 2 Ξ. (C.8)

The first term on the right-hand side is exactly the internal reservoir proxy result
before the mapping relation. Applying Eq. (20),⟨

J 3 (t)
⟩∗
c
= 12

γ

m∗T
∗ 3 Ξ. (C.9)

that clearly isolate the cumulant corrections,⟨
J 3 (Ξ)

⟩
c
=
⟨
J 3 (t)

⟩∗
c
+ φ31 (m

∗, γ∗, k∗, T ∗) τ Ξ + φ32 (m
∗, γ∗, k∗, T ∗) τ 2 Ξ. (C.10)
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Appendix D. Edgeworth expansion

We write the Large Deviation Function of the injected and dissipated fluxes Jinj(dis)
for the external reservoir system using the Edgeworth expansion. In the MT have shown
that the mapping hypothesis to the internal reservoir proxy fails at the second order
cumulant of the fluxes or as we mentioned in the MT the fluctuations of the accumualted
fluctuations. Having chosen the reference distribution given by Eq. (30) one uses the
Edgeworth expansion to approximate the real “coloured” external reservoir system L(J ),

L(J ) = exp

[
∞∑
n=1

(⟨J ∗n⟩c − ⟨J
n⟩c)

D̂n

n!

]
L∗(J ) (D.1)

where D̂ is the differential operator of order n, ⟨J n⟩ and ⟨J ∗n⟩ are the n−th cumulant of
the actual and reference (zero-th order) LDFs, respectively.

The first cumulant of both external and internal reservoir cases coincide as was pre-
viously pointed out, so our first correction to the LDF is the difference in the second
cumulants

⟨J 2(Ξ)⟩∗c =
γT 2(2m+ γτ)

(m+ τ(γ + kτ))2
Ξ, (D.2)

and

⟨J 2(Ξ)⟩c =
γT 2 (2m+ γτ)

[m+ τ (γ + kτ)]2
Ξ +

γ2T 2 [2m+ τ (γ − kτ)]

[m+ τ (γ + kτ)]3
τΞ

We limit ourselves to this one first contribution truncating the sum in the exponent to
the second order, if we expand the exponential up to first order we get our Edgeworth
approximation,

L(J ) ≈ exp

[
γ2T 2(2m+ τ(γ − kτ))

(m+ τ(γ + kτ))3
τΞ

D̂2

2!
+ . . .

]
L∗(J ) (D.3)

≈

(
1 +

γ2T 2 [2m+ τ (γ − kτ)]

[m+ τ (γ + kτ)]3
τΞ

D̂2

2

)
L∗(J ),

which yields,

L(J ) ≈ 1

Zl

e−
(ΞTγ−J (m+τ(γ+kτ)))2

2JT (2m+γτ)(m+τ(γ+kτ))

[
1 +

1

(4J 4(2m+ γτ)2(m+ τ(γ + kτ))5)

×(Ξγ2τ(3m+ τ(γ + kτ))(Ξ4T 4γ4 − 4JΞ2T 3γ2(2m+ γτ)(m+ τ(γ + kτ))−
−2J 2Ξ2T 2γ2(m+ τ(γ + kτ))2 + J 4(m+ τ(γ + kτ))4))

]
. (D.4)

With respect to the third order, we have the difference of the cumulants given by
Eq. (C.8) minus Eq. (C.9).
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Figure 1: Numerical simulation with m = γ = k = T = τ = 1. Left-hand panel : Total injected/dissipated
fluxes vs time for the external reservoir system. The instantaneous fluxes, which are slopes of the lines
after the transient, equal 1/3, the same as the dashed (light green) line. According to Eq. (20) the same
behaviour is found for an internal reservoir system with m∗ = 3/2, T ∗ = 1/2 and k∗ = 3/4. Right-hand
panel : Empirical LDF of the total injected flux (points) and mapped internal reservoir proxy system
LDF Eq. (30) (full line) vs total injected flux at time Ξ = 1000. Although the average values (close to
the peaks) concur, the widths (and also the shape) of the curves are different. In the mapped version
(red dashed line), the variance goes as Ξ/3 [Eq. (31)], whereas the calculations show it grows as 4Ξ/9
[Eq. (32)]. The result is plainly improved using Eq. (34) as depicted by the full cyan line.
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Figure A.2: Location in the complex plane of the poles involved in the calculations.
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Pedidos de cópias desta publicação devem ser enviados aos autores ou ao:

Centro Brasileiro de Pesquisas F́ısicas
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