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Abstract

TheN -extended Supersymmetric Quantum Mechanics is deformed via an abelian
twist which preserves the super-Hopf algebra structure of its Universal Enveloping
Superalgebra. Two constructions are possible. For even N one can identify the
1D N -extended superalgebra with the fermionic Heisenberg algebra. Alternatively,
supersymmetry generators can be realized as operators belonging to the Universal
Enveloping Superalgebra of one bosonic and several fermionic oscillators.

The deformed system is described in terms of twisted operators satisfying twist-
deformed (anti)commutators.

The main differences between an abelian twist defined in terms of fermionic
operators and an abelian twist defined in terms of bosonic operators are discussed.
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1 Introduction

In this paper we investigate the abelian twist-deformation of the fermionic Heisenberg alge-
bra, introduced in [1], in application to the deformation of the Supersymmetric Quantum
Mechanics. We remark that the abelian twist deformation of the fermionic Heisenberg
algebra gives rise to the Cliffordization of the Grassmann variables, recovering, in a more
general setting, the results of [2]. The connection of the fermionic Heisenberg algebra
with the graded algebra underlying the Supersymmetric Quantum Mechanics is twofold.
Indeed, the N -extended, one-dimensional superalgebra is isomorphic to the fermionic
Heisenberg algebra for an even number N of (odd) supercharges. On the other hand,
the same superalgebra can be realized, essentially, in terms of operators belonging to the
Universal Enveloping Algebra of one bosonic Heisenberg algebra and several copies of the
fermionic Heisenberg algebras. In the following we point out the differences of the two
schemes. Within the second scheme we can recover, on the module, a lower dimensional
version of the Cliffordization of [3] and [4].

We further point out that in all previous studies in the literature graded undeformed
brackets or graded, Moyal-type, brackets were used along with the deformed coproducts.
In our approach, on the other hand, motivated by the considerations in [5] (restricted,
in that paper, to bosonic algebras), we use twist-deformed brackets, as in [1]. The twist-
deformed brackets, which implement twist-deformed adjoint action, are directly associated
with the twist-deformed coproduct.

The abelian character of the (fermionic) twist deformation implies that the fermionic
supercharges are deformed. On the other hand, the bosonic charges remain undeformed.
Nevertheless, even in the bosonic sector, the theory gets modified since the coproduct
applied to bosonic operators gets deformed and can therefore affect multi-particle bosonic
systems. In order to stress the difference between a “fermionic” abelian twist and a
“bosonic” abelian twist (in the first case the exponential defining the twist is given by a
tensor product of fermionic generators while, in the second case, it is a tensor product of
bosonic generators), we apply the abelian twist deformation to (an enlarged version of)
the bosonic Heisenberg algebra for a particularly simple example. We show that in this
case even the bosonic operators get deformed, not just their coproducts. In particular,
an operator which gets deformed is the Hamiltonian of the harmonic oscillator.

Returning to Supersymmetric Quantum Mechanics, in the second framework (gener-
ators realized as operators in a Universal Enveloping Superalgebra), besides the super-
charges, the fermionic derivative operators can be constructed (and deformed). The fact
that their coproduct is deformed can be interpreted as a breaking of the (graded) Leibniz
rule, in accordance with several results obtained in the literature, by using a variety of
different methods [6, 7, 8].

Non-anticommutative supersymmetric theories have been investigated by assuming,
either as a mathematical possibility or in the string context, the spinorial coordinates to
be non-anticommutative (see [9, 10, 11, 12, 13, 14, 15, 16]). The particularly influential
[16] paper introduced non-anticommutative supersymmetry in a 4-dimensional Euclidean
superspace. It provided motivations for studying lower-dimensional non-anticommutative
supersymmetric models [17, 18, 19, 20, 21, 22]. In one time-dimension, in particular, (i.e.
non-relativistic Supersymmetric Quantum Mechanics) non-anticommutative deformations
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were studied in [23, 24, 7].
It comes as no surprise that the majority of the works on non-anticommutative super-

symmetry found inspiration from the related works of non-commutative deformations of
the ordinary bosonic theories (see [25] for a review), whose recent upsurge is essentially
due to the seminal works of [26] and [27]. The notion of the Drinfeld twist (of the Uni-
versal Enveloping Algebra of the Poincaré algebra) was first applied in [28] to restore the
Lorentz symmetry which would be otherwise spoiled in a relativistic non-commutative
theory. In the supersymmetric context, the Drinfeld twist has been investigated in the al-
ready recalled papers [4, 3, 6, 8], while a Jordanian twist for the osp(1|2) Superconformal
Quantum Mechanics was also considered in [29].

The scheme of this paper is as follows. In the next Section we introduce the abelian
twist of the fermionic Heisenberg algebra, presenting all the relevant formulas (twist-
brackets and so on). In Section 3 we point out the isomorphism between fermionic
Heisenberg algebra and the one-dimensional N -Extended superalgebra for even values
of N . The twist-deformation of the Supersymmetric Quantum Mechanics in terms of its
superspace representation is investigated in Section 4. We introduce the relevant Univer-
sal Enveloping Algebras for the construction. The specializations to N = 2 and N = 4
are detailed. Non-upper triangular supersymmetry generators obtained from twist are
given. The abelian twist in the bosonic case is presented in Section 5.

2 The twist deformation of the fermionic Heisenberg

algebra

The Grassmann algebra is generated by N anticommuting coordinates θα. These coor-
dinates, together with their fermionic, Berezin, derivatives ∂α, define a Lie superalgebra
with 2N odd generators (the Grassmann coordinates and their derivatives) and a single
even generator, a central charge z. The (anti)-commutation relations are given by

{θα, θβ} = {∂α, ∂β} = 0,

{∂α, θβ} = δαβz,

[z, ∂α] = [z, θα] = 0. (1)

The central charge has to be introduced in order to form a Lie superalgebra.
The (1) algebra is the fermionic Heisenberg algebra and will be denoted, see [1], as

hF (N ). Its Universal Enveloping Algebra U(hF (N )) has the structure of a Hopf super-
algebra. The central charge z is treated at par with the other generators θα and ∂α

∗,
so its coproduct is ∆(z) = z ⊗ 1 + 1 ⊗ z and the antipode is S(z) = −z. In the unde-
formed case the coproduct of θα and ∂α reads, respectively, ∆(θα) = θα ⊗ 1 + 1⊗ θα and
∆(∂α) = ∂α ⊗ 1 + 1 ⊗ ∂α. The corresponding antipodes are given as S(θα) = −θα and
S(∂α) = −∂α

∗This is analogous to considering the mass parameter of the Galileo algebra as a Lie generator, so that
one can use non-projective representation [30, 31]. The same prescription was used in [1] to deform the
Heisenberg algebra.



CBPF-NF-012/09 4

A mass-dimension can be assigned to the generators. We have [θα] = −1
2
, [∂α] = 1

2
,

[z] = 0.
An abelian twist F (for a review, see [32] and references therein) given by

F := fα ⊗ fα = exp (Cαβ∂α ⊗ ∂β) ,

F−1 := f
α ⊗ fα = exp (−Cαβ∂α ⊗ ∂β) (2)

can be introduced in terms of the diagonal matrix

Cαβ =
1

M
ηαβ, (3)

where M is a mass-parameter and ηαβ is a non-dimensional matrix which admits p positive
diagonal elements +1, q negative diagonal elements −1 and r zero elements (p+q+r = N ).

(the Sweedler notation has been used).
Following the notations and conventions of [1], the only deformed coproducts corre-

spond to θα (the others remain undeformed):

∆F(θα) = F∆(θα)F−1 = ∆(θα) + Cαβ(∂β ⊗ z − z ⊗ ∂β), (4)

where ∆(θα) = θα ⊗ 1 + 1⊗ θα is the undeformed coproduct introduced earlier.
Since

χ = fαS(fα) = exp (−Cαβ∂α∂β) = 1, (5)

the antipode is also undeformed.
Among the generators, only the θα’s get deformed. We have

θFα := f
β
(θα)fβ = θα + Cαβ∂βz. (6)

The deformed generators differ from the original ones in terms of a shift (the fermionic
counterpart of the Bopp shift, see also [33]).

The universal R-matrix is simply F−2, so that

∆F(θFα ) = θFα ⊗ 1 + 1⊗ θFα + 2Cαβ∂β ⊗ z. (7)

The antipodes are

S(θFα ) = −θα + Cαβz∂β = −θFα + 2Cαβz∂β. (8)

The deformed brackets[
uF , vF

}
F =

∑
k

(uF)k
1v

F(−1)|v
F ||(uF )k

2 |S(uF)k
2

of the deformed generators coincide with the original (1) algebra:

{
θFα , ∂Fβ

}
F = δαβzF ,{

θFα , θFβ
}
F = 0,{

∂Fα , ∂Fβ
}
F = 0,[

∂Fα , zF
]
F =

[
θFα , zF

]
F = 0. (9)
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The ordinary brackets of the deformed quantities yield a nonlinear algebra{
θFα , ∂Fβ

}
= δαβz,{

θFα , θFβ
}

= 2Cαβz2,{
∂Fα , ∂Fβ

}
= 0,[

zF , θFα
]

=
[
zF , ∂Fα

]
= 0. (10)

The multiplication m on the module [1] acts as follows

m(θα ⊗ θβ) = θα · θβ, m(θα ⊗ z) = θα · z, m(z ⊗ z) = z2. (11)

The deformed multiplication between elements belonging to the module (using the Sweedler
notation) is given by

a ? b ≡ mF(a⊗ b) = (m ◦ F−1)(a⊗ b) =
∑

α

(−1)|f̄α||a|f̄α(a)f̄α(b). (12)

Defining [a, b}? ≡ a ? b + (−1)|a||b|b ? a, we have

{θα, θβ}? = 2Cαβz2,

[z, θα]? = 0. (13)

The above fermionic Moyal-brackets, together with the relations

{∂α, θβ}? = δαβz,

{∂α, ∂β}? = 0,

[z, ∂α]? = 0, (14)

makes the ?-brackets isomorphic to the ordinary brackets of the deformed quantities.

3 The 1D N -Extended Superalgebra

In this section, we are going to basically establish the isomorphism between the fermionic
Heisenberg algebra introduced in the previous section and the one-dimensionalN -extended
superalgebra for even values of N . To this end, consider the supersymmetry algebra with
odd generators Q̂I (I, J = 1, . . . ,N ) and an even generator H, given by

{Q̂I , Q̂J} = δIJH,[
H, Q̂I

]
= 0. (15)

For N even, we can split the odd sector into a chiral and an antichiral set:

Qi = Q̂i + iQ̂i+N
2
,

Qi = Q̂i − iQ̂i+N
2
, (16)
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with i = 1, . . . , N
2
.

The algebra can be reexpressed as{
Qi, Qj

}
= 2δijH,

{Qi, Qj} =
{
Qi, Qj

}
= 0,

[H, Qi] =
[
H, Qi

]
= 0. (17)

It is isomorphic to (1) if we identify Qi with θα, Qi with ∂α and 2H with z.
We shall deform the algebra (17) by means of the Abelian twist

F = exp

(
Cij

2
Qi ⊗Qj

)
, (18)

with Cij =
ηij

M
, where ηij is a non-dimensional diagonal matrix admitting p positive +1 ,

q negative -1 and r zero entries (p + q + r = N ).
This deformation coincides with (2). In particular the deformed coproduct of Qi reads

∆F(Qi) = ∆(Qi) + Cij(Qj ⊗H −H ⊗Qj). (19)

The antipode is undeformed due to

χ = fαS(fα) = exp

(
−Cij

2
QiQj

)
= 1. (20)

The only deformed generators are the Qi:

QF
i = Qi + CijQjH. (21)

The universal R-matrix is F−2, so

∆F(QF
i ) = QF

i ⊗ 1 + 1⊗QF
i + 2CijQj ⊗H. (22)

The antipodes are

S(QF
i ) = −Qi + CijQjH = −QF

i + 2CijQjH. (23)

Now the deformed brackets are:{
Q
F
i , QF

j

}
F

= δijH
F = δijH,{

Q
F
i , Q

F
j

}
F

= 0,{
QF

i , QF
j

}
F = 0,[

QF
i , HF]

F =
[
Q
F
i , HF

]
F

= 0. (24)

The ordinary brackets of the deformed quantities are{
Q
F
i , QF

j

}
= δijH

F ,{
Q
F
i , Q

F
j

}
= 0,{

QF
i , QF

j

}
= 2Cij(H

F)2,[
HF , Q

F
i

]
=

[
HF , QF

i

]
= 0. (25)
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4 The superspace representation

To make the connection with the superspace we need to introduce the Grassmann variables
θI and their derivatives ∂θI

which (along with the central extension z) satisfy the hF (N)
algebra, as well as the bosonic parameter t and its derivative ∂t which (along with the
central extension ~) satifies the bosonic Heisenberg algebra hB(1), obtaining, in principle,
the hB(1) ⊕ hF (N) algebra. We can now identify the two central extensions (z = ~),
thereby obtaining an algebra which we shall call h(1, N). Throughout this section we will
be working with its universal enveloping algebra, U(h(1, N)). An explicit realization of
the N -extended supersymmetry algebra (15) is obtained in terms of composite operators
belonging to U(h(1,N )) (N ≡ N)†. Explicitly,

Q̂I = ∂θI
+

i

~
θI∂t,

H = i∂t, (26)

with I = 1, . . . ,N .
Since we are working with U(h(1,N )), it is now possible to apply the twist (2)

F = exp(CIJ∂θI
⊗ ∂θJ

) (27)

to the supersymmetry generators.
We obtain that the deformed coproduct of Q̂I is

∆F(Q̂I) = ∆(Q̂I) + CIJ(∂θJ
⊗H −H ⊗ ∂θJ

). (28)

The deformed generators are

Q̂F
I = Q̂I + CIJH∂θJ

, (29)

the deformed coproduct of the deformed generators being

∆F(Q̂F
I ) = Q̂F

I ⊗ 1 + 1⊗ Q̂F
I + 2CIJ(∂θJ

⊗H). (30)

The ordinary brackets of the deformed generators read

{Q̂F
I , Q̂F

J } = δIJH + 2CIJH2, (31)

whereas the deformed brackets read just

{Q̂F
I , Q̂F

J }F = δIJH. (32)

In a different context, non-linear supersymmetry such as encountered in (31) or in the
r.h.s. of (25) was discussed in [34].

†We allow Laurent-expansion of the central element ~. Concerning the undeformed coproduct of Q̂I

introduced below, it is assumed to coincide with the undeformed coproduct of a fermionic primitive
element, i.e., ∆(Q̂I) = Q̂I ⊗ 1 + 1 ⊗ Q̂I , so that one never encounters ambiguous expressions like ∆( 1

~ )
in (26).
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4.1 The N = 2 case

Let us now consider the U(h(1, 2))-algebra realization of the N = 2 supersymmetry
generators

Q̂1 = ∂θ1 +
i

~
θ1∂t,

Q̂2 = ∂θ2 +
i

~
θ2∂t. (33)

These can be further augmented by the fermionic covariant derivatives

D1 = ∂θ1 −
i

~
θ1∂t,

D2 = ∂θ2 −
i

~
θ2∂t. (34)

They satisfy the so-called N = (2, 2) pseudo-supersymmetry algebra

{Q̂I , Q̂J} = δIJH,

{DI , DJ} = −δIJH,

{DI , Q̂J} = 0,[
H, Q̂I

]
= [H, DI ] = 0. (35)

To deform it we can now apply any twist F ∈ U(h(1, 2))⊗U(h(1, 2)) which is invertible
and satisfies the cocycle condition.

An acceptable abelian twist is

F = exp
( ε

M
Q⊗Q +

η

M
D ⊗D

)
, (36)

where

Q = Q̂1 − iQ̂2,

D = D1 − iD2 (37)

and ε, η are numbers which can be normalized, without loss of generality, to be +1, −1
or 0 (the abelian twist described in Section 3 is recovered for η = 0, C11 = ε

M
).

This twist trivially satisfies the cocycle condition since {Q,Q} = {Q, D} = {D, D} = 0.
The deformations of the generators are given by

Q̂F
1 = Q̂1 +

ε

M
(Q̂1 − iQ̂2)H,

Q̂F
2 = Q̂2 −

iε

M
(Q̂1 − iQ̂2)H,

DF
1 = D1 +

η

M
(D1 − iD2)H,

DF
2 = D2 −

iη

M
(D1 − iD2)H. (38)
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together with HF = H. The deformed coproducts are

∆F(Q̂1) = ∆(Q̂1) +
ε

M
(Q̂1 ⊗H −H ⊗ Q̂1)−

iε

M
(Q̂2 ⊗H −H ⊗ Q̂2),

∆F(Q̂2) = ∆(Q̂2)−
iε

M
(Q̂1 ⊗H −H ⊗ Q̂1)−

ε

M
(Q̂2 ⊗H −H ⊗ Q̂2),

∆F(D1) = ∆(D1)−
η

M
(D1 ⊗H −H ⊗D1) +

iη

M
(D2 ⊗H −H ⊗D2),

∆F(D2) = ∆(D2) +
iη

M
(D1 ⊗H −H ⊗D1) +

η

M
(D2 ⊗H −H ⊗D2). (39)

The antipode does not get deformed since

χ = fαS(fα) = exp
(
− ε

M
Q

2 − η

M
D

2
)

= 1, (40)

so that the antipodes are

S(Q̂F
1 ) = −Q̂F

1 +
2ε

M
(Q̂1 − iQ̂2),

S(Q̂F
2 ) = −Q̂F

2 − 2iε

M
(Q̂1 − iQ̂2),

S(DF
1 ) = −DF

1 − 2η

M
(D1 − iD2),

S(DF
2 ) = −DF

2 +
2iη

M
(D1 − iD2). (41)

The universal R-matrix is

R = F−2 = exp
[
−2

( ε

M
Q⊗Q +

η

M
D ⊗D

)]
. (42)

With those, we are able to work out the deformed coproducts of the deformed quantities.
They are

∆F(Q̂F
1 ) = Q̂F

1 ⊗ 1 + 1⊗ Q̂F
1 +

2ε

M
(Q̂1 − iQ̂2)⊗H,

∆F(Q̂F
2 ) = Q̂F

2 ⊗ 1 + 1⊗ Q̂F
2 − 2iε

M
(Q̂1 − iQ̂2)⊗H,

∆F(DF
1 ) = DF

1 ⊗ 1 + 1⊗DF
1 − 2η

M
(D1 − iD2)⊗H,

∆F(DF
2 ) = DF

2 ⊗ 1 + 1⊗DF
2 +

2iη

M
(D1 − iD2)⊗H. (43)

These yield, as expected, the deformed brackets of the deformed quantities:

{Q̂F
I , Q̂F

J }F = δIJHF ,

{DF
I , DF

J }F = −δIJHF ,

{DF
I , Q̂F

J }F = 0. (44)
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We now want to study the deformed multiplication on a module consisting of the
space of functions of Grassmann variables θ1, θ2. The ordinary multiplication m acts as
the usual Grassmann product, that is

m(θI ⊗ θJ) = θI · θJ . (45)

The action of Q̂I and DI is

{Q̂I , θJ} = {DI , θJ} = δIJ . (46)

Now we define the star product to be

θI ? θJ = mF(θI ⊗ θJ) = (m ◦ F−1)(θI ⊗ θJ) (47)

and proceed to calculate explicitly

θ1 ? θ1 = − ε

M
− η

M
,

θ2 ? θ2 =
ε

M
+

η

M
,

θ1 ? θ2 = − iε

M
− iη

M
+ θ1θ2, (48)

so that the star-anticommutators are

{θ1, θ1}? = −2
( ε

M
+

η

M

)
,

{θ2, θ2}? = 2
( ε

M
+

η

M

)
,

{θ1, θ2}? = −2i
( ε

M
+

η

M

)
. (49)

If we now go to the chiral coordinates

θ = θ1 + iθ2,

θ̄ = θ1 − iθ2, (50)

the star-anticommutators are

{θ, θ}? = −8
( ε

M
+

η

M

)
,

{θ̄, θ̄}? = 0,

{θ, θ̄}? = 0, (51)

which is the Cliffordization in half of the coordinates (in the chiral sector) as obtained in
[3] and [4].

It might appear at first that the bosonic sector does not get deformed at all, but this
is not the case. Consider the bosonic Hermitian operator
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W =
i

2
(Q̂1Q̂2 − Q̂2Q̂1). (52)

We now proceed to deform it, setting η = 0 for simplicity. Since

[Q, W ] = −2HQ,

we obtain that WF = W , so that W undergoes no deformation. However, its coproduct
exhibits nontrivial deformation:

∆F(W ) = ∆(W )− 2ε

M
(Q⊗QH + QH ⊗Q). (53)

4.1.1 Factorization Method

We can also approach the question of supersymmetry deformation within the framework
of the factorization method, which is an useful method for generating classes of solvable
potentials for a Hamiltonian. It was devised by Infeld and Hull [35] after pioneering works
by Dirac (factorization of the Hamiltonian of the harmonic oscillator) and Schrödinger
(factorization of the radial part of the Coulomb Hamiltonian) and further generalized by
Mielnik [36]. The method (on its first-order version) consists of factorizing the Hamilto-
nian by introducing intertwining operators

A =

(
d

dx
+ α(x)

)
, A+ =

(
− d

dx
+ α(x)

)
, (54)

where α turns out to satisfy a Riccati differential equation (for a recent review see [37]).

Supersymmetry algebra can be built up in this setting by writing Q = Q̂1 + iQ̂2 and
Q = Q̂1 − iQ̂2 used earlier in this section as

Q =

(
0 A+

0 0

)
, Q =

(
0 0
A 0

)
, (55)

The Hamiltonian is

H =
1

2
{Q, Q} =

1

2

(
A+A 0

0 AA+

)
=

(
H+ 0
0 H−

)
. (56)

If we proceed to the same twist as before (setting η = 0), we obtain

QF =

(
0 A+

2ε
M

AA+A 0

)
, Q

F
=

(
0 0
A 0

)
, (57)

which is a non-upper triangular form for the supersymmetry generator, still satisfying

{QF , Q
F} =

(
A+A 0

0 AA+

)
= 2H. (58)
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4.2 The N = 4 case

We now turn to the N = 4 supersymmetry algebra

{Q̂I , Q̂J} = δIJH,[
H, Q̂I

]
= 0, (59)

(I, J = 1, 2, 3, 4) and apply the twist

F = exp
(ηij

M
Qi ⊗Qj

)
, (60)

where ηij is diagonal and

Q1 = Q̂1 − iQ̂2,

Q2 = Q̂3 − iQ̂4. (61)

From now on we set η11 = ε and η22 = η. Being Abelian, this twist trivially satisfies
the cocycle condition.

A similar procedure as before yields the deformation of the generators:

Q̂F
1 = Q̂1 +

ε

M
(Q̂1 − iQ̂2)H,

Q̂F
2 = Q̂2 −

iε

M
(Q̂1 − iQ̂2)H,

Q̂F
3 = Q̂3 +

η

M
(Q̂3 − iQ̂4)H,

Q̂F
4 = Q̂4 −

iη

M
(Q̂3 − iQ̂4)H. (62)

The deformed coproducts are

∆F(Q̂1) = ∆(Q̂1) +
ε

M
(Q̂1 ⊗H −H ⊗ Q̂1)−

iε

M
(Q̂2 ⊗H −H ⊗ Q̂2),

∆F(Q̂2) = ∆(Q̂2)−
iε

M
(Q̂1 ⊗H −H ⊗ Q̂1)−

ε

M
(Q̂2 ⊗H −H ⊗ Q̂2),

∆F(Q̂3) = ∆(Q̂3) +
η

M
(Q̂3 ⊗H −H ⊗ Q̂3)−

iη

M
(Q̂4 ⊗H −H ⊗ Q̂4),

∆F(Q̂4) = ∆(Q̂4)−
iη

M
(Q̂3 ⊗H −H ⊗ Q̂3)−

η

M
(Q̂4 ⊗H −H ⊗ Q̂4). (63)

The universal R-matrix is simply F−2, allowing us to calculate the deformed coprod-
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ucts of the deformed quantities:

∆F(Q̂F
1 ) = Q̂F

1 ⊗ 1 + 1⊗ Q̂F
1 +

2ε

M
(Q̂1 − iQ̂2)⊗H,

∆F(Q̂F
2 ) = Q̂F

2 ⊗ 1 + 1⊗ Q̂F
2 − 2iε

M
(Q̂1 − iQ̂2)⊗H,

∆F(Q̂F
3 ) = Q̂F

3 ⊗ 1 + 1⊗ Q̂F
3 +

2η

M
(Q̂3 − iQ̂4)⊗H,

∆F(Q̂F
4 ) = Q̂F

4 ⊗ 1 + 1⊗ Q̂F
4 − 2iη

M
(Q̂3 − iQ̂4)⊗H. (64)

The antipodes are

S(Q̂F
1 ) = −Q̂F

1 +
2ε

M
(Q̂1 − iQ̂2),

S(Q̂F
2 ) = −Q̂F

2 − 2iε

M
(Q̂1 − iQ̂2),

S(Q̂F
3 ) = −Q̂F

3 +
2η

M
(Q̂3 − iQ̂4),

S(Q̂F
4 ) = −Q̂F

4 − 2iη

M
(Q̂3 − iQ̂4), (65)

so that the deformed brackets are

{Q̂F
I , Q̂F

J }F = δIJHF ,[
HF , Q̂F

I

]
F

= 0. (66)

We shall now find out the action of the deformed multiplication mF on a module
consisting of Grassmann variables θI , I = 1, . . . , 4, such that {Q̂I , θJ} = δIJ .

Defining the star product as previously, we obtain that

θ1 ? θ1 = − ε

M
,

θ2 ? θ2 =
ε

M
,

θ3 ? θ3 = − η

M
,

θ4 ? θ4 =
η

M
; (67)

all the other products coincide with the ordinary product.
If we now go to chiral coordinates

ζ1 = θ1 + iθ2,

ζ1 = θ1 − iθ2,

ζ2 = θ3 + iθ4,

ζ2 = θ3 − iθ4, (68)
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the star-anticommutators are

{ζI , ζJ}? = −8
ηIJ

M
,

{ζI , ζJ}? = 0,

{ζI , ζJ}? = 0, (69)

which is again the Cliffordization of the unbarred chiral coordinates as in [3] and [4].
We proceed analogously and introduce the bosonic Hermitian operators

W1 =
i

2
(Q̂1Q̂2 − Q̂2Q̂1),

W2 =
i

2
(Q̂3Q̂4 − Q̂4Q̂3). (70)

Their algebra with the Qi’s is

[Qi, Wj] = −2HQiδij (no sum on i), (71)

so that we obtain no deformation at the algebraic level, i.e, WF
i = Wi. On the other

hand, their deformed coproducts read

∆F(Wi) = ∆(Wi)−
2ηij

M
(Qj ⊗QjH + QjH ⊗Qj). (72)

5 The Bosonic Heisenberg Twist

We start with Heisenberg algebra hB(N) , with generators xi, pi, ~ (i = 1, 2, . . . , N) and
non-vanishing commutation relations given by

[xi, pj] = iδij~. (73)

We enlarge it by introducing the elements

Kij =
pipj

~
,

Mij =
xipj

~
,

Nij =
pixj

~
,

Vij =
xixj

~
, (74)

which are now declared to be primitive elements of an enlarged algebra.‡

The thus enlarged algebra satisfies the relations

‡This kind of enlargement of the Heisenberg algebra hB(N), including second-order terms, has been
discussed recently in [38].
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[Kij, xk] = −iδikpj − iδjkpi,

[Mij, xk] = −iδjkxi,

[Nij, xk] = −iδikxj,

[Mij, pk] = iδikpj,

[Nij, pk] = iδjkpi,

[Vij, pk] = iδikxj + iδjkxi,

[Vij, Kkl] = iδjkMil + iδjlMik + iδikNlj + iδilNkj,

[Vij, Mkl] = iδilVjk + iδjlVik,

[Vij, Nkl] = iδikVjl + iδjkVil,

[Kij, Mkl] = −iδikKjl − iδjkKil,

[Kij, Nkl] = −iδilKjk − iδjlKik,

[Mij, Nkl] = iδikMlj − iδjlMik. (75)

Now let us consider the Hamiltonian given by

H =
∑

i

p2
i

2
+ ω2

∑
i

x2
i

2
= λ

(
Kii + ω2Vii

)
, (76)

λ being a suitable dimensional normalization constant.
We now twist it by applying

F = exp(iαijpi ⊗ pj), (77)

with αij = −αji.
The deformed Hamiltonian will be

HF = H − 2λω2~αijMij + λω2~2αijαikKjk. (78)

The deformed coproduct of the Hamiltonian is

∆F(H) = ∆(H)− 2λω2αij(pi ⊗ xj − xj ⊗ pi) + λω2αijαkj(~Kik ⊗ ~− ~⊗ ~Kik), (79)

while the deformed coproduct of the deformed Hamiltonian is

∆F(HF) = HF ⊗ 1 + 1⊗HF − 4λω2αij(pi ⊗ xj) + 2λω2αijαkj(~Kik ⊗ ~). (80)

6 Conclusions

In this work we investigated the consequences of the simplest deformation of the N -
extended Supersymmetric Quantum Mechanics, realized by an abelian twist of its un-
derlying Universal Enveloping Superalgebra. We pointed out that two constructions are
possible. For even values of N , the 1D N -extended superalgebra can be identified with
the fermionic Heisenberg algebra. Alternatively, a realization of the 1D superalgebra can
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be obtained in terms of operators belonging to the Universal enveloping algebra gener-
ated by one bosonic and several fermionic oscillators. We defined the deformed theories
in terms of twist-deformed generators and twist-deformed brackets. We recovered, in a
more general setting, the Cliffordization results of [3, 4]. The bosonic sector of the theory
gets deformed in its multi-particle sector, even if the bosonic operators themselves get
undeformed, due to their deformed coproduct. The difference between a “bosonic” versus
a “fermionic” abelian twist has been pointed out.

The models under considerations admit fermionic derivatives which do not obey the
graded Leibniz rule.
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[32] P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess, Class. Quant. Grav. 23, 1883
(2006) [arXiv:hep-th/0510059].

[33] R. Banerjee, C. Lee and S. Siwach, Eur. Phys. J. C 48, 305 (2006) [arXiv:hep-
th/0511205].

[34] M. Plyushchay, Int. J. Mod. Phys. A 15, 3679 (2000) [arXiv:hep-th/9903130].

[35] L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).

[36] B. Mielnik, J. Math. Phys. 25, 3387 (1984).

[37] D. J. Fernández C., arXiv:0910.0192 [quant-ph].

[38] M. Valenzuela, arXiv:0912.0789 [hep-th].


