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1 Introduction

In 1950, Wigner[1], proposed the interesting question, "Do the equations of motion deter-

mine the quantum-mechanical commutation relations?" and found as answer a generalized

quantum rule for the one-dimensional harmonic oscillator. In the next year, Yang [2] found

the coordinate representation for the linear momentum operator. Yang's wave mechanical

description was further studied by Ohnuki et al. [3] and Mukunda et al. [4]. Recently, the

general Wigner-Heisenberg (WH) oscillator algebra [5, 6, 7, 8] has been investigated in

the context of the deformed algebra [9]. There, the author shows that �nite-dimensional

representations of the deformed parafermionic algebra with internal Z2-grading structure.

The superealization of the WH algebra has been independently considered in two works

[8, 10].

The Virasoro algebra has been several applications in literature, let us point, for

stance, the connections with the conformal group [11], construction as su(1; 1) extension

[12], supervirasoro [13] and quantum algebras [14].

In this work, starting from the Wigner-Heisenberg algebraic technique for the bosonic

systems in connection with general oscillator, we �nd a new representation for the Virasoro

algebra.

This work is arranged in the following way. In Section II, we present the WH algebra.

In Section III, a representation of the modi�ed Virasoro algebra is found. The conclusions

are drawn in the Section IV.

2 THE WH ALGEBRA

The Wigner Hamiltonian expressed in the symmetrized bilinear form in terms of the

mutually adjoint abstract operators â�; de�ned by

ĤW =
1

2
(p̂2x + x̂2) =

1

2
[â�; â+]+ =

1

2
(â�â+ + â+â�); (1)

where

â� =
1p
2
(�ip̂x � x̂): (2)

Wigner showed that Heisenberg's equations of motion

[ĤW ; â�]� = �â�; (3)
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do not necessarily entail in the usual quantum rule

[a�; a+]� = 1) [x̂; p̂x]� = i; �h = 1; (4)

but a more general quantum rule [2, 3, 4] given by

[â�; â+]� = 1 + cR̂ =) [x̂; p̂x]� = i(1 + cR̂); (5)

where c is a real constant, related to the ground state energy E
(0)
W � 0 by virtue of the

positive semi-de�nite form of ĤW
y

jcj = 2E(0) � 1; (6)

which is called Wigner parameter.

The basic (anti-)commutation relations (1) and (3), together with the derived relation

(5), are referred to as constituting the WH algebra. It is a parabose algebra [5] for the

degree of freedom. The WH algebra is obtained by combining also the requeriment that

x̂ satis�es the classical equation of motion (�̂x + x̂ = 0).

Note that R̂ is an abstract operator satisfying the properties

[R̂; â�]+ = 0) [R̂; ĤW ]� = 0; R̂y = R̂�1 = R̂; R̂2 = 1; (7)

where one has used the following notation for the (anti-)commutation relations: [A;B]+ �
AB +BA and [A;B]� � AB � BA: Besides, we have

HW = â+â� +
1

2
(1 + cR̂)

= â�â+ � 1

2
(1 + cR̂): (8)

Abstractly (O'Raifeartaigh and Ryan [6], Boulware and Deser [7]) R̂ is the Klein

operator, �expfi�(ĤW � E
(0)
W )g:

In the mechanical representation �rst investigated by Yang[2], R̂ is realized by the

Parity operator P :

P jx >= j � x >) PxP�1 = �x; PpxP
�1 = �px; P�1 = P; P 2 = 1: (9)

yNote that the case c = 0 corresponds to the usual oscillator with E(0) = 1
2 ; �h = ! = 1:
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Indeed, Yang [2] found the coordinate representation for the momentum operator px as

given by

p̂x �! px = �i d
dx

+ i
c

2x
P; x̂ �! x; (10)

â� �! a�c
2

=
1p
2

 
� d

dx
� c

2x
P � x

!
: (11)

Yang's wave mechanical description was further investigated in [3, 4].

3 Modi�ed Virasoro Algebra

The elements of the Virasoro algebra [11, 13] will be represented in terms of ladder

operators a� of quantum oscillators with or without deformation.

3.1 Canonical representation of the Virasoro algebra

The conformal group, G; in 2 dimensions consists of all general transformations:

� : z ! �(z); �� : �z ! ��(�z); (12)

where � is a group of the more general transformation with one coordinate, or equivalently

is a group of the di�eomorphism transformations in one dimension. The same situation

for ��: Then, G is given by the direct product, viz.,

G = �
 ��: (13)

In the literature, � and �� are usually refered to as chiral and anti-chiral components

of the conformal algebra in 2-dimensions. The algebra associated to the � is called the

Witt algebra or the classical Virasoro algebra (L0).

If G is the algebra associated to the group G; then:

G = L0|{z}� L0|{z} : (14)

Witt Witt

In�nitesimal transformations of the group � are: z ! z + "(z); where "(z) is a in-

�nitesimal analytical function. It can be represented as an in�nite Laurent series, viz.,
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"(z) =
X
n

"nz
n+1; n � z: (15)

Therefore, the Lie algebra L0 of the � coincides with the algebra of di�erential operators

de�ned in C� f0g :

`n = zn+1 d

dz
; n = 0;�1;�2; � � � : (16)

The commutation relations have the following form:

[`n; `m] = (n�m)`n+m: (17)

We shall denote the algebra (17) as L0; which admits a unique 1-dimensional central

extension:

L� = L0 � � (The Virasoro algebra); (18)

with the following commutation relations

[`n; �] = 0

[`n; `m] = (n�m)`n+m + �
m3 �m

12
Æn+m;0; (19)

where the value of the central charge \�00 is the parameter of the theory into the context

of Quantum Field Theory. The generators `�1; `0; `1 form the subalgebra sl(2;R) � L0:

In this subsection, we consider the oscillatory representation of the elements for the

Virasoro algebra without modi�cation. Using the canonical commutation relation of the

quantum mechanics (4), we obtain the following commutador:

[(a�)n+1; a+]� = (n + 1)(a�)n; n = 0; 1; 2; � � � : (20)

From this commutator, we see that the Virasoro operators for the unidimensional har-

monic oscillator can be de�ned by

Ln =

8<
: (a�)n+1a+; or

a�(a+)n+1;
(21)

which satisfy the following Virasoro algebra:

[Ln; Lm]� = (n�m)Ln+m; (22)
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where n � 0 and m � 0: Next, we consider the oscillatory representation in terms of the

Wigner oscillator.

3.2 Deformed Virasoro algebra

Let us now consider the modi�ed Virasoro algebra in terms of new ladder operators

which satisfy the generalized commutation relation given by Eq. (5). Indeed, considering

Ln = (a�)n+1a+, we see that the Eq. (20) becomes:

[(a�)n+1; a+]� =

8<
: (n+ 1)(a�)n + cP (a�)n; n = 2k

(n+ 1)(a�)n; n = 2k + 1;
(23)

where k = 0; 1; 2; 3 � � �. Now we investigate the three possible cases for the Virasoro

algebra.

Caso (i): Two even indexes.

In this case, the Virasoro algebra is not changed, i.e.

[L2n; L2m]� = 2(n�m)L2n+2m: (24)

Caso (ii): Two odd indexes.

In this case, the Virasoro algebra is not also changed, i.e.

[L2n+1; L2m+1]� = 2(n�m)L2n+2m+2: (25)

Caso (iii): One even index and one odd index and vice-verse.

In this case, the Virasoro algebra is changed, i.e.,

[L2n; L2m+1]� = 2(n�m)L2n+2m+1 + (�1 + cP )L2n+2m+1: (26)

Note that we get an anomalous term containng the parity operator P . Besides, we can

obtain the three possible cases for the Virasoro adjoint operators Ly
n = a�(a+)n+1:

The question we formulate now is the following: What is the behaviour of the Vira-

soro operator on the autokets of the Wigner oscillator quantum states? To answer this

question, one must �rst note that the Wigner oscillator ladder operators on autokets of

these quantum states are given by

a�c
2

j2m;
c

2
> =

p
2mj2m� 1;

c

2
>
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a�c
2

j2m+ 1;
c

2
> =

q
2(m+ E(0))j2m;

c

2
>

a+c
2

j2m;
c

2
> =

q
2(m+ E(0))j2m+ 1;

c

2
>

a+c
2

j2m+ 1;
c

2
> =

q
2(m+ 1)j2m+ 2;

c

2
> : (27)

A detailed analysis on this question will appear in a forthcoming paper.

4 Conclusion

In this work, we analyze the Wigner-Heisenberg algebra to bosonic systems in connection

with oscillators and, thus, we �nd a new representation for the Virasoro algebra. Acting

the annihilation operator(ceation operator) in the Fock basis j 2m + 1; c
2
> (j 2m; c

2
>)

the eigenvalue of the ground state of the Wigner oscillator appears only in the excited

states associated with the even(odd) quanta given by Eq.(27). We show that only in the

case associated with one even index and one odd index in the operator Ln the Virasoro

algebra is changed.

The super-realization of the Wigner-Heisenberg algebra proposed by Jayaraman and

Rodrigues [8], and independently by Plyushchay [10], has been changed to investigate a

potential model that describes a hydrogen atom with para-statistics [15].
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