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ABSTRACT

Within a real space renormalization group framework (12 dif
ferent pmmemnfs, all of them using star-triangle and duality-
type transformations) we calculate accurate approximations for
the critical frontiers associated with the quenched bond-di-
lTuted first-neighbour spin-1/2 Ising ferromagnet on hﬁanmﬂar
and honeycomb lattices. A1l of them provide, in both pure bond
percolation and pure Ising limits, the exact critical points and
exact or almost exact derivatives in the p-t space (p 1is the
bond independent occupancy probability and t = tanh J/kBT).

Our best numerical proposals lead to the exact derivative 1in
the pure percolation limit (p = pc) and, in what concerns the
pure Ising limit (p = 1) derivative, to a 0.15% error for the
triangu]ar lattice and to a 0.96% error for the honeycomb one;
in the intermediate region (pC < p< 1), where the exact criti
cal frontiers are still unknown, the worst error in the t-vari
able (for fixed p) is estimated to be less than 0.27% for the
triangular lattice and to a 0.14% for the honeycomb one. Further
more we exhibit, on formal grounds, that the calculations of the exact
critica] points of the bond percolation and Isingmodels through
the use of duality and star-triangle transformations can be

unified within an appropriate graph framework.



I. INTRODUCTION

During the last few years, phase transitions in random mag
netic systems have been studied by many authors. In particular,
quite an effort has been dedicated to the discussion of the
critical properties of the quenched bond-disordered Ising model
using several approximate methods such as series expansions
(Rappaport 1972, Harris 1974, Ditzian and Kadanoff 1979), Monte
Carlo (Ono and Matsuoka 1976, Zobin 1978), variational method
(Bidaux et al 1976), effective-interaction (Harris1976, Turban
1980, Guilmin and Turban 1980) and effective-field (Tsallis et
al 1982) approximations, duality and/or re»ph'ca trick arguments (Lage
1977, Domany 1978, Oguchi and Ueno 1978, Sarbach 1980) and
renormalization group (RG) techniques (Tatsumi and Kawasaki
1976, Jayaprakash et al 1978, Yeomans and Stinchcombe 1979,
Tsallis and Levy 1980, Levy et al 1980, Chao et al 1981).

In the present work we shall consider the quenched bond-
diluted first-neighbour spin-1/2 Ising fermmmgnet, on triangular

and honeycomb Tattices; the associated Hamiltonian is given

by:
5@= - X 3. o0 (0, = =1 Vi) (1)

where <i,j> are nearest-neighbour sites and the bond strength

J is assumed to be an independent random variable with prob

iJ
ability distribution.

T 315 = (-p)s(3;) + ps(y;=9)  @>0)  (2)



Let us introduce the variable t = tanh (Jij/kBT) (hereafter
referred to as the thermal transmissivity of the bond) which ap
pears naturally in spin-1/2 Ising problems (Domb 1960, Nelson
and Fisher 1975, Young and Stinchcombe 1976, Yeomans and Stinchcombe
1979, Tsallis and Levy 1980 among others); the probabi]ity

law (2) can be rewritten as follows:
P(t) = P(tsp,ty) = (1-p)8(t) + pé(t-t )  (3a)

with to= tanh(d/kBT) (3b)

The exact para-ferromagnetic critical frontier (CF) for
this model on triangu]ar and honeycomb lattices is yet un-
known; the only available exact results are the critical tem
perature for p = T (Wannier 1945), the critical probability
a: for T =0 (Sykes and Essam 1963) and  the derivatives
(dto/dp)p=l and Uﬁﬁ/dp)P=Pc (Southern and Thorpe 1979) (upper
and lower bounds on to(p) (Bergstresser 1977) are known as
well). As far as we know, all but one of the approximate CF's
that have been proposed (Tatsumi and Kawasaki 1976, Oguchi and
Ueno 1978, Yeomans and Stinchcombe 1979, Turban 1980, Guilmin and
Turban 1980, Kinzel and Domany 1981) are not simultaneously
exact at both pure Timits; the unique exception is the three-
bonds approximation of Guilmin and Turban (1980) (hereafter
referred to as GT). They used a cluster extension of the ef-
fective interaction approximation where the effective medium

was chosen to be that of a pure Ising model; this choice leads

also to the exact derivative (dto/dp)p = An accurate deter-



mination of the bond-diluted Ising CF on the triangular and
honeycomb Tattices constitutes the central aim of the present
work. In section II we exhibit how the exact critical points
in the pure limit cases can be recovered by using convenient
graphs whose bonds are associated with transmissivities (for
p = 1) or probabilities (for t0 = 1). In section III we use
these graphs (whose bonds are now associated with distribution
laws) to construct 12 RG's which lead to accurate approximations
for the bond-diluted Ising CF on the triangular Tlattice. We
follow, in section IV, the same procedure to discuss the CF

associated with the honeycomb lattice.

IT. PURE MODELS EXACT RESULTS WITHIN AN UNIFIED GRAPH PROCEDURE

The star-triangle transformation (STT) (introduced by Onsa
ger in 1944) and the duality transformation (DT) (introduced
by Kramers and Wannier in 1941, interpreted geometrically by
Onsager in 1944 and put in series-parallel terms by Tsallis and Levy
1980 and Alcaraz and Tsallis 1982) are the basic ingredients which,
within different contexts, lead to the exact critical points Kﬁ = J/kBTﬁ
and ths J/KBTX (Wannier 1945) of the pure Ising and p% and
;Z (Sykes and Essam 1963) of the pure bond percolation models
(A and'Y'respectively denote the triangu]ar and honeycomb lat
tices). Let us briefly review the original arguments to obtain
these points for 1let us say the triangular lattice. For the
Ising model, Wannier (1945) established, through the STT (see

Fig. 1), a connection between the partition function ZA(K) of



the triangular lattice at a point K and the partition
function ZY(R) of the honeycomb lattice at <the point
R=argcoﬁ1[(]+e4K)/2]/2. On the other hand, through the DT, he

connected ZY(R) to ZA(K’) where K' = arg cotanh e2R = R?

(D
stands for "dual"). In this way, Wannier derived a relation

between the partition function Z, of the triangular Tattice

A
at the points K and K' which, under the assumption of a single
singularity in Zys leads to Kﬁ = K = Kf = (2n3)/4. For the
bond percolation problem, Sykes and Essam (1963) establtished,
first, a relation (closely analogous to the above DT) between
the high-and low-density series for the mean number of finite
c]usters per site; by assuming only one singular point they
obuﬁnedﬁt = (p%)D =1 - pé. Then, they considered a single
star-triangle (for example, ABCO in Fig. 1) where the bonds
of the triangle and those of the star have probabilities p and
pD = - p respectively. By equating the connectivity on the
triangle with that on the star, they arrived to an unique non-
-trivial independent equation (equivalent to eq.(j) of Table
1). The root of this equation is the exact critical probability
pﬁ = 2sin(n/18) (corresponding to the appearance of an infinite
cluster on the triangular Tattice).

Now, let us see how these exact critical points can be obtained
within a compact and unified procedure by using graphs (see
Tsallis and Levy 1981 and references therein). For the pure

Ising model, Wannier's results can be recovered by . considering

the pair of two-terminal clusters shown in Fig. (a) of Table 1

(i=2) @r alternatively the pair of two-terminal graphs ‘shawn

in Fig (b) of Table 1 (1=2D))where we . have introduced the



Hl

transmissivities t tanh K and r, = tanh R. To be more pre-
cise, we associate t (r,) with each bond of the triangle (star)
cluster of Fig (a) of Table 1 and obtain (see for example, Yeomans

and Stinchcombe 1979, Tsallis and Levy 1981) the equivalent transmisSivity
ng)(to) (Gsf)(ro))between the two terminal sites (see item
(d) of Table 1). The standard STT (which involves a traceover
the possible configurations of the central spin on the‘(—c]ug

ter) leads to

2
totty

= Y‘z (4)
T+t

If we considek now that, on the critical point, r, = t?sz(]-to)/ (]+t0)

we obtain the equation _indicated in item {d} of Table 1.
The procedure we have just outlined for the clusters appearing
in Fig (a) of Table 1 can be also applied to those appearing
in Fig (b) of Table 1 (these clusters are in fact the dual
(Tsallis and Levy 1981) of the preceding ones) thus obtaining
the equation indicated in item (e) of Table 1. For the pure
bond percolation model, we can recover Sykes and Essam's re

sults by considering the three-termina] (i=3) graphs shown

in Fig (c¢) of Table 1, where p and~pD are the bond occupancy
probabilities of the triangle and star clusters respectively.
By equating the equivalent probabilities Gé3)(p) and Gé3)(ﬂﬁ
between the terminals (i.e., the probabilities of the three
terminals being connected) in both ciusters, we obtain eq(J)
of Table 1, whose root is the exact value pﬁ.

In other words, we have seen that. the usual STT defined at

the pure Ising critical point can be written in terms of



two-terminal graph pairs (i=2 or 2D), while the usual STT de-

fined at the pure bond percolation critical point can be written

in terms of a three-terminal graph pair (i=3). Now, a natural

question arises: could we obtain both exact critical points

using the same pair of graphs? The answer is positive and we
can verify that this is so for each graph pair (i=2,2D,3) we
have considered in Table 1 (to obtain the equation indicated
in item (f) of Table 1 we have used the Break-Collapse Method
(Tsallis and Levy 1981)). More generally, it is easy to verify

that this happens also for the pure anisotropic case even for

i = 2 or 2D (where there is a break of permutation symmetry
in the graphs). As a matter of fact, for the general anisotropic quenched
random—bond Potts ferromagnetic model, the three-terminal graph
pair (i=3) is the only one (among the three pairs herein con-
sidered) which leads to  critical frontiers which do not
violate (Tsallis 1982) the isomorphism (Kasteleyn and Fortuin
1969) existing between the q » 1 Potts model and bond percolation.
Therefore, for more general problems, the three-terminal
star-triangle graph pair (i=3) is superior to any of the

two-terminal graph pairs (i=2,2D).

Up to this point we have considered only the triangular lat

tice; the exact critical points for its dual lattice (ﬁf =

(t2)°

- . . )
similarly ditto with v £ = (T=to,p).

= 1//3 and EE = (pﬁ)D = 1 - 2sin(n/18)) can  be derived



IIT. TRIANGULAR LATTICE BOND-DILUTED ISING MODEL

IIT.1. Graph Method

The fact that the combined STT-DT defined at both pure
Timit cases p = 1 (eqs. appearing in items (d), (e) and (f)
of Table 1) and t =1 (eqs. appearing in items (g), (h) and
(j) of Table 1) can be expressed by the same graph pairs, allow.

us to generalize these results for any p and t thus obtaining

0 ?
approximations for the CF associated with the triangular lat
tice. To perform this we associate, with each bond of the graphs
appearing in Table 1, the distributions P(t) (eq.(3)) and PD(t)
instead of T and P respectively, where the dual distribution

PD(t) is given (Tsallis and Levy 1980) by

—2_ p(t2p,t,) = (1-p)a(t-1) + ps(t-t})
(1+t)?

(5)

PP(t) = PP(tspat,) =

The overall transmissivity distributions associated with the
graphs shown in Figs (a), (b) and (c) of Table 1 are, respec-

tively

p(z) (2) T+ tg
b () 2Py [PEspaty)] = pi(t - —— Jr p(1-p)e(tot])
+0

+ [2p2(1-p)+p{1-p)2]s(t-t ) + {1 - [p*+3p*(1-p) + P(1-p)2]}6(t)

(6a)

P§f’(t) = R§f)[PD<t;p,t0>] = p28[t-(t0)?] + 2p(1-p)8(t-tD) + (1-p)28(t-1)
(6b)



2(t))

(e

_ (2D . )
P20 (x) = RUPPV [P (espat )] = [PUH ()] = phs e -

2t? 5
+ p2(1-p)s(t - ———— |+ [2p*(1-p) + p(1-p)*]6(t-t;)
1+ ()
+ [2p(1-p)* + (1-p)°T8(t-1) (6¢c)

| 2t
P(ZD)(t)EP&ZD)U%t;p,tol=[P(2)(tXF = P25<E- : :>+ 2p(1-p)é(t-t,)

A Y 1+ti

+ (1-p)%s(t) (6d)
(3) _ (3) 3 s-tz 2 2
PL3(t) = PV TP(tsp,t,)] = PS¢ - + 3p*(1-p) (t-ty )
A A 1+t§

+ {1 - [p3+3pz(1-p)]} 3(t) (6e)
and
pU2) () = RV P (sp,t)] = w2 [ee0 )] + 0% (1-p)s [e-(t]) ]

3p(1-p)2s(t-t2) + (1-p)?s(t-1) (6F)

+

At this point, we use procedures similar to the second ap-
proach ("dual-type RG", which includes RG3 to RG6) introduced
by Tsallis and Levy (1980) in the case of the square Tlattice
bond-diluted Ising model. It consists in constructing RG's
which renormalize éf) (t) into R?i) (t) = é;J [PD(t;p',t;)]
(i=2,2D or 3). Two different RG schemes are introduced hereim

namely the dual-type canonical RG (CRG) and the dual-type
parametric RG (PRG).



II1.2. Dual-type Canonical Renormalization Groups (CRG)

The CRG treatment is similar to RG 4 of Tsallis and Levy
(1980) and involves the calculation of flow lines and fixed
points by the standard procedure (see, for example, Yeamans
and Stinchcombe 1979). We construct six different CRG's which
we denote by (r,i)-CRG (r=t or s; i=2, 2D or 3), where s is
defined below, r is the variable which is averaged and i refers
to the corresponding star-triangle graph pair (see Table 1). Each

(r,1)-CRG is defined through the following pair of equations:

i

< r>o (i) = hE}) (pst,) = <r>pi(i) fﬁl)(p',th) (7a)

Y

ript 2K (PG =<r ) = gty ()
(r = t,s; i = 2,20,3)

where

s = 2n(1+t) (8)

2n2

and <uaa>p denotes the average over a distribution P.

The variable s (Levy et al 1980, Tsallis 1981 a, Tsallis and
de Magalhaes 1981, de Magalhdes and Tsallis 1981) is used here
with the aim of obtaining the exact value of (dto/dp)p=p§, as
it was the case for: the square Jattice bond-diluted Ising model (Levy
et al 1980). Observe that £q9s. (7) could be written as well in

terms of the first -,(Kfr)(P(D ) = <r>Pﬁ)) and second-order



- 10 -

Gér)(P(i)) = <F2>P(i) - (<r>P(i))2> cumulants associated with
P(i)(P(i) = Péi) or P#i)), i.e., eqs. (7) are equivalent to
Kfr)(Pii)) - Kfr)(R+(i)) and Kgr)(Péi)) - Kgr)(py(i)).
Notice also that the egs. which appear in Table 1 are par-
ticular cases (p=p'=1, t =t and t =t =1, p=p') of the system

of eqs. (7). Therefore, all the CRG's contain the exact pure

Ising point (l,tﬁ) and the exact pure percolation point(pé,i)

as fixed points. The flow-Tline joining these points provideg

for each (r,i)-CRG, an approximation for the CF we are looking
for (see Tables 2a and 3a). The (s,2) and (s,2D)-CRG's lead

to the same CF due to special prjoper_’ciesJr

of the s-variable

and to the fact that PXZD)(t) = [R$2)(t)]D aijggm(t)= Uﬁzztﬂ?
All these five distinct CF's are well represented by the curve

(T) shown in Fig. 2a (or 2b) since their discrepancies (less

than 1.1% in the t -variable) are invisible within the 'scale
of the figures.

Let us now discuss with more detail how the transformation
equations (7) provide several critical properties of the pre-
sent model, in particular the exact value of the derivative
(dto/dp)pzpé in the (s,i)-CRG approximations. First of all,
let us notice that the transmissivity distributions (Péi(w and
P&fi)(t) (i = 2,2D,3) (see eqgs. (6)) have the following general

forms:

'rThese properties are Kfs)(P) =1 - Kfs)(PD) and KES)(P) = KES)(PD)

where P is an arbitrary distribution.
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Py = aDppore) + %l pysfe - A (£ )] (92)

2=21,2,..
(i = 2,2D,3)
D) = 6P pe(en) + T gD (pt)et - B (£,7)] (%)
=1,2...

where afi)(p) = p" (where n is the number of relevant bonds
of the graph, hence n = 2 for eq.(6d) and n = 3 for eqgs.(6a)
and (6e)). The functions we have just defined have the - fol-

Towing properties

aéi)(p=]) = Béi)(p'=])’= 62’1 (Kronecker-delta) & = 0,L... (i = 2,2D,3)
(10a)
AD (¢ =1) =1 2 =1,2...(i = 2,20,3)
(10b)
Béi)(t;D=0) = 0 L =1,2,...(i =2,2D,3)
(10c)
ZalP(p)= L s{P(p) =1 Vp (1 = 2,20,3)
230 230
(10d)

These properties are of fundamental importance since they lead
to many special results which we shall mention below.

From the transformation equations (7) we find, for each
(r,i)-CRG (r = t,s; i = 2,2D,3), only two fixed points (p' =
p=p*, t, = té=t§) corresponding precisely to the already
mentioned exact pure points. Linearizing these equations, for

each (r,i)-CRG, around the percolation fixed point we obtain the

. 1 ! (r,l) (r,i
Jacobian matrix ao(p t)) ;its element (at;/ap) ,e Z
| ST RN P*=p,

A
* =
p*=p,
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vanishes due to the properties (10b) and (10c). Consequently,

i

. . (r, 1) (r,1) (r,1)
its eigenvalues are (3p'/?d = A and (at;/ot, ;
g (op'/op) *_P , { )p -
the eigenvectors are respectively horizonta] and tangent to
the CF (at the point (pﬁ,])). To say it in other words, we
have proved that the present recursive relations (eqs.(7))

provide along the p-axis the same eigenvalue the  pure perco

ah (P (p,1) Sdep,0)
lation problem yields, i.e. A(r SRR L .
! A
dp dp p*=p.
Furthermore it is easy to see that A;t’i) = alsei) A;i)

(for numerical values see Table 4). The slope of the CF  at

the percofation fixed point is given by

(r’i). .(r,i)
dp ot
A ° a

p*=p, =P,
_ (t,i) _ A
for r = t, takes the particular value (dt /dp) A S - 3/2p
P*=p ¢
(see Table 2a). For the case r = s, it follows from (10b). and
(10c) that
dt, (s-1) o (B4 () (t i) 2on2
— = (Q/n 2) —— - 2}\ '=""———A—- N
dp at, P,
A
p*=p

(o4

which coincides with the exact result (Southern and Thorpe 1979).

At the Ising fixed point we can show, using property(]Oa),

that (ap'/ato)(r’i) = 0. Therefore, the Jacobian matrix evalu

=+ A
tx=t ) ]
ated at this fixed point has eigenvalues (3ti/ot )(r’li =
* =
(r,i) 1 (r,i) . . _t tC
Ay and (3p'/ap) A associated respectively with the
p==t

- c .
vertical eigenvector and with the ejgenvector tangent to the CF
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at thecpoint (1,tA . Here again, the eigenvalue flj’l) is that of the
c : t

(i) (i) .
dhit(1,¢,) df$*(1,¢!D)

pure case i.e, Air’i)
' dt dté

0 t*ztA

C
We verify also that Aét’i) = ﬁf’i)a Aéi) (for numerica1 values
see Table 4). The slope of the CF at the Ising fixed point,
obtained through the (r,i)-CRG, is given by (Yeomans and Stinchcombe 1979)

(r,i) 1 (r,1) (r,i) (r,1
t g _ Ly <8p ' _ atg :> (see Table
dp dp op ot
t*=tA ’ t*=tA
C C

2a for specific numerical values).

Let us notice that, within the dual-type RG framework, it is
not possible to calculate approximations for the critical correlation
lTength exponents v;i) = znb/znlxéi)l and\ﬂi) =2nb/h1|k£i)lsince,
by construction, there is no expansion of the original cluster
(linearf expansion factor b =B/B' =1, wherje B and B' are, respectively,
the linear sizes of the A and Y - clusters) for all (r,i)-CRG.

We can see from Table 4 that ]x;i)(3=1)i =1 and [2{P(B=1) =1
(within an error inferior to 6.5%), in particular, |A£2%3=])l= IXEZD{B=1)I=1-
The calculation of ]Aéi)(B)l and lkéi)(B)i in larger pairs (de

Magalhaes et al 1982) of Y-a clusters (B = 2,3; a cluster with

B = 2 is represented in Fig. 1) with i terminals (i = 2 to6 for
B =2 and i =2 to 10 for B = 3) shows that: i) for any cluster
such that (B,1) # (1.3), (D) < {2y and
DBy < a8y s a2 (B) ] = 1 for all values of B;
i11) the averages lxéi)(B)[ and |A£i)(B)l, taken over all
clusters with the same number i of terminals and the same value

for B, increase with increasing i (at fixed B) and decrease
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with increasing B (at fixed i); iV) the averages |A;i)(3))and
]kii)(B)l, taken now over all clusters having the same B, ap-
proach to unity as B increases. A1l these tendencies strongly
suggest that ]A;i)(B)! + 1 and Ikéi)(B)l +~ 1 as B » o (Vi)
leading consistently, as expected, to an indeterminacy in Vp and Vs as
it happened in the dual-type RG of Tsallis and Levy (1980).

The fact that there is no expansion of the lattice (b = 1)
in all the (r,i)-CRG approximations, makes that no physical
meaning can be associated with the senses of the dual-type RG

flows.

II1.3. Dual-type Parametric Renormalization Groups (PRG)

The parametric RG procedure (PRG) (RG 3 of Tsallis and Levy
1980, de Magalhaes et al 1981, Chao et al 1981) provides, for CF's,
results which are simi]ar to the CRG ones and is considerably
less harder to work out. It consists in solving equation (7a)
for each (r,i)-PRG (r =t,s; i = 2,2D,3) by holding, during
the considered renormalization transformation,a fixed parameter
(e.g, p,to,to/p, etc), thus reducing the two-dimensional RG
space to a one-dimensional one. In this way, each (r,i)-PRG ap
proximation for the CF independs on the choice of the parameter
and all of its. points are fj,xed points (see deMagalhdes et al 1981
for details).

The main results obtained through the present six (r,i)-PRG
(r = t,s; i =2,2D,3) are indicated in Tables (2a) and (3a).
Let us stress that all (s,i)-PRG (i = 2,2D,3) Tead to one and

the same approximation for the CF, namely
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3pan(l+t ) - p®an(l+t}) - an2 = 0 (11)

whose slope at the percolation fixed point is exact (Eq. (11)
provides in fact an excellent and simple analytic ammpximaﬁOn
for the CF). The PRG approximations for the CF differ very
little among them (the maximum discrepancy in t, occurs in
p ~ 0.45 and is about 0.65%) and are, as it was the case of
the CRG approximations, well represented by the mnwe(T) drawn

in Fig. (2a) (or 2b}.

IIT1.4. Comparisons

Guilmin and Turban (1980) derived, within their "three-bonds" ap
proximation (GT), a CF which contains both exact pure points
and the exact derivative (dto/dp)P=l. We have calculated, in
the GT approximation, the other derivative and have obtained that
(- dto/dp)p=p§ = 12(1+p2)/[p2(9+7p2)] = 4.0725 (see Table 2a).
For comparison, we have calculated (Table 3a) a few points of
their CF.

ATl the approximate CF's we have considered up to nm~((r,1%CRa,
(r,i)-PRG and GT; r=t,s; i =2,2D,3) are very close among
them (the difference in t, being about 2% in the most unfavour
able case); they are rerresented by the same curve within the
scales of Figs. (2a) and (2b). A11 the s-RG's lead to the exact
value of (dto/dp)P=p§ (cf Table 2a). Notice that the PRG CF's
are, in the p-t, space, a little above the CRG ones, as itwas

the case for the square (Tsa]]fs and Levy 1980) and SC (Chao

et al 1981) Tattices. Since the exact CF t (p) is a monotonically
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function of p (Bergstresser 1977), and presumably the derivative
dto/dp also, the analysis of the pure cases derivatives suggests

that the unknown exact CF Ties between theGT approximation (lower

bound for t ; 2% mworin(dto/dt)p=pA) and our (s,3)-CRG one
_ A :
(upper bound for to; 0.15% error in (dto/dp)P=l); see the num

bers within the heavy line inTable 3a. The maximum discrepancy
(in t ) between the GT and (s,3)-CRG curves occurs at p = 0.45
and is close to 0.002 (which implies in a percentua]discrepanqy

of 0.27%)

IV. HONEYCOMB LATTICE BOND-DILUTED ISING MODEL

IV.1. Graph Method

For the honeycomb lattice, the distribution Taw P(t)(egs.3)
is now associated with each bond of the i-terminal Y-clusters
(i = 2,2D or 3) and its dual PD(t) is associated with each
bond of the corresponding A-clusters (i.e., substitute P by
P(t) and T by PD(t) in Figs (a), (b) and (c) of Table 1).Following the same
procedure and notation of sub-section III-1, we obtain the e-

quivalent transmissivity distributions associated with the. graphs

shown in Figs. (a), (b) and (c) of Table 1:

2
+tD 2t]
o+ 2p*(1-p)s it - —2— | +

1+ (t?) 1+ @)2

(12a)

tD
0

P (t) = p{W PPrtsp,t )] = pislt -

{1 - e -m1 Jocen)



- 17 -

PY(t) = PSP [P(Espat, )T = pRs(t-t2) + (1-p7)e(t) (12)
2t2
(2D) = (2D) D, = ‘(2) t D = 35 t - 0 2 2 1-p)6 t_tz
Py (8) 2 P P(spst )] = [P(E)] = p [ 1+t§}+ p*(1-p)s(t-t;)
: {1 -'[p3+2p2(1-p)]} 5(t) (12¢)
2¢P
() = P PP(espat )] = [V (0] - et - ——
1+ )
+ [2p(1-p) + (1-p)2]8(t-1) (12d)

2 3
3(t13> -<t%) +3p*(1-p)s|t - Zt](?

Kty = PC) PPrsp,t )] = plsft -

’ 1+ G:D>3 1+ <t]3>2
+{1 - [p3+3p2(1-p)]}6(t-1) (12e)
P (8) = U IP(Esp,E )] = pP8(Ed) ¢ (1-p¥)8(E) (12f)

Using these distributions we construct, similarly to the
previous section, twelve RG's which renormalize P§})(t) into

Pi P (t) = PSP PP(tsp )] (F = 2,20 or 3),

IV.2. Dual-type Canonical Renorma1ization Groups (CRG)

Similarly to subsection (III-2), each (r,i)-CRG (r = t,s;

i =2,2D,3) is defined by the following system of equations:

<r>

R 2 hE (p,t,) = rp i) = T, ) (13)
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<rfsoiy ini)(p,tQ) = <r®>pi(i) = §§1)(P',t;D) (13b)
. , A :
Y (r = t,s; 1 = 2320’3)

The flow lines associated with these equations lead to five
distinct CF's (since the (s,2) and (s,2D) ones are numerically
jdentical as it was the case for the triangular lattice) which
differ so little among them (less than 0.8% in the t -variable)
that they are represented, within the scale of Fig. (2a) (or
(2b)), by one and the same curve (H); their derivatives at the
exact pure points (1,t!) and (p!}]) and a few points of the ap
proximate CF's are respectively reported in Tables (2b) and
(3b).

Since relations (9) and (10) are still valid ditto with A £/,
all their consequences (mentioned in subsection (III-2)) still
hold. Taking into account that the pure case equations for the
honeycomb lattice can be obtained from the corresponding ones

for the triangu]ar lattice by simply replacing © % t'D (r=pJ%),

Y . K
_ ()AL ()Y o
= AL A =1 (i =

2,2D,3) (see Table 4 for numerical values of the A's).The senses

one can easily show that A;i)Akéi)

of flow along each (r,i)-CRG approximation for the CF, as well
as the spurious fixed points (see Table 2b) which appear in the
three (s,i)-CRGfs (i = 2,2D,3) are physically meaningless (due
to the fact that b = 1). At first glance, it might strike the
fact that the topology of the set of CFfs (e.g., the number of
intersections among them and the number of fixed points) associ
ated to the honeycomb lattice 1is different from that of the
triangular lattice (compare Tables 3a and 3b). This 1is due to

the fact that we are considering a restricted problem (bond-di-
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luted instead of bond-mixed): the overa]l symmetry should ap-

pear if we had assumed P(t) = (]-p)a(t-tl)i-pé(t-to) instead of

eq. (3a).

IV.3. Dual-type Parametric Renorma]ization Groups (PRG)

Similarly to sub-section (III-3), we obtain the (r,i)-PRG
(r = t,s; 1 = 2,2D,3) CF's through the line of fixed points
associated with transformation (13a). In the case of .r = s,
it leads, as before, to the same equation for all three(s,i)-

PRG (i = 2,2D,3) CF's, namely
3p2(]-p)£n(]+t§) + p3£n(1+3t§) - 2n2 =0 (14)

which provides the exact derivative (dto/dp)p=PZ (egs. (14) is
an excellent and simple analytic approximation for the CF).

The PRG approximate CF's are very close among them (the dis-
crepancy in t_  being inferior to 0.41%) and are represented by
the curve (H) shown in Fig. (2a) (or (2b); the main - results

and some 1ntermed1ate points are respectively reported in Tables

2b and 3b.

Iv.4. Comparisons

In the GT approximation for the CF, the extreme points and

the derivative (dto/dp)Pﬁl are exact. We have <calculated, 1in
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the GT approximation, the other derivative and have obtained
(4t /4P,y = 6(2-p\£)/[p\g(9-5p!)j ~ 2.1590 (see Table 2b).
For comparison, we have also calculated (Table 3b) afew points
of their CF.

Similarly to the triangular case, all the CF's (CRG's, PRG's
and GT approximations) differ very 1ittle one from the other
(less than 1.3% in the t variab]e) and their graphical repre
sentations reduce to one and the same curve (H) within the
scales of Figs. (2a) and (2b). In all s-RG's, the value of
(dto/dp)p=ﬁY is the exact one (see Table 2b). Here again (as

C

in section III), the values of t for any fixed p, along the

0,
PRG CF's are a little higher than along the CRG ones. The a-
nalysis of the extreme derivatives (Table 2b) suggests that the

unknown exact CF lies between the (s,2)-CRG curve (upper bound

for t 0.96% error in (dto/dp)p=l) and a curve (Tower bound

02

for t 5 no error in the pure cases derivatives) which is made,

for pY ¢ p 5 0.90, by the (s,3)-CRG one and, for0.90% ps 1,

C

by the GT one (see the region of Table 3b délimited by a

heavy 1ine). The maximum discrepancy in t0 between the upper
and lower bounds occurs at p = 0.90 and its value is close to

0.001 (which implies a percentual discrepancy of 0.14%).

V. CONCLUSION

We exhibit that the duality and star-triangle transformations,

which enable the calculation of the exact pure Ising and bend

percolation critical points, can be formulated within an unified
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graph framework (it is possible to simultaneously obtain both
exact critica1 points by using a single star-triangle pair of
graphs, and we have herein i]]ustrated this statement  through
3 different such pairs). This fact allowed us to construct,
within a real space renorma]ization group framework, 12 dif-
ferent procedures to calculate the critical frontiers associ-
ated with the quenched bond-diluted spin-1/2 first-neighbour
interaction ferromagnetic Ising model on triangu]ar and honey
comb lattices. We obtained 9 different accurate approximate
critical frontiers (which differ, in the t0 variable, by less
than 2%) for the triangular lattice, and another 9 different
approximate critical frontiers (which differ, in the t vari-
able, by less than 1.3%) for the honeycomb lattice. All these
critical frontiers contain the exact pure Ising and bond per-

colation critical points as well as the exact ora]most exact

derivatives (in the p-t, space) at both pure limits.

On ana]ytica] grounds we propose for both lattices excellent
and simple approximate critica] frontiers, both exact in what
concerns the derivative (dto/dp)p=pc' The triangular lattice pro-

posal (eq. 11) provides a 0.40% error in  the derivative

(dto/dp) and a maximum erroy (in p = 0.45) estimated to be about

p=1
0.31% in the t0 variable. The honeycomb Tlattice proposa] (Eq.

14)prqvﬂms a 1.4% error in the derivative (dto/dp) and a

p=1’
maximum error (in p = 0.90) estimated to be about 0.14% in the
t,-variable.

On numerical grounds, it has been possible to obtain even
more precise approximations. The unknown exact crﬂjcalfrOMﬁer

for the triangu]ar lattice very probably lies between the pre
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sent (s,3)-CRG approximation (exact (dto/dp)p=PA and 0.15%
' c

error in (dt /dp) ) and Guilmin and Turban(1980)'%hree¢mnds“

p=p§)’
their highest discrepancy achieves 0.27% at p = 0.45. The bounds

p=1

approximation (exact (dto/dp) and 2% error in (t /dp)

p=1
for the honeycomb Tattice critica] frontier are the present
(s,2)-CRG approximation (exact (dto/dp)p=§!and 0.96% error in
(dto/dp)p=1) and a curve which, for p!ﬁs pg 0.90, coincides
with the present (s,3)-CRG approximation (exact (dto/mnp=ﬁz)
and, for 0.90 ¢, pg& 1, coincides with Guilmin and Turban (1980)
“three-bonds" approximation (exact (dto/dp)p=l); their biggest

discrepancy achieves 0.14% at p = 0.90. To the best of our
knowledge, the present bounds for the unknown exact critical

frontiers for the triangular and honeycomb lattices are the
tightest avai}lable in the Titerature; therefore the rea]
space renorma]ization group methods can be extremely efficient
in what concerns critical frontiers whenever convenient lat

tice symmetries (and transformations) can be introduced.
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CAPTIONS FOR FIGURES AND TABLES

Fig. 1
Fig. 2
TABLE 1

ITlustration of the star-triangle over]apping of the
triangular and honeycomb lattices in a cluster of linear

size B = 2.

Full curves represent the para (P) - ferro (F) magnetic
critical frontiers for the bond-diluted Ising model on
the triangular (T) and the honeycomb (H) lattices ob-
tained through (r,i)-CRG or (r,i)-PRG (r=t,s; i=2,2D,3)
or through the three-bonds approximation of Guilmin

and Turban (1980) (all these curves are indistinguishable
within the present scales); broken curves represent
rigorous upper and lower bounds (Bergstresser 1977).

(a) p - t0 space; (b) p - T space.

Three graph representations of the star-triangle (ST)
and duality (D) transformations for the pure Ising and
pure bond percolation models on the triangular lattice.
The solid (open) circles denote the . internal sites
(terminal sites) (see, forexample, Tsallis and Levy 1981).
(a) pair of two-terminal (i=2) clusters and their cor
responding graphs; (b) two-terminal graphs (i=2D) ob-
tained by application of duality on the graphs shown
in item (a); (c) three-terminal graphs (or clusters)

(i=3). 6{* (1) and G(\i()(T)(T=tQ or p; i=2,2D or 3) stand
for the equivalent transmissivities (T=to) or proba-

bilities (t=p) between the terminal sites of the cor-

responding i-terminal (i=2,2D or 3) graphs. The exact
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critical points of the pure Ising (t§=2—/§)and the pure
bond percolation (pA=Zsinw/18) models on the triangular
lattice are roots of Eqs. (d)-(j). Eq. (J) also appears
in Tsallis 1981b; eqs. (Jj) and (f) are particular cases

(g=1,2; t1=t2=t3) of the anisotropic .Potts critical

frontier considered by Tsallis and Levy (1981) A simi-
lar table holds for the honeycomb lattice ditto with
T s T (t=p,t ) and A $Y 5 therefore, the exact crit
ical points of the pure Ising (ff;(tﬁ)D=]//§) and the
pure bond perco]ation(pY;(pA)D= 1-2sinm/18) models on
the honeycomb lattice are roots of the corresponding

equations of the referred table.

Main derivatives associated with the present RGfs and
with the three-bonds approximations of Guilmin and
Turban (1980) (GT), as well as the exact ones (Southern
and Thorpe 1979) for the Ising model on the triangular
(a) and honeycomb (b) Tattices. A1l of these approxi
mations contain the exact critical points in the pure
Ising and bond percolation limits. The numerical values

foh(dto/dp) decrease monotonically from the top

P=P

to the last ro;. (#) indicates that the sense of the
flow is from the percolation fixed point to the Ising
fixed point while (xx) indicates that the flow has a
reserved sense; in the case of the honeycomb lattices

appears a spurious fixed point ((p,to) ~ (0.705,0.900)
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in the (s,2) and (s,2D)-CRG's and (0.707, 0.897) in
the (s,3)-CRG) in the mid-region of the critical line
which is unstable (t) or stable (ft) along the critical

Tine.

Critical transmissivities (t ) (for selected values of
p) obtained through the present RGfs and through the
three-bonds approximation of Guilmin and Turban (1980)
(GT) associated with the triangular (a) and honeycomb
(b) Tattices. Some of these approximations present
intersections (pint) in the mid-region: in (a) there
is only one such point Pint = 0.45 originated from the
last two PRG's, while in (b) there are six intersection
points, for example, the (s,3)-CRG curve intersects
both GT and (t,2D)-CRG curves in p;., = 0.90 and 0.94.
respectively. The sequence of approximations are oOr-
dered, from the top to the bottom, according to the
increasing values of t for a fixed p € [pc,pintj;
(...) denotes an exact value. . The values of t for
fixed p, corresponding to the unknown exact critiCa]
frontier very probab]y lie between the ones enclosed:

by a heavy Tline.

Approximate eigenvalues of the Jacobian matrix cal-
culated in the (t or s,i)-CRG approximations(i=2,2D;ﬂ
for the triangular (4) and honeycomb (Y) lattices.
(1) (i)
Ap At

and are respectively associated with the

horizontal eigenvector at (pc,1) and with the vertical
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eigenvector at (1,tc). Observe that AEZD) = [xéz)j"l and
AEZD) = [Aéz)]‘l for both lattices (these facts fol

Tow from the property <s> =1 - <s>

) -
P p°
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FIG.
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ST-D graph transformations T = to T=0Pp
. n e (¢ )z e o (2 =6{) (£7) 6{*) (p)zpp2-p* = (p°) =612 (o)
F= 1+1:3 A Y
.
T
(d) (9)
v 2D) , D 2<tD>2 2t (2D) (2D) D 2_~(2D
6 0P (1) —=2L - 2= (Pt | G 20" (o) = 2p-p*=6{?p)
- T T Y 0 D\ 2 A 0 Y A
D D = 1+<t) T+t
T T
(b) (e) ~(h)
3t3-t3 3
(3) N DY _n(3),.D (3) = (3)
T T 6y (5, 2 - ()= (D) 6{? (p)=3p%-2p° = (¢ =%
0
T
(c) () (J)

- Zg -
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TABLE 2a
N e ) 1
method dp p =pA dp P =,pA dp p=1 Tc dp p=1
(t,2)-cR&™ | 4.319] 0.2993 1.1739
(t,3)-CRG*®) | 4.3197 0.3003 1.1779
(t,2D)-CR6'® | 4.3197 0.302] 1.1849
6T 4.0725 6(30-17/3)/11 =0.3028 | 12(3/3-4)/114n3 = 1.1878
exact 20n2/p’ = 3.9917 6(30-17/3)/11 =0.3028 | 12(3/3-4)/11n3 = 1.1878
(s,3)-CRG®) 2an2/p% = 3.9917 0.3032 1.1895
(s,2)-CRG(®)
2gn2/p§ ~ 3.9917 0.3037 1.1914
(s,2D)-CRGC**)
(s,1)-PRG 20m2/p] = 3.9917 0.3040 1.1925
(i = 2,20,3)
(t,2D)-PRG 3.8525 0.3047 1.1952
(t,2)-PRG 3.8260 0.3064 1.2020
(t,3)-PRG 3.7998 0.3054 1.1978
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TABLE 2b
dt -2B8J dt dt
a._.l =2....q_ e - 0 __1__ C.
method dp pzpz dp p:-p(\: dp P =1 TC dp P =1

(1.2)-cRa(® |2-2981 0.6662 1.5175

(t,3)-CR&*  |2.2981 0.6623 1.5088

(t,2D)-CRG‘® |2.2981 0.6902 1.5722
GT 2.1590 2/3/5 = 0.6928 6v/3/ [5an(2+/3)]=1.578
(s.3)-crRG‘™ 22n2/pz/ﬁ 2.1239 0.6839 1.5579
exact ZQnZ/pZ = 2.1239 2/3/5 = 0.6928 6v3/ [552,n(2+/3):[ =1,57¢
( )

(s,2)-CRG

) 2zn2/pZ ~ 2.1239 0.6995 1.5934

(s,20)-crg (TP

(s,1)-PRG 20n2/pY = 2.1239 0.7023 1.5998

(i = 2,20,3)

(t,3)-PRG 2.0642 0.7263 1.6544

(t,2)-PRG 2.0499 0.7217 1.6440

(t,2D)-PRG 2.0358 0.7057 1.6075
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TABLE 3a
P
method 0.3473...] 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(t,2)-CRG 1 .8160 .6075 |0.4845 .4030 .3450 .3016| 0.2679...
(t,3)-CRG 1 .8161 .6082 | 0.4853 .4035 .3453 .3018| 0.2679...
(t,2D)-CRG 1 .8170 .6100 | 0.4867 .4046 .3459 .3020 | 0.2679...

(s,i)-CRG

(i = 2,2D)

(s,i)-PRG
(i=2,2D,3)

(t,2D)-PRG

(t,2)-PRG

(t,3)-PRG

.8246

.8246

.8280

.8289

.8293

.6152

.6154

.6180

.6192

.6188

0.4893

0.4894

0.4908

0.4918

0.4912

.4057

.4058

.4065

.4072

.4068

.3464

.3465

.3468

.3472

.3469

.3021

.3022

.3023

.3025

3&%J

.2679...

.2679..

.2679...

.2679...

.2679..
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TABLE 3b
p
method 0.6527...| 0.70 0.75 0.80 0.85 0.90 0.95 1.0
(t,2)-CRG 1 0.9035 | 0.8226 |0.7563 |0.7007 |0.6536 | 0.6128 |0.5773...
(t,3)-CRG 1 0.9040 | 0.8231 |0.7567 | 0.7010 }0.6535 | 0.6126 ]0.5773...
(t,2D)-CRG 1 0.9042 | 0.8241 [ 0.7586 {0.7033 0.6556 | 0.6140 |0.5773...

GT

(s,i)-PRG 1 0.9089 | 0.8294 | 0.7627 | 0.7061 | 0.6572 | 0.6147 |0.5773...
(i=2,2D,3)

(t,3)-PRG 1 0.9109 | 0.8322 | 0.7658 {0.7088 | 0.6593 | 0.6158 |0.5773...
(t,2)-PRG 1 0.9113 | 0.8325 | 0.7659 {0.7087 | 0.6591 | 0.6157 |0.5773...
(t,2D)-PRG 1 0.9113 | 0.8320 | 0.7648 {0.7074 | 0.6579 | 0.6150 |0.5773
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TABLE 4

(a_ oY)
method Ay s [Apl ] (t,=1)
(r,2)-CRG -1.021 -1
(r = t,s)
(r,2D)-CRG (-1.021)"" = -0.979 -1
(r = t,s)
(r,3)-CRG -1.064 -1.065

(r = t,s)




