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ABSTRACT

A generalization of traditional bond percolation
is performed,in the sens that bonds have now the possibility
of partially transmitting the information (a fact which leads
to the concept of "fidelity" of the bond),and also in the sens
that,besides the normal tendency to equiprobability,the bonds
are allowed to substantially change the information.Further-
more the fidelity is allowéd to become an aleatory variable,
and the operational rules concerning the associated distribu-
tion laws are determined.Thermally cuenched random bonds and
the whole body of Statistical Mechanics become particular
cases of this formalism,which is in general adapted to the
treatment of 2ll problems whose main characteristic is to pre-
serve a part of the information through a long path or array
(criticel phenomensa,regime changements,thermal random models,
etc).Operationally it provides a quick method for the calcu-
lation of the equivalent probability of complex clusters with-

in the traditional bond percolation problem.

KEY WORDS: Bond percolation; Statistical Mechanics; Quenched
bond; Random models.



Le vrobldme traditionnel de la percolation de lizi-
sons est géneralisé dans le sens cque les liaisons ont maintenant
le possibilité de transmettre seulement une partie de 1'infor-
metion (ce qui amene au concept de "fidélité" de la liaison),
et aussi dens le sens cue,mise 2 part la tendence normale a 1'e-
quiprobabilité,les liaisons peuvent changer essentiellement 1'in-
formation.De plus la fidélité est traitée comme une variable a-
1éatoire,et les regles opérationnelles liées aux distributions
de probabilités associées sont determinées.Tes lisisons aléa-
toires thermicuement "étoufées" et tout le corps de la NMéca-
nique Statisticque deviennent des cas particuliers de ce for-
melisme,qui est d'une facon générsle adaptée pour le traitement
des problemes dont la principale caractéristique est de préser-
ver une partie de 1'information au lemg - d'un grand cheminement
(phénomenes critigues,changements de régime,modéles thermiques
aléatoires,etc).Du point de wvue opérationnel il fournit une
méthode rapide pour calculer la probabilité equivalente a'amas

complexes dans le cadre du probleme traditionnel de percolation

de liaisons.

MOTS CLES: Percolation de liaisons; Mécanique Statistique;

Liaisons "étoufées"; Modéles aléatoires.
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I - INTRODUCTICN

The percolation problem has been extensively stu-

died in last years (for a review see the papers of Shante and

(1)

cations in seversl areas of Physics (dilute magnetism,spin-

Kirkpatrick and of Essam(z))’because of its numerous appli
glasses,conductivity of alloys,macromolecules,gel-sol tran-
sition,etc) or even other branches of knowledge.Different

(3"14),including the relatively recent renor-
(15-19)

approaches exist
malization-group treatments, for either the site or the
bond percolation. |

Our purpose in the present work is to snalyze end
generalyze the second one,in the sens that the bonds are tra-
ditionally restricted to be either completely active or com-—
pletely blocked,and we intend here to leave to them the pos-
sibility of being partially active similarly to the thermally
quenched bondsj;this fact will lead to the concept of "fideli-
ty" of the bond.On the other hand,the traditional bond,when
(completely) blocked,"forgets" the information (leading to
equiprabability at the bﬁtput);in other words,no possibility
is left for an alteration of the information bigger than to
forget.This restriction is a2lso raised in the present for-
malism,and this leads us to.another parameter'called "crea-
tivity".Furthermore the fidelity is left to become an alea-
tory variable by introducing probebility distributions,like’

in thermal random models(lo’l4’19)

«The mathematical struc-
ture of these distributions is analized,and the mein charsc-
teristics are exhibited in a certain amount of examples.
Quick operational rules are derived for the treatment of

the traditional bond percolation problem in what concerns

the calculation of clusters.ind finally,we reobtain the
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thermally quenched random bonds and the formalism of Statis-
tical Mechanics (Boltzmanntis entropy formula,microcanonical
end canonical ensembles,etc) as particular cases.

In Section IT,the fidelity and creativity con-
cepts are introduced and the basic series and parsllel con-
figurations are anelyzed;in Section III the probebility dis-
tribution formalism is presented,and several examples are
discussedj;and finally,in Section IV the relation to ther-

- melly quenched random bonds and to Statistical Mechanics is

exhibited.

IT - FIDELITY AND CREATIVITY

IT.1l - Formulation

Let us consicer a simple bond between two sites
of an array which might be regular or not.This bond may be
seen as an agent which trensmits information with a certain
fidelity o (which is defined in the interval [0,1I] by rela-
tions we shall state later).We intend to test the fidelity
of a given bond by verifying how well it transmits informa-
tion concerning a single binary aleatory variable (which
will conventionally take the values 1 and 2).In other words
the input will be the probabilities p(l) and p(2) (satisfy-
ing p(1)+ p(2)=1 ) and the output will be the probabilities
p'(1) and p'(2) (naturally =lso satisfying p'(1)+ p'(2)=1).
Let us put this in more operational terms,assuming a linear
transformetion between the input and the output,this is to
say _

p'(1) =  £(a) p(1) + &(a) p(2)
p'(2) =[1-f(a)] p(1)4 [1-2(a)] p(2)

where 0£f(a),g(a)é1l vae [O,l] It is straightforward to ve-

rify that this is the most general linear relation which .

(1)



trensforms a binary probability law into another.
| Let us now impose that input and output coincide

when the fidelity equals one,in other words
f(1)= 1 and g(l)= 0 (2)
In the other extremity (a= 0) there is no need to meke a ri-

gid imposition,and this leads us to a classification of the

bonds,namely we shall say that our bond is an idezlly dissi-

pative one if

£(0)= g(0)= 1/2 (3)

an ideelly creative one if

£(0)= 1- g(0)= 0 (3")

and an intermediste one if

£(0) = () and g(0) = h() ,

where the creativity coefficient X is defined in the inter-

val [O;ﬂ yand leads to the ideally dissipative bond in the
limit (=0 Dby imposing j(0)= h(0)= 1/2 y and to the ideally
creative bond in the limit o= 1 by imposing j(1) = O and
h(l) = 1 .The simplest functions which satisfy these facts
are
£(0)
g(0)

I

(1-ot)/2
(1+ o) /2

(3')

]

Within restrictions (2) and (3'') we still con-
serve a great freedom in what concerns the choice of f(a)
and g(a) j;we shall meke the simplest one,namely

£(a) - +X

Sz e (4)
e(a) = BY(1_3)- |- §(a)

2



These expressions substituted in trensformations (1) lead
to what we shall consider as the operational definitions
of fidelity a and creétivity A .Let us however point out
that if we are restricted to perform only the basic "ex-
perience" which consists in "presenting” to our bond an
input and "measuring'" the output,we shall not be able to
determine simultaneously a and K,as definition (4) into
(1) leaves = degree of freedom.But if we are permited to
control let us say the fidelity (as it is usually the
case in thermal systems by cohtrolling the temperature),
then we shall be able to "measure" the creativity.To make
this point more clear let us assume we are allowed to ve~
nish the fidelity:in this case if we present to the bond
the input p(1l)=1 ,the measure of the output p'(1l) will di-

&

rectly give X by the relation &K = 1-2p'(l).Let us finally
oL

remark thet the particular case o= +
of

leads to eguiproba-

bility.in all cases,

IT.2 - Series configuration

Let us now assume two ideally dissipative bonds
(with fidelities a, and a, respectively) in series,end let
us determine (assuming the transformation law (4) with X=0)
the fidelity a, of the whole array (see Fig. 1).It is suffi-
cient to write down the probabilities for the binary value 1:

" a |-8 a|a -ai
b1 ()= 1520t ()4 T2 (2) = T2 Ep(1)+ 5 p(2)

s0,1f we consider the array also as an ideally dissipative

bond,it comes

a, = 88, (5)

relation that we intend to exploit later.Obviously,this we-



lation generalizes,for n bonds in series,into
n
a_ =11a, (51)
S w1l 1

If we perform the above operations for two ideally

creative bonds in series,it comes

= Jeo — ' ‘6
a = 1 8y a2+ 281a2 (6)
Among the particulsr cases of (6),exists an amusing one:
a; =2, = 0 leads to 2 2 1 (two perfect lies restore the truth!).

If we assume finally that the two bonds in series
have crestivities &, and O, respectively,snd we interpret the

whole array as a bond with creativity o(s ,1t comes
(1+d Ja - of =(o -2 ) (X -2,)- o Af,(ay+a,)

T (o toly) e 20t dy R 72, (7)
In the particular case o<1: 0(2—_- o(q’:-_‘ oK this expression becomes

8, = ay8,+ o((lwal)(l'vﬁg) (7*)

Remark also that expression (7) is invarisnt under vermutation
of the bonds 1 end 2 ,which means that the series array has no
priveleged sens for the transmission of information.lLet us fi-
nally call the attention onto the fact that relation (7) leaves

to us a degree of freedom (for example o(s).

IT.3 —~ Parallel configuration

In this Seetion we shall be concerned only with
ideally dissipative bonds which will be assumed in parasllel
configuration.We expect for the fidelity ap of the array as

a whole to have the following basic properties:



1) ap to be bigger than the biggest of our set_‘ai (i=1y2, weym);

2) %&Ebap = 1 as long as we hqve en infinite number of parallel
bonde with non vanishing fidelities;

' 3) a2 bond whose fidelity venishes is,in what concerns ap y,like
if it was not there;

4) ap equals unity whenever ig there a2t least one bond whose
fidelity equals one (corollary of property (1));

5) ap ig invarient under any permutation of the parallel bonds.

A1l these properties are satisfied by the simple following re-

lation
m .
l-a = T (1-a.) (8)

which,for m=2 ,becomes
ap = 8+ 8,-8,8, (81')
In the more general case where the bondse may have
g certain amount of creativity (o(i# 0) ,the parallel messages
may be frankly contradictory,a fact which will lead to the ap-
pearence of the phenomenon of "frustration".It is out of the
aim of this paper to analyze this eventuslity,however let us
point out that we have voluntarily used the word "frustration"

(20,21)

introduced by Toulous for spin-glasses,because we be-

lieve that the core of the concept 1s the same.

ITT - ALEATORY FIDELITY

ITT.1 -~ Generslities

Let us now work with bonds of known and equal nature
(one fixed value KX for the creativity of 211 of them) but whose
fidelity a is an aleatory variable,and let us note Pi(a) the

associated probability distributions (Pi(a)2=0 va €[0,1] and



A
Jda Pi(a) = 1 ).Situations where the bonds could be of dif-
0

ferent natures (or even where the nature itself could be an
aleatory variable) may be treated similarly to what we shall

present next.

IIT.2 - Series configuration

We assume here two bonds (with probability distri-
butions Pl(a) and Pz(a) respectively,and common”creativity'CK)
in serieg configuration.We intend to construct next the proba-
bility distribution Ps(a) of the array as a whole,which is as-
sumed to have the same creativity X .If bonds 1 and 2 have fi-
delities a' and a'' respectively,then the fidelity of the set
will be given by (7'),and its contribution to Ps(a) will be
essentially given by Pl(a')PQ(a").However many other couples
of velues (a',a'') will contribute onto the same point,so we
shall finally have that

a-o(1-3)
- (1-2’)

Ps(a) = Jda' N(a')Pl(a')Pz( ) (10)

where N(a') is a function introduced for norm purposes,The

2
particular case _"Pl(a) =5_(a~a1) and P?(a) =0 (a-2 must

)
2
lead,through product (10) and by using (7'),to

P_(2a) = B’(a-ala2~ o (1-27)(1-a,)).

This imposition straightforwardly leads to

o t .
% In order to have Jog(amao) da = 1 Vaoe [0,1] ;we adopt the

following definition for the O -funetion: J§ (a-a ); S . (a5 )
0 Direc(&-=o!

30

if O<a0< 1 ,2nd E(a-—aO!): 2 EDirac(a"ao) if 2= 0,1,



N{a) = ( ](1—\—0(’)&-—0’(])_1 (see Fig. 2 )

and (10) may be rewritten as follows

da! o 3 %(1-3) \
Ps(a) = j '(1+o()a'~~o(| P'.L(a )Pz(‘a:_o((‘- _af)) (107)

where the integration domain is given (see Fig. 3) by

a'€ [O,é,] and a'éﬁﬁg}a—, ﬂ if 0£a < .%& ,
al' € [03,1] | if a= ‘:ic‘

a'€ [o,o%] and a'€ [a,l] if l% L€k
a'€ [a,l] if A all .

Remark that the product (10') takes,for ideelly

dissipative bonds (o = 0) the simple form

A
P (2) —_-J da' P (a') Py(a/at) = P, @FP, (10' ")
a

e

al'

which,in a certain way,is to multinlication what the convo-

lution product is to sum.We easily verify that Ps(a) is normed:
{ 1A U 3 5
9—?—'—1- | 1 — ) .—E 1 1
Jda Ps(a) gdaj = Pl(a )Pz(a/a ) = g da S = Pl(a )Pz(a/a )
Q 70 a 0O 0

i

A 1

Jda' Pl(a') J dx P2(x) = 1
Q 0

i

Furthermore product (10'') (called series product or @@ -product
from now on) is commutetive,associative and admits a neutral
element but not an inverse,in other words it has the matheme-

ticel structure of a2 monoid.This fact can be proved either by

direct verification of each property,or by remarking(zz) that

-

. -X . .
the variable changement a=e isomorphically trensforms the



series product into a convolution product.The neutral element
of the series product is Is(a)zé‘hwjj ,which clearly corres-
ponds to the intuitive idea that the information be not dete-
riorate.Within the same ideas it is clear to understand why
the series droduct admits no inverse (once the information
hes been partially destroyed,there is no way to recover it
back).This last point mekes an essential difference with the
ideally creative bonds,where it is sometimes possible to
completely restore the original information (see in Section

IT.2 the example of the two lies cancelling each other).

T1T.3 - Particular cases

In order to achieve a more intuitive insight of

the series product,we shall list in this Section several ex-

&

amples.let us introduce the notation D %o mean the n-fac-

tor product P P ... P.

1St examnles P(aﬁ:éfarab) leads to éj]1=:518ﬁa§) e see
that there are only two fixed points,namely a,= 1 (perfect
transmibsion of the information) and aoz 0 (comnlete loss

of the information,i.e. immediate ecuiprobabilization of the
possible events).We also see thet,for 2, <1 ,."hifég?@ g S(a) ’

a property we shall verify in other exsmnles.

nd -
2 exemple: Let us present here the traditional hond per-

colation (probabilities p of being active and (1-p) of be-
ing blocked) : P(a) = (1-p) d(a)+p d(a~1) .We obtain

;?@ oo (1__131'1) 8(&)-1-1)n O (a-1),which clearly meens that,for
percolating through n bonds in series,g}i of them must be

active,We also verify that,for p<1 , lim O 1 =9(a) .
: N> o0
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3t exennple: If we congider P(a) = (1+-r)ar (r> 0),we obtain
T
Bn n _a n-1 1
T = (1 +r) o1t in =

Remark thet,for increasing n,there is a more and more pronounced
transferiof probability density from the neighborhood of a=1& %o
the neighborhood of 2=0 (continuous snd irreversible loss of in-
formation,similarly to what happens with the entropy of an iso-
lated thermodyneamical system during the "travel" towards equi-
librium).Let us prove that %%ﬁb?@)nﬁ g(a) by verifying that,

for any function f(a) analytic in a = 0 ,we have that

1 ®n
lim S da P (a) f(2) = £(0) (11)
VI >0
0
By considering that f(a) = £(0)+f'(0) 24 ... ,statement (11)
will be proved if |
N
lim & da }T@ n(a) 2 =0 y
N oo 0

and this is so because

1 .
ey = joda D20a) 8- ;::}n

Incidentally we verify that <a> n

it

( (e)l)n , 2 result which

is typical of series arrays.

th
4 exemple: Let us consgider

P(a) (>~-~/A)*l if méad A,

=0 otherwise,

i

with O 5./A4(Aél .We obtain (see Fig. 4(a) )

0 2 (}\—-/-&)—zln/%i if /f‘éaﬁ)\/,&
(>\—»/.x.)“21n§ if  w<ag A

1t

il
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Once again we verify the shift towards a = 0 .

;
o . . . . .
5%1 example: If we consider the Lorentzian distribution

1 h

= 7 0
P(a) arctg L ot 4 a& (A> 0)
A
we obtein
©2 N (125
. all o
=) arctgﬁi, RPN (see Fig. 4(Db) )
6JGh example: Let us finally consider 2 mixtured situation:
Pl = ~1ln a y
Py = 1/A  if 04a <&\ eand venishes otherwise (0 <A<&1) ,
P, = 22 .
3 >

We straightforwardly obtain
\r, 2 28 .
= 1) 1- === £
Pl@PQ@PB_AL(ln% 1) 1 A] if agA ,

0 otherwise .

i

This distribution is "worse" (dense near a = 0) than the

"worst" among the three distributions we have considered.

Let us close this list of examples by stating
(though we have not attempted a general proof) that if we
have an infinite set of distributions Pi with the unique
restriction that they be different from §(a-1) ,it will be
Tim {Pl@PZ@...@Pn§=g(a) (12)
N %00

ITI.4 - Parallel configurstion

Let us now consider our two ideally dissipative
bonds iﬂ a parallel configuration,and let us note Pp(a) the

resulting probability distribution.The same type of arguments
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used in the series configuration lead,by using relation (8')

imstead of (7'),to

2
dat

P (2) = JO T Py (a") P ()= P O, (13)

a'

Let us introduce the complementary distribution

P(a) of a given one P(a) by the following definition:
P(a) = P(1~a) Y a€ [0,1] (14)

A corollery we shall use later is that P = P whenever P(a)
is symmetric with respect to the axis a = 1/2 .Furthermore
it is straightforward to prove,by using (13) and (14),the

following general statement

P,=P®P, <> P, =P 0%, (15)
It follows immediately that the parellel product (or @ ~pro-
duct) has the same mathematical structure as the series pro-
duct (normed,associative,commutative,admiting a neutrel ele-
ment Ip(aj =8 (a) ybut not an inverse).Clesrly the statement
(12) becomes

lim {Pl@PQ@...’@Pn} =9 (a-1) (16)

1-> 0O
with the unique‘restriction that the Pi be different from
8‘(a) .Another interesting property,valid whenever P = P ’
concerns the mean fidelities <a)n,s end <a>h,p of n-bond

series and n~bond parallel arrays respectively:

\ |
<a>n,§+ <a>n,p::Jda angD(a) T—ifa aiﬁbn(a)
0]

|
:jdaaE@n(a) «{—Jéaal’@n(a)
O QO

o !
:jda o %) + de(lmx)P@n(x):l (17)
O O
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where we have introduced the nomenclature Eﬁyll for the
n»«factor parallel product P P® ... D P .

Let us now present an example,namely n bonds
(with P(a) = 1 for each one) in parallel configuration.iie

have,by using the results of the 3rd example of Section

I1T.3 with r = 0,that
n © n 1 n~-1 1
.E@ = P = (1’1-‘1 ) 1 In ""1—_'8"?

and,by using also the property (17),that

\ 1
(a.)n = 1- 'é?

Another instructive situation that might be con-
sidered is the traditional bond percolation problem (proba-
bility p for each bond being active): the classical result

(see,for example,references (11) and (13))
2
p_ = p + 2p(1-p)
b
appears,in our language,in the compact form Pp = Eﬁbzz
with P(a) = (1-p) g(a)+p§(a—~l) .

ITI.5 -~ Complex configurestions

The concepts presented in the last Sections en-
able for calculation of the equivalent distribution Pe(a)
of any arragwngbongg whose topology con be solved in terms
of series ihd parallel configurations of subsets of bonds.
A Tew exemples will exhibit the basic characteristics bet-
ter we could explein in general terms,

15 exemple: Let us assume the configuration of Fig. 5(a)

and let us discuss it for "vertical" percolation.Clearly

we have

=B 05007
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which,in the particular case
D = = = s jred - L ' -
P=P,=P,=P,=P.= (1 p) 0 (a)+pd(a-l)
becomes Pe: (l—-pe) E(a)-l—peg(aw-l)

: 2 2
with P = p4+ 3p3(1~p)+p (1-p)~ .

In this way we have compactly obtained the same result to
which lead the usual bond percolation arguments (see,for
example,references (11) and (13)).It might be worth while
to point out that,in order to get quickly the solution of
this kind of problem,it is convenient to have in mind the

following properties:

5(2-1) ®38(a-1)= 3 (a-1) @ d(a-1)= §(a) ® 8(a-1)= O (a-1)

(2) ®3(2) =0(a-1) ®5(a) =8(a) ®S(a) =0 (a)

an example: If we assume the configuration of Fig. 5(b)

with the same probability distribution P(a) for each bond,
we obtain Pe = ( P@ n)@m .This expression,in the simple

case P(a) = (1-p)g(a)+ p O (a-1) ,becomes

P
e

il

(1-p,) & (a) +p_ & (a-1)
. n.m (18)
with 108 )

it

1-(1-p

The mean fidelity is given by <8’>nm = P, ,and satisfies,
for 0 {p4£1 and n,m>»>1,the assymptotic behaviour

n
4 a>nm~ 1-e P

end tends to the limit l-e © € [0,1] ,where K=1im mp and
/m'?m
tends to O (+o0) if n diverges faster (slower) then 1n m,
Let us have a look at the entropy variation

through this array.If we assume that the input is p(l)=1,
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we obtain,by using relations (1) and (4) (with&=0),the follow-

ing output
1+ 5
2

p'(1) & 1-p"(2) = (19)

hence the entropy variation is given by

1+ 2 14 2 12 1--a
AS = ka { in + > in l

2 2 2

where kB ie the Boltzmann constant.let us now evaluate the

mean entrapy variation associated to the distribution (18):

A8y = kyln 2 (1-p)) = ky In 2 (1- K&y )

Within this last relation it becomes evident that the eventual
tendency,for diverging m and n,of the mean fidelity towards a
non vanishing limit,is directly related to a certain amount of
information which has been *"saved" through its macroscopic
propagation.For example,in 211 critical‘phenomena,it is intui-
tive that the gaved informetion is exactly the one which al-
lowds for the existence oi 2 non vanishing long-renge order
parameter,Similar remarks may be done for regime changements
in macroscopic physical systems.

The configufation of Fig. 5(c) leads to
Pe:(ﬁalnf)xhﬂm shell not discuss in detail this case,which
certainly drives to results analogous to those obtained for

the configuration of Fig. 5(b).

IV —~ RELATION TO STATISTICAL MECHANICS

Let us now make the joint between our formalism

and Statistical Mechanics.
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IV.l — A simple example

If we have a single 2-states system (let be zero
the energy of the fundementel state,and €& the energy of the
unicue excited state) at thermal eguilibrium at temperature T,

the occupancy probabilities are given by

p(0) = 1/1 é”’e/kBT

o(e) = o= &/l oo /KT

Tf we use now relation (19) we obtain
£

ZKBT

a = th (20)

which leads to the intuitive limits a=1 for T=0 ,and a=0

for T-»ow .50 we may say that this simple Statistical Me-

chanics example corregponds to the following particular

case of our formelism: P(a)::gfarab) ,with e, given by (20).

This is exactly the concept of the so celled guenched bond(14’19>.
' Let us now assume we do not exactly know the value

of € but only a probebility distribution g(€) (in other words,

we have a thermal random model(lo’14’19)).This case will cor-

respond,in our formelism,to a distribution law P(a) given by

~ e 2587
P(a) = g(€) =~ = —= 2(2k_T argth a)
de 1~a2 B

where we have used relation (20).This last situation is the
one which appears in dilute magnetism,spin-glasses,some in-

f-

sulator-conductor transitions,etc.

IV.2 ~ Generslization

We intend to present here a possible generali-
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zetion of the concept of fidelity for ideglly dissipative
bonds,in what concerns the input.lore pregisely,the input
is no more restricted to be a binary aleatory variable}but
wit refers to a domain of possibilities containing W elements;

So the input and output ere respectively given by

p(1) p*(1)

p(2) . p'(2)
3 = . and o'z | .

p(W) Dr(wW)

Our basic assumption will be that they are ye—

lated like follows:

= ()T
where /
1""0.,1 1""8»2 1""83 LR ) 1"‘3'“(
N l~aW 1+a1 1 By eee 1 Bu_1
(A)-‘-’?ﬁi 1 B '_L~-»aW 1+c,1 eee 1 8y o
1""' » s - > o0 <
\ 2, 1 93 ] a4 1+?1
w
with @lzz%gzai (2, € [c,1] for i=2,3,...,W hence ale[p,W—ll )ee
If the input is P =(1,0,0,...,0),then the output
. 142 l-g -8, )
will be_E' =( +a1, i ,...,1 By ),end the entropy variation
W W W
will be ,
lf?l _— 1+a1 w 1~ai 1~aj
=k _{ —= 1% e :
i e 2 T
v=2
We remark thet the perticular cese a; =0 (i=1,2,...,W) leads,

by teking into account that the input entropy venishes,to the

celebrated Boltzmann's formula

= K i
e R
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whigh traditionelly drives to the solution of thermal physics
of isolated systems (microcanonical eﬂsemble),and from them
to the whole body of Statistical Mechanics (cenoniceal and
grend canonical ensembles,etc).lNevertheless let us deteil a
1ittle bit the canonical situation.Our system is assumed to
accede to W different states with energies Ej (3=1,2, ¢0e,W)
respectively (some of them might be degenerate).Then,at ther-
mal eguilibrium at tempersture T,the occupancy probabilities

are given by

-&€./k_T
. i B
(i) =e ¥ 7 /2
~€ . /k_T
7 = e Y B
o | o, 1+a1‘ l»a2 1 By
and identifying them with p' = ( T T e TR )
we ‘obtain
‘ .
- 1/kgT
W em&j/kBT
and aj o 1“”' Z (3:2,3,000’{.&!) (180b)

Relations (18) are the "bridge" between the pre-
sent formalism and the canonical thermal Gibbs distribution.
In other words,if we define a vector fidelity E'E(az,a3,...,aw)
defined in “{W;l,the canonical ensemble is represented by
P(3) ::5(3}30) where 30 is given by (18.b).As it should be,tlee
microcanonical ensemble is reobtained from the canonical one,

in the limit T->oo0hence "éfo-v 0.

V - CONGLUSION

Let us conclude by saying that the present forma-
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lism generalizes and unifies the bond percolation problem
(quenched or not),Statistical Mechenics and in general all
problems whose main‘characteristic is to preserve a part of
the information through a (long) path or array (critical phe-
nomena,regime changements,theory of decisions,theory of com-
munications,etc).Operationally it simplifies,in comparison

with the treditional methods i1?t3)

,the task of establishing
the ecuivelent probability for comnlex clusters in the usuel
bond percolation problem.Furthermore it seems that this for-
malism could find practical applications in the thermal treat-
ment of random models(lo’l4’19) (dilute magnetism,spin-glasses,
some insulator-conductor transitions,gel-sol transition,etc).
Let us finally add that the concept of frustration introduced

(20,21)

by Toulouse for spin-glasses seems to emerge naturslly

in parallel configurations,though we have not attempted a de-
tailed analysis of this aspect.
I am heppy to aknowledge here very encouraging

discussions with E.lM.F. Curzdo.
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CAPTION FOR PIGURES

Fig. 1 - The input (p),intermediate (p') and output (p'')

Pig. 2 -

Figo 3 -

Fig. 4 -

Fig.e 5 -

probabilities in a series array.
The norm function N(a) associated to the series

product of two honds with creativity o .

Determination of the integration domain for the

series product of two bonds with creativity o« ;

a- A(1-al) | (a) 0<a< .i'-‘-;(b)_%_<a<1
a'-d(1l-a') L+ \+o

a' |

(note that the bisectrix a''#a' is a2 mirror,and
that the brench nesr the origin leaves the va-

lidity domain of 2' if a >).

Distribution associated to two bonds in series.,
(a) P(a) is a square "barrier";(b) P(a) is Lo~

rentzian-shaped.

Three examples of complex arrays.
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