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A source free disordered diséribution of electromagnetic
radiation is considered in Einstein's theory, and a time indepen~
dent. exact solution with cylindrical symmetry is obtained. The grE'
vitation and pressure effects of the radiation alone are sufficient
to give the distribution an equilibrium. A finite maxiﬁum concen-

-tration is found on the axis ‘of symmetry, and decreases monotoni-

cally to zero outwards. Timelike and null peodesics are discussed.
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1. INTRODUCTION P

e /

One of the most‘fascinating physicallsystems described
by general relétivity is that of an electromagnetic radiation
evolving only under its own gfavitation and pressure effects.

There are some circumstances under which the attractive effects

.associated tc the energy density of the radiation can balance

the respulsive effects due to the corresponding gradient of

pressure.

The pioneer work in this line is that of Klein [M]:
he obtained an approximate so]ution of Einstein's equations for
a distribution of diffused radiation wifh spherical symmetry. His
distribution in equilibrium shows a maximum condensation at ﬁhe.
cénter and dilutes monotonically to a zero value at infinity;
however, his sclution at infinity does not ceincide with the
vacuum éolution of Schwarzschiid. Very.recent]y the present au
thors [2] obtained an exact Solution of a physica]]x ana]ogoﬁs

systems with plane symmetry: their solution also presents &

-larger condensation in the innermost regions and dilutes out-

wards, tending asymptotically to the plane vacuum sclution of

Levi-Civita [3].

-

The main purpose of the present study is to obtain
the general charactericstics of a physiczlly analogous system,
but with @ different symmotry, and to compare the new resulis

with those corresponding to the previous symmetries. We then

.
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~“consider a distribution of disordered electromagnetic radiation
with cylindrica] symmetry,'in equflibrium.‘we are ca]iing‘q§1ig
drical symmetry the p%operty of invariance of the system under
rotations about a given axis, and under traqs]ations paraTle]

' to the same axis. The most widely known cylindrical coordinate
'sysﬁemsi(weyl's canbnica] and.EinsteTn—Rosen) cannot be used for
the description 6f qthisotropit distribution, as explained in

Sec. 3; however, we succeded in obtaining an exact solution in

a reference systém where ggz = rf4 g;¢ = - 9rr/900'
2. GEHERAL EQUATIONS
We start with the line element
R O o0 L L I P P PLAN R PE VL AL (1)

?
“where o anc B are functions ¢f r alone; the corresponding non-zero

Christoffel symbols of the second kind are
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(cq=By-2/r)e™ 7P (2)
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R gy g
RY = (By - 82/2 - a8y + éa%(z - o /r) eT2F “(3)'
Rg = Rg = %(d]] - By tag/r - 8i/r) e 2B .
- The energy momentum tensor of a perfect fluid is |
™ - (pc2.+.p) ”u'“v"_{ S (4)

where pcz, p and Ma

are the rest energy density, the pressure and

the macroscopic velocity field of the fluid; this velocity sa-

tisfies uA uy ='1. For our disordered radiatioﬁ we follow

Tolman's [4a] prescriptions and make pc2 = 3p; we then c¢btainm

in static condition

M R -
Tv p(r) diag [‘s,~1,-1,-1 T

L

H
-—

(5)

The Einstein equations for a traceless Tzf are

RS = - TE ., Kk = 8ﬂ§[¢4 :
in our-system these equations reduce to
28

%y a]/r = 3kp e s

Byy - B§/2 T aqBy t 3G§/2 = aydr o= - kp e 2P ,

@y 8]] + a]/r L]/r = 2¢x p e
The two functions o« and p are related by the Bianchi

(6)

()

(9)

identity

(10)

[
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/"3, SOLUTIONS OF EQUATIONS <

Eliminating p from (7) and (9) we obtain a-38=a+b log r,
with a and b constants 6f intégration. We are free to impose the

boundary conditions 990 = - 1 on the axis r = 0; from (1)

" Opr v
one finds then that o(0) = B(0) = 0. With the constants a=b=0

we then have
o =38 . | | o (11)
Again eliminating p from (7) and (8) and usihg (i1) we

2

obtain 81] + 581 B]/r = 0, whose so]dtion is

58 = 1€)g(m + nY‘Z) . ) . ’ (]2)
with m and n constants of integration. The imposition B{0) = 0
implies m = 1. : .

Ke finally obtain for the presure the expression

5cp = 4n (1 + nrf)T12/5 o ' , (13)
this expression_satisfies the Bianchi identity (10)f

If we now call the constant p, = 4n/5¢ , our sclution

may be written as

ds? = F3ax")% - F ar? - TV (4% ¢ rlgs?y - (14)
~6
p=rpyF , (15)
2 ,52,2/5 -7 :
F(r) = (1 + r /RZ) / s R é = 5Kp0/4 . (16)
Cn the axis of symuetry (r =-0) this line e]ément

(14) reduvces to

A
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-6 -
. - . 7 ' :
520y = (dx)? - dr? - 42?2 - PP de? - - (17)
and in regions close to this axis (gpor2 <<‘l) we have

’ ' . . 2 ' . -
990 *© 1 + g Kpor2 s p = po(l_— 3Kp0r ) . : (18)

The significance of these results will be discussed later.

We can evaluate the ehergy content of the distribution

from the axis of symmetry to the radius r, per unit 1engfh mea

sured on that axis: we take Tolman's [4b] general result

d3E = (-g)1/? [?78 - TJ dx! dx? dx® , g = det g (19)
. | | uv .
and use (14) and (15): we obtain

3 . e=5 : S | '
d'E = GpOr F." dr dz do . : : (20)

If we now integrate (20) in ¢ and in r {from 0 to r) we get for
the linear density of energy czk(r) the expression

2

cPa(r) = dE(r)/dz = Supyr? (1+rf/RE)71 . ' (2

One finds from (21) that' the total energy content per unit

length measured on the z axis is finite .and only depends on na-

turé] constants:

¢Za(=) = 3c*/56 . g (22)

One also finds from (21) that half of the total encrgy
of the distribution is conteined inside the radius R given by
(16); we may theh consider this value R as a measure of the ra-

dius of our distribution.
-

In regions Tar from the axis of symmetry we have fron
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(14) and (16) the asymptotic line element

L

ds?(=) = (r/R)'2/3

(6x0)2 = (r/R)Y5 ar? - (r7R)Y5 (42%4r24e?)

L | (23)
this line element is an exact solution of the Einﬁtein's equations
for fhe'vacuun‘y(Ru = 0) and corresponds to the extericr gravita-
tional field produced bv an infinitely lonﬂ cylinder of matter,
with un1form linear dg;;1ty. The value A of this dons1ty can aej
obtained in the weak field approximation: in this approximation
one has 900 = exp(Z@/cz), where ¢ = 26X leog r + const is the

Newtonian potential. Compur1ng these relatlons with ¢ from

=00
{23) one-finds A = 3c /5C, a value that coincides with. '(22).

KWith appropriate coordinate transfeormations we can ex
press cur asymptotic result (22) both in Yeyl's cancnical co-

= ) and in Einstein-Rose

ordinates (g00 g¢¢ = «r s 9pp T 9,,

coordinates (g00 = - g =r ); however, none of

rr > 92z 9¢¢
these two sets ¢f coordinates is suitable for describing our

entire system. The reason is that Weyl's canonical coordinates

can only be used when Tg = - Tg ; and Einstein-Rosen coordinates
. z e e . . e
require Tz = - Ti ; none of these equalities is satisfied by

the energy momentum (5). Our coordinates, however, are suitable
, . w2 , \ ) .
for systems with TZ = Tg ,» @ relztion obeyed by our systen,

Only in the asymptotic regions, where all components of TS Vi

nish, we cen use any of these ccordinates,

4. TINELIKE GEODESICS

Fr par ot dr-waress



S ’
.~ be obtained from the general line element (1). We start with the

geodesic equation

du¥/ds + v"‘p WuP =0, uM = dxMrds (28)

and use the Christoffel symbo]s>12); we obtain for p = 0,2,3

au’sas + 20, %0 =0, (25)
duf/ds + (gqmapdu'u® =0, | ) (26)
duv¥/ds + (gy-aj+z/ryulud =0, (27)
. 1. . | . 0o 2 -, 3

while u’ is directly obtained from u-, u and u~ through
u'\uA = 1; The first integral- of these equations is then’
I L P TS =,(C/T2) e®F

) 4 (28)
(ul),c - (04€°<G - ])e"CtS - (8£.+ .Cc/rc)ea-sts., .

2

with B, C and_D- constants of integratioh related to the three

components of a given "initial" velocity of the test particle.

These results are va]id for.all physical systems
with symmetries compatible with the Tine element (1). One finds
from - (28) ana (1) that while the covariant compenent Uy usually
varies along the metion of a given test particle all other com

ponents are kept unchanged along that motion, .
Ug u, = - B . us = - c . - (29)

In view of the dif{iculty in obtaining the integrals

of (28) with the Tince element (14) we only coasider the motions
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, of test particles with velocities small in comparison with that

of light, and in regionsAnear the axis of symmetry r = ¢. In

other words, we take the dimensionless gquantities 82, D2

-1,
C2/r2, Kpor2 all very small. fhe.singu1af1ty of C2/r2 on r=b
will be seen to be only apparent, since onlf'particﬁes with €=0
.can -cross that axis. We then obtain from (28)'with the line

element (14) the equations

dx’7ds = 0% (1-3cprf/2) =1, dz/ds =B, de/ds = c/re

(30)

4

(dr/ds)? = p* - 1 - B?

- c?/r? - 3epyriy2

These equations can now be integrated; we call 0 = ct and oﬁ;ain

r? = w2 cos(o-¢g) + m2 sind(e-gy) (31)
M tan(e-¢p) = m tan (wt - ¢f) | _ (32)
z -z5=c¢cBt , S o e - {33)

where ¢0, ¢6 and zy are new constants of integration, and

w? = 3ccipyr2 L (34)

is a constant not depending on-the nenrelativistic velocity of
the particle. The two constants M and m are related to the ve

locity parameters through

2 2 2

N 2 (O - (U T L D2 (3

(4%
N
N

.
From (31) to (33) one finds that the most general wmotion of &
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“"never relativistic" test particle is an helix drawn on a c¢y-

linder with axis on r = 0, having an elliptical section with
semiaxes M and m§ each tést particle has a constant longitudi-~
nal velocity (dz[dt = ¢B), anﬁ all particles complete a revo;
lution around the z axis in the same jnferva],of time ZH/Q .'
Particles that cross the axis r = 0 correspond to cylinders

with semiminor axis m = 0; then from (35) one finds that for

[}

-such particies C 0, as stated before.

5. NULL GEODESICS

Null geodesics ;én formally be obtained from (24),

o A Py . -
but now u u, = 6. A first integral is then

4] -2 RIS
A/r{vu - e A')J -~
~ 9 Vi N - - A <

n o .
dzsdx” =g Q3"' 3 A
- g N -~ ~“

T

(36)

'

(dr/dx")? = [és - (8% + Cz/rz)e3§] L2038

the two constants B and C are related to a given “"initial" di-
rection of the null geodesic. These results do not depend on
the particular form of the functions o and B.

In the case of our line element (14) one has from
(36)

. " , A
2.c?eyr L azzasPenrt L dssonlecrfn?,
{37)

again we have not been eble to obtain the geneval exact solu-

0,2 .2

£

(dr/dx" ) =F%- (8

(&%

tion o7 these equations. However, a few intevesting vesults can
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s
0”

/”be presented.

Given an arbitrary radius re < (3Kp0/4)']/2'we can have
helical null geodesics drawn on a circular cylinder with that ra

dius, with diréttion parameters
2 o2 8.-13/2 2 .4 2 -13/2 ¢ agy
5C7=8R"r F_ s B f(] 3kpgr /A)F » F.=F(r.). {38)

A plane circular null geodesic (B=0) is obtained when

ro = (3kpg/) 7L (39)

For small values of the constant radius re we have lightlike he
lical motions almost parallel (B? = 1) to the axis of symmetry§
the angular velocity of this motion can be obtained from (37).

and {38}:

of = (dosat)? = vectp, .. o | (407 ..
Null geodesics along the axis r = 0 have C = 0 and 82 = 1.
Similarly to the time1ike'geodesics, a1l null geode

sics close to'the axis of symmetiry (1~BZ, Cz/r . Kpor2 ail

[as

very small) present elliptic helical .characteristics; the semi .

axes M and m are now given by

2 2 2(2

Mm = ¢C/Q R MY 4+ mn" = ¢ *82)/92 o (41)

where Q@ 1s the frequency (40).

He finally consider Iightlike wmotions on planes con
taining the axis of symmetry: we put C=0 in (37) and obtain

2 I8 )

(¢r/az)S = p7° 770 e | ' (42)
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,"1f one defines tan v{r) = dr/dz “one finds from (42) that the

angle v = v(0) of incidence on the axis of symmetry is simply

given by
cos v= lBl ;- RS ' ' C o (43)

one a]so finds from {42) that the wmaximum distance (dr/dz = 0)

reac hed by a 11ght ray 15

flia X

Combining then {43) and (44) one finds that null geodesics al -

most parallel to z-axis reach bn?y

. . . . -'/2 ‘ _ ) 7 ’.
Foax = (5/8) v R, | v T'O . (45)

and null geodesics almost normal to z axis reach

- ) —v 5/ o ’ :
Thax = R/(ﬂ/? V) s v = 71/2 3 (46)
for an angle of fﬁcidence equal to 45° one obtains
Foax = LR/5 s - v = /4 s (47)

a distance of the order of the radius R.

6. U]% USSTONS

e obtained the exact solution given by general rela
tivity corresponding 1o a distribution of discordered radiation

in equilibrium under 7fs own gravitation, and with cylindrical

roo= R(JB|TO/Y - )‘/2 : | (44)
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symmetry. According fo Tolman's [4a] preséripfions we used an
/;isotropic and traceless énergy mdaentum tensor to represent
;the distribution. Ouf solution then may alse correspond to - a
disordefed distribution of neutrinps, and to disordered diétri_

butions of ultrarelativistic particles [1].

Our line element (14) is well behaved except in the
.asymptofic‘regions r -« . In these regiohs the solution (23)

is equivalent to the Levi-Civita's vacuum cylindrical oné.[E] ,

2 2h .2 2

ds? = v& o2 at? - (ar J2h{n=1)_ .2 ~2h. .2

+ dz'?) P do®
p=r'/r, ; ros Vg» h = constants,

where his coordinates (Weyl canonical) are related to ours

through
xO = a3 Vot , rd = 312 g4 b . z = oaz'

and where the special value h = 2/3 is assigned; the guantity
.4h-essentially corresponds to our A(e=) given in (22), the dif-

ference in numerical value being due to the change of coordinates.

We found that both the plane solution [2] and the pre
sent cylindrical solution tend to vacuum soclutions at infinity,
while the Klein's spherical solution [1] does not. The origin
of this difference is that in the spherical configuration the

concentration of the distribution “decrezses but not very rapi

dly" with increasing radius; one finds that zccording * to
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~Tolman's definition_[4{] the energy content between two concen
tric spherical shells of large radii r and r + Ar is propor -

]/ZAr, a quant1ty that increases with r. In the pla

tional to r
ne- and in the cy]wndrxcale symmetrwc systews, however, the
concentration dec*eases much more rapidly so as to allow a far

piaced observer to attr1bute the gravitational field to a slab

Pp—

of finite thickness or to a cy]lnder of finite radius.

Similariy to the spherical and plane distributions our
solution contains only one parameter, the central pressure Pos
and the spectrum of frequency of our isctropic radiation is ar

bitrary.

Since the trace T of the eneray momeﬂtumrof the. dis-

-

4

tribution vanishes, the scalar curvature K= also vanishes, How

=

ovor +ihn BYepnuavrall A
are s,

+ho DI
gver, 1Tne squ H

LR R X

o~
iW by

-

~r +nnr‘0v- Anne
[OROR vaetiou uwe o

RUVR = (192/25)R -4 (1+r JRZy724/45

also the Kretschmann scalar is non-zero,

-4 -24/5

RPVPOR = (24725)2R
)

2,2
1V po (1+r /R )

(25+’Or /R +7r /R )

Both these scaiars are finite at r = 0 and decrease monotoni -

cally to zero at infinity.

In studying the timelike geodesics we found that the
nonrelativistic tesf particies pevrform harmwonic moiions around

the axis of symn(try; together with a uniform d:Jp acement

parallel to that axis. This behaviour of particles is characte

o
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ristic of gravitational fields produced by homogeneousfdistfi—

_+butions of energy; indeed, one ﬁf§ds from (18)_that.the.cohce£_

- tration of the radiation is fairly uniform in the central zone.

“The null geodesics deserve a special consideratidn'in
éur study, since these are the geodesics_fo1]owe&'by the very
’ ;onstituenis-of_the physical sysfem. Ke found (35) a closed
null geodesic, a circle with radius neafly 1.3R, in a region
where the concentration is still considerable. Ye also found
(40) that the frequency Q@ of revolution of almost longitudinal
central null geodesics is larger than the frequency o (34) of
nonrelativistic test particles, 92 = 4w2/3;-an interptetation

of this factor 4/3 has already been tried [2].
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