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ABSTRACT

It is demonstrated that stationary vacuum field solution with

cylindrical symmetry is always reducible to static cylindrically symmetric

solution.,

* To be submitted for publication to Comm. Math. Phys.
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I.”" INTRODUCTION

1

In an ealier work, Lewis ‘examined the stationary cylindrically

symmetric vacuum field and obtained‘a special class of solutions of
Einstein equations; these solutions are linear combjhations of static
cy]indrica]]y symmetric solutions withabonstant coefficieﬁté. In a recent
work Som et al.2 extended his work tq a'stationary‘axial1y symﬁétffc case,
and presented a class of so]utioﬁ§>whiéh are linear éombﬁhations dfﬁgfatic
axially symmetric Curfzon3 fields. in’bOth-Casés;’they SHéwed‘that |
stationary metrics are reducible to fundamental quadrétic fbfms with suitable
coordinate transformation; so one can interprete these solutions as
descriptions of static fields by an observer who {s rotatﬁng with constant
angular speed.

In the present work we have studied the question whether the
diagonalizability of stationary metric by coofdinate transformation s
essentially linked with the specialization of the soTutions. Of course with

4 which is

axial symmetry one has a special class of solutions given by Kerr
not diagonalizable by coordinate transformation. But in the case of
cylindrical symmetry our observation is that the diagonalizability is a generai

, feature of stationary vacuum fields.

II. FIELD EQUATIONS
We start with the general stationary cylindrically symmetric'line

element

2

ds® = f dx°% - &2V (dr® + dz%) - rde? - 2mdx® d¢ ., (2.1)

where f, £, mand ¢y are functions of r alone; we Sha]] number the
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coordinates (xo, r, z, ) as (0, 1, 2, 3) respectively.

Einstein field equations in empty space are given by

L
B" =0 ; (2.2)
for the line element (2.1) the field equations (2.2) are
2
D‘P-l-l - qj] = (f-l ée.-l + m])/ZD = 0 s (293)
DY, + ¥y =0 R (2.4)
[(efy + mm)/D]; = 0 (2.5)
[(f&, + mm)/D]; = 0 and (2.6)
[(me; - &m)/D]; = 0 (2.7)
where
D% = fo + md (2.8)

and subscript 1 denotes differentiation with respect to r.
Summing equations (2.5) and (2.6) one gets immediately on .

integrations
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D=ar+b | (2.9)

where a and b are constants; by a simple transformation of coordinate we

can now introduce the Weyl-type canonical coordinates where

D" =fL +m" =r" . (2.10)

Subtracting equation (2.6) from (2.5) one gets
[(efy - fe;)/0]; =0 (2.11)

we take equations (2.7), (2.10) and (2.11) as the basic equations to determine
f, £ and m.
To obtain a general class of solutions we introduce here similar

functions as done by Datta and Raychaudhuri5 R

u=f/L (2.12)
and
v=m/L; (2.13)
equation (2.10) gives .
Eo=r? ety (2.14)

and equations (2.11) and (2.7) reduce to

ﬁwuu+ﬂﬂfo (2.15)
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and

FH”“+$U]=00 - (2.16)

The solution of these equations gives a linear relation between u and v,

Veou+y (2.17)

where § and ¥ are constants of integration so f, £ and m are linearly
related. With the help of equation (2.17) one then immediately obtains from
any of the two equations (2.15) and (2.16)

2

26%u= (1 + 4sy) /2 (1 + y2)(1 - y&)V - (1428y) (2.18)

with
y = (r/)® | (2.19)

where ¢ and ¢ are constants of integration. From (2.12)-(2.74} and

(2.17)-(2.19) we now get

£ = (r/86n) [O#n)3 - (=31 (2.20)
2= (ré/n) [y-y" "] (2.21)

and
m=(r/2n) [(+n)y™" - (1-nly] (2.22)

where we have used for brevity

io= - (1+48y)/2
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Now from (2.4) and (2.10) we get

e?¥ - (r/B)za i (2.23]

where B and a are constants of integrations; substituting (2.23) in (2.3)

we have

f 4+t = - 4o, (2.24)
then from (2.20)-(2.22) and (2.24) we get

o= (2 - 1)/8 . (2.25)

For particular values of constants of integrations our solutions reduce to

Lewis solution.

IIT. DIAGONALIZATION
We shall now consider the diagonalization of the line element (2.7)
for this general class of solutions. Let us consider the following

transformation of coordinates:

XO - (5/Cn)]/2 [Xo'(z;/s)-(1+€)/2 + C¢s] , (301)
ro=r (e)(*e)2 (3.2)
z =z (z/8)(1%€)/2 (3.3)
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and
6 = (atn) /2 [ (1-n) (z/8)” (V2 4 (ramyze'] (3.4)

by this coordinate transformation one obtains the line element (2.1) reduced

to the form
2 2 o' —2c+2c2 2 . 2 2 -2, 12
ds® = (r'/a)<" dx® - (r'/2) (dr'€ + dz ) - r'S(r'/x)""de’
(3.5)
where
1-e= 2C (3.6)
and
3 = C(C/s)-2+0+1/c . (3.7)

This Tine element is already obtained by Marjderf6

; the solutions correspond to
static radial exterior field of an infinite cylinder. So one can infer that
stationary vacuum field with cylindrical symmetry is equivalent to a

cilindrically symmetric static field.
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