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In this note, we shall sketch a different approach to the
proafs of some results in weighted approxtwma§ion theory thatwe
established elsewhere.

S8weh results, in their general fomy, were concerned with
modules of continuous functions, Algeh¥ds of continnous fanc~
tions comstitated just a particular case, since every algebra
is a module over itself.

The viewpoint that we shall adopt here consists preciaeiy
in 1inverting thé oﬁer we preferred previously. We shall now
deal fimstly with the case of algabras of continuocus fanc-
tianss and then use it to treat the general case of modules of
continuous funetions.

% This work was done when the author-was at the Unjmersity of Bochester,
Rochester, New York.
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_ Letv E be a completely regular space. Denote R, or Cy the
system of all real, or complex, numbers; use K to refer to
either R or €. 1In case it appears to be convenient, we shall
Include K in the notation for each function spéce in order to
emphasize that the functions take values in K. Let €(E) be
the algebra of all continuous K-valued functions on E. Fix a
set V of welghts on E, that is, of upper-continuous positive
functions on E; we shall assume that:

(1) 1 V1s V5 € V, there are A>0 and veV such that vi4dv

£
and va-i\.v.
(2) If x eE, there is veV such that v(x))> 0.

We then denote by €V, (E) the vector subspace of C(E) of allf
such that, for every veV and every € > 0, the subset of E

{xezlv(x)-lr(x)lz_e}

4¢s compact. We shall use on GVQ(E) the locally convex topolg
gy defined by the family of the following seminorms:
£ 9 /)—> “"f“;',’-' sup { vix):|f(x)||x€ E}
for all veV, ‘
We shall denote by {4, a subalgebra of (C(E) containing the
unit 1. It defines an equivalence relation B/3, on E if we

consider x,, X,€E as being equivalent whenever f(x,)= f(x,)
for all fe(.

We shall denote by {(} a vector subspace of eV, (E) and
shall assume that (/s a module over (@, that is QW< W

W 1s localizable under (} in mw(E) when the following
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condition holds true: a function f belonging to GVOO(E) is in
the closure of {Uin @Vm(E) if (and always only if), for any
veV, any € >0 and any equivalence class X modulo E/@, there
exists some we U such that

v(x)e|w(x) -~ £(x)| <€ for any xeX .

In particular, if (L is contained in GV _ (E), we shall say
that @ 1s localizable in @V _(E) if @ is localizable under @
in @V (E); in this cese we have ¢/=( and R is treated
as a modulo over Q. It is imediate that the following condi-

tions are equivalent:
(a) @ is localizable in evm(m).

(b) A function f belonging to GV (E) is in the closure of
@ in QVOO(E) if (and always only if) f is constant on every

equivalence class modulo E/{.

Two basic results for the approach to be adopted in the

present note are the following ones.

THEOREM 1. Assume that the set of all submodules of {fover
(3, that are localizable under ( in GVOO(E) do generate {1/(in
the sense that the vector space sum of all such submodules is

dense in (¢}). Then (¢/"is localizable under @ in QVOO(E).

THEOREM 2. Assume that =@ w, where we QVOO(E). Then
{0 1is localizable under (4 in CVo(E) if and only if (& is
localizable in G(V.-le)oo(E), where V.|w| = {v.lwllv,e: V} .

Let Q p denote the set of all fundamental weights on R® in
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the classical sense of Serge Bernsteln; that 1is, the set of all
upper-semicontinuous positive functions w on R® such that the
algebra of all K-valued polynomials on R® is contained and
dense in eww(a“). Let Fn be the set of all upper-semicon-
tinuous positive functions Y on R® such that /rheQn for any
h > 0.

THEOREM 3. Assume that K = R and that, for every v.eV, €3
is generated as an algebra with unit by the set of a1l aec@
for each of which there exists some 7€ rl satisfying the
estimate

v(x) & fr[a(x)] - for any x € E.

Then ( is localizable in QVOO(E).
The proof of this result is based on the following straight
forward extension of a classical lemma due to Kakutani and

Stone.

LEMMA 1. Let X = R and JZ be a sublattice of EV_(E). A
function f belonging to CV, (E) is in the closure of L in
@V (E) if and only if, for every X;; X € E and every €0,
there exlsts some g eag such that

lg(xy) = £(x,)IKE  for 1 =1, 2.

‘Once Theorem 3 is proved, we use it ’cogether with Theorem

1 and Theorem 2 to establish Theorem 4 of [3] in the case K=R.

THEOREM 4. Assume that, for every'vsV, @ is generated as
an algebra with unit by the set of all a €@ for which

o 1
Z .’T=+w‘
n=l m



157

where

M = sup {v(x).]a(X)ml ler} for m = 0y 1y eesy
and that (L 1s self-adjoint in the complex case. Then @ is

localizable in GVOO(E).
The proof of this result 1s based on the following lemma.

Let € and é be two real locally convex spaces, where '3’ is
assumed to be separated. Let U be an dpen subset of £, and 9
an indefinitely differentiable mapping of U into j. Denotq by
a® P(x) the m~th differential of # at x €U for m = 0, 1y...;
it is a symmeti'ic m-linear napping of £® into :f. We shall say
that § is quasi-analytic on U if, letting d #(x) denote for
each x €U the closed vector subspace of 5’ generated by all
d‘ﬂ(x).(xl,.’..,xm), where m = Oy 1yeces and Xq9eeesX, € € are
arbitrary, then the mapping x gA»d #(x) is "Constant on every
connected component of U; then for every x €U, d0(x) is equal
to the closed vector subspace of ¥ generated by ¢(Ux), where
U, is the connected component of x in U. We refer to 2.

Let V denote the set of all v/®, for arbitrary veV and
B =1y 29.... Notice that €Vm(E) is the largest subalgebra
of CV_,(E); therefore, if (B is contained in @V (E),  then
actually (1 is contained in GV (E).

LRMMA 2. Let K = R and & be a vector subspace of (L
generating ( as an algebra with unit. Then @ is localizable
in GV (E) if and only if the indefinitely differentiable map
ping
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£ N> ej'f
of L into QVOO(E;C) is quasi-analytic, where ¥ 1s endowed with
the topology induced by evm(n;a).

Once Theorem 4 is proved, we combine it with Theorem 1 and

Theorem 2 to establish Theorem 7 of [3].
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