NoTAS DE Ffsica
VOLUME XITI
0e 11

GEQMETRIC INTZRPRETATION OF PARAMETRIZED DYNAMICS

by

Colber G. Oliveira

CENTRO BRASILEIRC DE PESQUISAS Fisicas
Av. Wenceslen Braz, 71
RIO DE JANEIRO
1968



231
Notas de Fisica - Volume XIII - Ne¢ 11

GEOMETRIC INTERPRETATION COF PARAMETRIZED DYNAMICS

Colber G. Olivelira
' -
Centro Brasileiro de Pesquisas Fislcas
Rio de Janeiro, Brazil

(Received 6 March, 1968)

INTRODUCTION

The parametyric representation of a dynamical system is
the more simple example of a Lagrangian formalism where the
initial Cauchy data cannot be arbitrarilely specified, and even
after the proper specification of the initial data, the evolu-

tion of the basic configuration varilables remains not fixed.

The Hamiltonlan version of the theory has a phase space
which is not entirely determined sinece it contasins o constraint,
the so called Hamiltonlan constraint. Therefores the initial
condition problem in terms of canonical pair of wvarisbles is
also subjected to a subsidiary condition, the constraint equation,

which 1limits the possible choice of the initial variables.
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Furthermore, the evolution of the canonleal ?ariables out of some

proper initial values remaing arvitrary.

Both kinds of methods may be presented from a purély
geometric approach, which is the point of view used in this paper.
The Action integral is inveriant under a parameter change, since
the Lagrangian is a homogeneous function of the velocities @' of
the first degree, which in turn implies that the Hamiltonian is
equal to zero. In our geometric languvage, the Action integral
gives the lenght of the arc element in a one=dimentisonal space,
the "parameter space", equipped with a metric which is given by
the square of the Lagrangian. The invariance of the Action
integral under parameter changes 1z therefore the statement of
the lanvariance of lenght of the arc element under a transforma-
tion in the "parameter space®, which we call a coordinate
transformation. Under such transformation the Lagrangian changes
as a first order covariant vector, which mathematically is
equivalent to the statement that the Lagrangian is a homogenecous

function of the velocities of the first degree.

The affine connection associated to the Yparameter space

is a well determined quantity, and as it is clear, no curvature

exists in this space.

The property that the initial condition problem has no 7
unique sclutlon Is geometrically interpreted by the rather simple
statement that the configuration and velocity variables are

respectively sealars and vectors and therefore depend on the
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choice made on the coordinates (or parameters). A similar inter-
pretation can also be made for the initial condition problenm in

terms of canonical palr of variables.

It is treated the problem of determination of invariant
dynamical functions, that means, functions of the dynamical
variables, and possibly also of the corresponding velocitles,
which posess a well prescribed value when we carry out a
coordinate transformation. The method used for the determination
of those invariant dynamical functions in the Hamiltonian
representation is an extension for the classical dynamics of a

method used by Komar in general relativity.

The classical commutator algebra for those invariant dyna~-
mical functions is given. It is shown directly the equivalence
of this commutator algebra with Diracts method of introducing a
new bracket for giving account of the presence of second class

variables.

The intrinsic value for those invariant dynamiecal funetions
is independent of the particular coordinate condition which is
used, However, the commutator between invariant dynamical
functions depends on the choice made on the coordinates. In a
future paper, we will study up to what extension we can determine
a modification on the definition of what we called a starred .
variable for obtaining a commutator algebra with a more symmetrieal

behavior with respeect to the choice of coordinates.
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1. THE CLASSICAL DYNAMICS UNDER PARAMETRIC FORM

We gtart from the usual Hamilton's '  varlational
principle which states that the equations of motion are the

extremals of the variational problem,

t2
aj L(q, q, t) dt = 0
l
for variations §gq which vanish at the boundaries of integration.
The same physical content may also be presented by means of
first order differential equations if we expand the dimensions of
the configuration space by introducing the momenta variables as

independent variables and use in place of the Lagrangian, the

Hamiltoniane.
Ty
) a .
6Jﬁ (pa q - H (pg qda )Y dt =0
vy

6p = 8g = 0 at the boundaries,
which gives as result the canonical equations of motion,

, VH .. ?H
D, = e

a 2
aqa apa

In the present treatment we will be interested in a
formulation which' containg besides the usual invariance
properties of classical dynamics, another invariance property,

now with respect to a function group of transformations which
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depends on one arbitrary function. As is known, such formulation
is obtained when we introduce another parameter Lo take place of

time, and let this variable in the same ground as any other g-type

variable.
9> o,
g,f Lt'de = j A de =0
1 ©;
oL @
=L Qs "1';:" 3 t tt (l)

If the dimension of the g=~space is n, the extended representation
in its canonical form will belong to a phase space with dimension

Zn+ 2.

It is a simple matter to verify that the Lagrangian in the
extended representation is a homogeneous function of the "veloci-
tiesgh q'a, t' (which we call for short as Q'i) of the first order.
As consequence of this, the Action Integral is invariant under an

arbitrary change of the parameter 6.

Jlﬁ 46 =f£ a8 (2)

where 6 is an arbitrary function of 8. Since the momenta Pi are

given by,
240
P, = (3)

i 2q' L

it follows that,
l.
piql=a£ (4)
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which implies that the Hamiltonian in the extended representation
vanishes.

H=p, q1-L =0 (5)
Thus, as consequence of the invariance of the integrand of the
Action Integral under arbitrary transformations of the parameter
6, the Hamiltonian representation contains a constraint, the so

called Hamiltonian constraint.

We may present the relation (1) also as,
b=|pg—=H]t , (6)

if we call by w the momenta conjugate to t, we can write Eq. (4)
as

'3

ag=piq + Tt (7)

A comparison between the equations (6) and (7) gives,

H(p, q; t) + 7 =0 (8)

since # vanishes tooy we may set it as proportional to the left

hand side of equation (8).

#Ho=a (H+7)

The value for the constant multiplicative factor i8s easily found

by using the equations of motion in the canonical form

v 'bﬂ Q' _ 2¥

o

X

we find, o= t'. Then, we can write the Hamiltonian constraint



237 .

G5 e
K=t (H+m) =0
where it is understood that the part which gives the constraint

is really that given by eguation (8).

From now on we shall adopt the following notation: we call
the variables Q and P as dynamical variables, the parameter ©
will be called as coordinate, the reason for this comes from the
fact that presently the variable © appears similarly as it doesin
any generally covariant theory, that means, playing the role of a
coordinate. It is the intention of this paper to pursue further
this analogy. Indeed, we can replace the previous statement
which explained the invariance of the Action Integral by a purely
geonetric statement: Under a coordinate transformation © changes
as a first order contravariant vegﬁor,

~ 48
de = ~— de (9)
ae

The Lagrangiancﬁ changes as a first order covariant vector,

~ de
L= —

(10)
as

Which is mathematically equivalent to the statement that o£ is a

homogeneous function of the Q'i of the first degree.

Thus, we have to treat with a one-dimensional tensor

calculus, with coordinate © which is allowed to transform as,

& = y(e)

where the function (&) is arbitrary, except for eventual
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boundary conditions.

- The Lagranglian is a linear function of the Q’i, and these
dynhamical variables form a2 first order covariant vector. The
aynamicalhvariables Qi and Pi are scalars {recall that Pi being
the partial derivaties of & with respect to Q'i, will be a
homogeneous function of the Q'i of the degree zero, which means

to form a scalar in our geometric language)e.

The Lagranglan in the old representation, the L, is also

~J
a scalary L = L.

2. GEOMETRIC INTERPRETATION OF PARAMETRIZED DYNAMICS

We look at the variational principle which leads to the
equations of motion as if it were an extension of the concept of

a geodesic for a one-dimensional space.

s‘ra&ae.: des .

The reason for this interpretation, even it it is diffiecult to
understand what might be 2 geodesic in one-dimensional space, is
the following: It 1s known that the canonical formulation of
general relativity represents a theory where the four coordinates
pay the role of parameters, as result the theory contains
constraints. The motion of a particle in a gravitational field
ls described by the geodesic associated to the metric which is
solution of the gravitational field equations; Presently, we
Ltreat with a theory which is much more poor in structure, but

- nevertheless contains some of the properties of general relativity.
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Namely, instead of four parameters it has just one parameter, and
as consequence its canonical formulation contains just one cons~
traint, which as we will see is associated to the generator of
infinitesimal displacements along the 6=space. We may, as we will
do, interpret the Lagrangian equations of motion as a geodesic in
O~space {the term geodesic is to be understood purely in technical
sense, since no intuitive geometric interpretation is possible)d,
where the metric is given by,
ds2 = g dezg .
g =L . (11)

We will see that no curvature tensor exists in the 8-space, as it
is clear from the fact that this is a one-dimensional space. Thus,
we have to take the metric as a given variable 1, which is
equivalent to take the Lagrangilan as a given variable as we do in
all cases where a Lagrangian is used (it has to satisfy the neceg
sary invariance requirements, but nothing else is required concerp
ing its origin).

With respect to the transformation laws or & or gy We may
use the terms covariant tensors or relative scalars with weight -1
and -2 resngtively, if we take for the Jacobian of the transform-
ation J = %g . However, we prefer to use the terms tensors, since
| that at one dimension there is no way to know what is the dif-
ference between determinant and matrix element. z In such.nota-
tion g transforms as a second order covariant tensor,

o ae \ ¢
g(e) = g(e) ("-73)
_ de
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We proceed to introduce an affine connection in @-space. Let £{®)

be a covariant vector of the first order,

£(8) = £f(8) —
de
The derivatives %g will transform as,
af(8) &% ae'¥¢ ar
P = f + __-N e (12)
de deZ de,/ dae
z

Due to the term & g f in the right hand side of equation (12),

the quantity £t does not form a tensor. We introduce the quanti=-

Tty
f;(e) =1 = fA, (13)
and impose that it behaves as a second order covariant tensor,
. ae\*
rie)=r¢ (e) ‘ (14)
? de
Equations (12), (13) and (14) imply that A transform as,
2 Pa¥s
~ de d"e 46
A= -E»A ho— (15)
a &e de

It is easy to verify that a A transforming in the way given by the

relation (15) is,

ln g . (16)

Thus, the quantity A given by (16) is the affine connzction in
@ -space, and f; is the covariant derivative of the covariant

vector £(6). Similarly we can define the covariant derivative

of a contravariant vector (p(e),'
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=Pt -+ [5 1
g, =P + ¥ (17)
which transforms as, ~
~ (N) de 4o (0)
A8) = — — yp, (8
Q’ ae 48 ?

The covarlant derivative of the metric g vanishes,
g, =g'=2gA=0
3

where we have made use of the relation (16). From the formulas

given up to here, it is a simple matter to generalize the oper-

ation of covariant derivative for a tensor of arbitrary order,
3; =3 203l

the positive sign holds if j is a contravariant tensor of the

order ny the oposite sign is used if j is a covariant tensor of

this same order.

The operation of raising or lowering the order.of
variance of tensors is similar to the usual operation in tensor
calculus (coaventional tensor calculus). For instance; the
covariant components associated to the contravariant vector j
is,

kK = g]

The following results are obvicus: FEvery function
f(Qi, Q'i) which is & homogeneous function of the Qti of the
degree ny form s covariant tensor of the order ne As
conseqguence, all furnctions of the above form which are

0 s
SURRPALE: S - .
homogeneous in Q with degree -n, will form contravariant

tensors of the order n.
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The Lagrange equations of motion,

a 2L b

dae QQ'i 3Qi

=0

in terms of g read as,

d ?
(_ -A) %g. =25 (18)

is a covariant vector, we can rewrite this relation in

g

7
2 *
compact covariant form,

Since

? (S
g -~—=0 (19)

29’1 /5 2qt
2 3

Since I is a secalar

» its derivative respect to € is the same
as a covariant derivative, thus,; we may also write the Lagrange

equation in the same form as the relation (19).

Another interesting result, which will be used later on,
is the equation which gives the expression of g' in terms of the

'.
Qi and Q *,
'y 2g 4 g
g =-ql | —a-— — (20)

Y

From now on, we shall supose that 05 is explicitly
independent of 6.
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3., THE INITTAT, CORDITION PROBLEM

. . . i
We can represent the configuration variables Q (8) by the
following power series expansion, 2

ale) = of(e) + e(gl) + fL~(Q"i) T oeee (21)
‘ j’.oa' o

since the Lagrange eguations are second order differential
equations, we need two guantities as initial conditions, taking
into account the cerrect number of variables, we state the Cauchy
initial value problem as: Given at € = 60 the 2n + 2 variables
qi(e)a q'i(e), $(8) and £'(9), then the evolution of the system
throughout the region €> 6@ of the n+ 1 wvariables qi(e), t(8) is
to be determined from the Lagrangian equations of motion. For
convenience we will take eo = 0, For solving the Cauchy problen

we have to obtain @" as function of the remaining variables. We

have, )
5 L L
s o (z2)
2¢°2q" * aq ¥aq'? 2Q™
, 3L
Let's consider -~~s—-—-- g5 the matrix element Y., of a matrix ¥
0L
Y = ettt e
L I
29 FaQ

. If the matrix Y has an inverse, we can solve (22) for the QY,

=Y

w o4 ki oL 'Bao@ ng_

Q (23)

2t aqlagt
From which any higher derivative in © may be computed. Replacing

(23) and its derivatives into (21) we obtain the solution of the

Cauchy problem. Thuss the existence of solutions of this
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l...We will see however that

problem reduces to the existence of Y
such matrix does not exist in the present formulation. For proving

this we recall that £ satisfies,

2L |
Rl =L
‘t
2@ *
s . 'k
differentiating in @ & we get
k _
Yj_kq' "-0-
which means that Q' is an eigenvector of-Y belonging to the elgen-

value zero. Thus, the matrix Y is singular, and we cannot predict the

values of @1(®) if we know the Cauchy data at any ©,<©. The
geometric reason for this is similar to that happening In general
relativity (as we sald before, both theories are similar in
structure), namely, if we know the Cauchy data at some value of ©,
say ©,, we cannot predict the value of Qi(e) at a later value of ©
since we can always consider a transformation §J= £(8), such that
£(e) -6, as & ~>8_ and otherwise is arbitrary. The Cauchy data
at & = 80 remains the same, but the value of Qi(e) for e)>60
remains arbitrary since the argument of this function is arbitrary.
As it is clear, this arbitrariety in choice of Q- as function of ©
has no physical implication, since everything which posess physical

significance is independent of the choice of the "coordinate' 8.

The metric g is azlso undetermined as function of 6, since

- i N ' 1
g is a function of QM(®) and @ (8). For instance, for a particle
in a conservative field,

J‘m q'2 32
g(e) = - — = V(g)t!
LZ £ _
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Now, it appears as an iImportant question, the problem of
the determination of quantities which possess a well defined
behavior when we allow & to vary. In the next section we will
treat this problem in the framework of the Lagrangian formula-
tion. Later on, we will treat the same problem in the Hamilton-

ian formulation.

4, OBSERVABLES IN THE LAGRANGIAN REPRESENTATION

We call by the term observable any quantity which has a
well defined evolution when we allow the coordinate © to varye.

Geometrically the name observable is equivalent to invariant.

As it turns out clear, we cannot hope to construct such
a quantity out of functions of ©. For an example, let's consider
once more the metric g(8). Suppose that at 6 = O we know the
value of g. Since a coordinaste transformation has no intrinsic
physical significance, we can always consider a transformation
8 =1(0) =6 +£(8)
(whereig(el is an infinitesimal of the first order). The origin-
al g(®) as well as the g transformed according to this transforma
tion have fhe same physical meaning. Since g transforms as a
second order covariant tensor, we will obtain
5(6) = g(e) -2g(8)" - g'(0) , (24)
Nowy we can take the arbitrary function g(e) in stueh way that
5(9) and its first derivative, ;'(8) vanish at & = 0,
}(e) =}7='(0) =0 .
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This implies that at & =0, the metric is a well determined
quantity, g(0) = g(0). But for all 6> 0 we will have g(8) and
.E(e) of (24) as the description of the same physical situation.
Since then.g(e) is fully arbitrary it follows that g(@) cannot be

a well determined quantity throughout all region © ) 0.

However, it is possibley as we will see, to construct
observables out of functionals of the dynamical variables. We take

these functionals in the form of integrals of the type,

M =[M(e) ae , (25}

where we consider for M(®) the general expression,

1(6) =ﬁij<c}kc€), Q' (8K, 4(8,8)d8 . (26)

We note that for the particular choice,

K;; =85 88, ®)

£il = £ = (g)%r ’
M turns out to be equal to the Action integral. We consider the
factor Kij vhich appears in Eg. (26) as independent of the
dynamical varliables, so that all dependence on tho;e variables is
contained in fij. We mention that 6 1is completely independent of
the dynamical variables as long as we do not impose any coordinate
condition. In this case,; © becomes some function of the dynamical
Variables,lfor instance, we may use as coordinate condition © =

= £(t), and t presently is a dynamical variable.

We proceed to determine the condition which M has to

satisfy for being an observable. This condition is obtained when
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we equal to zero the variation in M which comes by effect of a
coordinate transformation of the form given before, with a
generating function g(e)e Under this transformation the
dynamical variables change as;

§3(e) = F(e) - q(8) = - 9'(e) §(0)

8Q'%(0) =3'%(0) -a'%(0) = £ 8a"(e) .
Where we have considered only the first order terms in 59 We
consider the functions {(6) in such way that it vanishes at the
boundaries of integration (which is the unique restriction
imposed on this function). Using this condition we can drop all

surface terms in the variation 8M, and obtain as result,

wti(d  a __oeti@) 'y
aede Ky (e 6) e e Kij(e,e)-—~—-- 5(9)Q (e) =0,
¥y 9° 29 ¥(¢e)

Sincef(e) is arbitrary., this implies that,

_ @ e _oeet@ |
a8 Kij(e,e) —— Kij(e,e) , Q *(e) =0 . (27)
2Q5(e) " de IR R )

Which is the condition satlsfied by an observable M. Again we note

that in the case where Ki'j is the Kronecker delta in 1, J tlues
the Dirac delta function in 6, 8, and .f‘j‘i =L s We get,

W a [ 2k ‘e
*j-; = Eg ‘*-;-" Q =0 . (28)
0Q 6Q x / J
A direct calculation shows that this result holds. Geometrically
it means that the integral of the arc element in ©-space is

invariant.
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The relation (22) and (28) give,

2
4 1 a 05 t " | ‘az
gkt s g'ky, Q- g'F =0
ia itk X k
2q19q 29

Using that Q' is an eigenvector of Y belonging to the eigenvalue
zero, we can write this as,
z
. L (VA
L] 1 lk =
Q¥ q?t ““T“_TE - Q -—E'-
29199 2
The equation (29) is a relation of the type,

0 (29)

r(gi(e), Q1ce)) = o
Thus, the relation (29) represents one condition on the choice of
the Cauchy data on the point ® = constant. Therefore, the
property of the Action integral being invariant under coordinate
transformations implies that the initial data cannot be chosen
arbitrafiely, but is restricted by one condition. This fact is
the equivalent in the Lagrangian formulation of what happens in
the Hamiltonian formulation where we have one consﬁraint limiting
the behavior the canonical variables, and thereforé limiting too

the Cauchy data in terms of canonical pairs of variables.

5. OBSERVABLES TN THE HAMILTONIAN REPRESENTATICON, AND THE CO-
ORDINATE CONDITION

The Hamiltonian formulation of the parametrized dynamics'

contains one constraint, the Hamiltonian constraint jZ= 0, which

vanishes weakly according to Dirac's terminology 4.
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Given any function of the canonical variables @G, P we
obtain the following value for the Poisson bracket of this
function (which we consider as explicitly independent of €) with

the Hamiltonian,
ar

F, %] = — (30)
| de
We saw before that both Q@ and P are scalars in €-space; then, any
function of them will represent a function of scalars, and its
variation under & coordinate transformation will contain only a
transport term (derivative of this function with respect to 8).
This property along with the Eg. (30) allow us to introduce the
weakly vanishing quantity
G(e) = -~ k(o) (e) (31)
as the generator of infinitesimal ccordinate transformations,
since then, |
[Fy G] = wg(e) Fir(8) = §F(8)
Is the wvaristion in a scalar funciion when we carry out an
infinitesimal coordinate transformation with generating funetion
5(9), We caleulate now the Poisson bracket between Q'i and Go
Using Hamilton's ecquation we gets |
@'Y d = [RNel, 6] . (32)
The Jacobl ldentlity allow us to rewrlte this as,
[EQis%]S G:l = [[Qis @91@] 35'5 ft, &
which glvesy r'i 3 Ly s
@' o] == pa'h =& e 3)

Thus,y the Poisgon bracket of ¢ with Q' gives the corrsct trans-
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formation law for Q' under a coordinate transformation, as should

be the case according to our geometric interpretation for G.

Using the relation (33) we may calculate any type of Poig
son bracket (of course, we also use the relation (30) along with
{33)). For instance, the Poisson bracket of the metric g with
the generator G is determined as,

[, 6] = 24k, d] = 24p; 9’2,
= zﬁpi[Q'i, G__] +24 Q'i[Pi, G]
Using (30) and (33),

gy 6]

~2LP, —6-1— (thi)"ZaCQ‘ig P'i ’
1 ge

which gives as result the variation in g which results from a

coordinate transformation (Eq. (24)).

e, 6] = -2g5" - gg' = dg(e) . (34)
According to these results, an invariant guantity in the Hamilto-
nian representation is a quantity which has a vanishing Polisson

bracket with the generator Gy
[, 6] =0 . ) (35)

A first example of such quantity is given directly by the Hamil-
tonian itself, which form with G a set of two first-class

5

quantities. Presently, the Poisson bracket of ¥ with G does

not vanish weakly, but Instead it vanishes strongly due to the
fact that no further weakly vanishing constraint is present in
the right hand side of this Poisson bracket. However, the fact
that # is an invariant (or observable) does not help too much

since it vanishes. We want to get some other non-zero quantity
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with an invariant behavior under the coordinate transformation
group. First of all, it is of obvious interest to find out an
invariant quantity associated to Qiﬁe), and also to P;(&). Any
other quantity with the property of being invariant, may be in
principle a certain function of such invariant canonical

variables. The method of determination of these invariants is
the same for any kind of given quantity,; so that the presenta-

tion done for Q =snd P may be extended for any other quantitye.

The first step in this direction is a fixation of the
coordinate system by means of a coordinate condition 6o We
will consider the coordinate © as some function of the dynamical
variables Q and Py, with the requirement that it must be an
inecreasing function of time,

o = £(Q", P,) , (36)
29
- >0 .
ot
The relation (36) is the coordinate condition. In the appendix .

we give an example of how to choose the necessary conditions

for obtaining an explicit form for the function f(Q, P).

The relation (36) may also be read as,
F=86-f(Q,P) =0 (37)
Thus, to impose coordinate conditions is equivalent to introduce
in the formalism further constraints. In our case we get one
new constraint, given by (37), which we call the coordinate

constraint. The set of %two constraints ~“given by the Hamilton
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ian and coordinate constraints form a set of second class
constraints. Then, the theory of a general covariant system with
& chosen coordinate condition posess a Hamiltonian formulation
wheré second class constraints are present. Dirac has shown that
in this case the Polsson bracket must be properly modified to a
new bracket, the usually called Dirac bracket (see reference (2)).

We will develop a different approach, due to Bergmenn and Komargn

and which is mathematically eguivalent to Dirac's method 8.

The method of Bergmann-Komar was used for the case of
general relativity, presently we treat with a more simple situa-
tion, so that we will-be able to show the equivalence of both
methods in a more simple way. The Bergmann-Komar (for short we
will call this method by BK approach) uses the original Poisson
bracket; but modifies the form of the dynamical functions. To

each dynamical variable A is associted @ new variable A* defined

by
A* = A +olG +BF (38)
along with the requirements,
[a*, ¢] = o (39)
[a*, F] = 0 . (40)

The relation (39) means that A* is an invariant quantity, so
that we call A* as the observable assoeciated to the dynamical
variable A. The two relations (32) and (40) determine uniguely
the expressions for the coefficients e and p which appear in
the definition {38). Inecidentally, those coefficients may

depend on the dynamical variables § and P, but they will not
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contribute to any Poisson bracket calculatlion since they always
have a weakly vanishing constraint as a multiplicative factors,

From (39) and (40) we get

[a, F]

Lom et 2 (41)
%(lmf“)
As
{3: - (42)

1= ft
which gives for (38) the value

At Ay F
F - L2, 7] G . (43)
£t =1 gilaf**)

A* = 4+

Thuss any explicit form for A* will depend on the form of the

function f.

The Poisson bracket between A* and B*,; where B is some

other dynamical wvariable, is glven by

Ad
[, 541 = (5] + —— [, I -

Bs

(A, Fl . (44)
1= f9

The Dirac bracket between A and B is defined by,

- =1
{A,B} = [4:8] = [a, ¢] [c,, c ] [cpy B] (45)
where a sum over a and b is to be made; and Ca along with Cb
represent the set of second class constraints. The inverse of
the Poisson bracket between Ca andg Cb is calculated as the

inverse of a matrix. In our present situation we have,

RENE ( o
wEFB 0
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where we have taken the first matrix element [?l’ Ci] as [?G’ Cé].

Then,
B

‘ [a, ¥

1= £

{.&, B} = [A; B] has
which is equal to the Poisson bracket A* and B* (see equation (44)),

{4, B} = [a*, 34

Which proves the equivalence of Diracts method with the BK form-

A‘
_ [, B] -
Lw ¥

alism. Both methods have the same commutator algebra.

From the general relation {4%} we may obtain the observable
associated to Q as well as to Py in each case we equal A to Q or P.
We note that the Poisson bracket between two different Q* type

variables (or P* type variables) does not vanish,
¥ 3

* % Q3 . Q5
lafs ] = [0 ¥ - == [y A

L= Tt

* %
with a similar formula for the Poisson brackeb Pi and Pjo Finally,

¥
EQ* P*] = 8 * Qi [P F‘j Pj-]' [Q F]
. s 9 - = - s g 8 °=' e 9 °
1003 gL K 1-pv &1

These relations represent the canonical commutation relations in
the starred representation, from them we ecan caleulate any conm=-

mutation relation between two dynamical functions of Q* and P*.

In the appendix whiqh follows we give an example of how to

choose a coordinate condition.
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APPENDIX

The expression for the metric g may be writen in the

form,
g =g, *th

where 8o and h are a short for,
g, =B t1° | (A-1)
h = 4V(V-E)e: & , (A-2)

where E represents the tetal energy and V is the potential energy.
We have used the symboel PN to denote the part of g which does not
vanish in the case of free systems. We shall consider two cases,
the first one for a frée system and the second for interactions.
In the case of a free systém? the coordinate condition will be
taken in a form which implies in a sinmple and intultive value for
the metric.

This is obitained by imposing as coordinate condition
the relation,

8 = Fk.t +b , (A-3)
along with V = 6. 1In this relation, both k and b are constants.
From {(A-3) we get easily that in this coordinate system the metric
8o is constant, | |

g€y = k
and is equal to the total metric since h vanishes. The set of
coordinate transformations which keep unchanged this constant

value for g is given by the set of uniform translations in 0=

spaces
Ad
e=8 +5
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with ; an infinitesimal constant. BSuch transformations may be
. _ _ .

generated by infinitesimal uniform translations in the time €,

and are the unique transformations which may be allowed after

~our previous choice of coordinates.

In the case where interactions are present, as for
instance when it exists a potential function V=V(q), we may use
as coordinate condition a formula which is an extension of the

simple relation (A-%),

8 =T/%X.t + b {A-4)
T =% -V(a) . (A-5)
From these relatlons we get,
t Nk
to=l 1l .- T -
k7 T

and the value for the components of the metriec in this coordinate

system are,

>
e t 1) 2
O I mmemmessene 1l w—F Ct
o ; i
TZ k
ho= 4U(Veg) —~— | 1-=7 o
2 k

Both being functions of t, o’ and o' *,
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