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SUMMARI. The diffraction of the principel mode at the opsn end of a semi~

infinite parallel-plate waveguide terminated by an infinite plane
flange (double-wedge) is studied in the interval 0.1<ka<l.7, where k is  the
wave number and 2a is the guide width., The evanescent-mode correotion to the
reflection amplitude and the amplitudes of'the svanescent modes are somputed by
three different approximation methods. The agreement among these methods inthe
considered interval is good. The evanescent-mode gorrection to the reflection
coefficient is small, but the correstion to the phase is quite large, attain-
ing values of the order of 10% for ks ~1.7. The domain of epplicability  of
the various methods is disoussed.

* Now at Stenford Pniversity.
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1. INTRODUCTION

The study of discontinuities in a waveguide is a problem of
great mathematical 4ifficulty. There are only a few knowh exact
solutions and,; even if an exact solution 1is obtained, its reduc-
tion to a practically useful form may be extremely difficult. Such
problems are usually solved by approximation methods, the ac-
curacy of vhich is hard to assess. Even those which can be solved
exactly have such mathematical complexity that the physical intep
pretation of the results becomes very difficult. Nussenzvelg 1
(hereafter referred to as (N)) studled the problem of wave pro-
pagation in a semi-infinite parallel-plate waveguide terminated by
an infinite plane flange (double wedge) applying methods which
permit a clear physical interpretation of the phenomena which oc-
cur in the short and long wavelength. Howevgr the intermediate-
wave=length reglon was not considered. Only the domalns ka << 1
and ka>»1 were studied; where k 1s the wave number and 2a the

diameter of the waveguide.
In the present work, we shall consider the domain 0.lg¢ka <1.7.

The incident wave is the principal mode, which is the only
travelling mode in this domain. It 1s diffracted at the open end,
glving rise to radiation into free space. Within the waveguide,
besides the reflected mode, all evanescent modes are exclited.,
These modes are usually neglected in approximate treatments of
problems of this kind. It was shown in (N) that they give rise
to a very small correction in the reflection amplitude for ka <0.1.

We shall compute the evanescent mode correction in the domain
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0.1< ka 1.7 by several different approximation methods. The
results show that, while the correction to the absolute value
of the amplitude remains small in this domain, the correction

to the phase becomes appreciable.

The formulation of the problem in term of an infinite systenm
of linear equations will be given in §2. The unknown quantities
in this system are the amplitudes of the execited modes.

In §3, we shall derive approximate expressionsfor the coef-

ficients of the system 1n the considered interval.

It was shown in (N) that the agymptotlc behaviour of the
amplitudes of evanescent modes of high order is determined by
the behaviour of the field in the nelghbourhood of the edges of

1/3, r being

wedges (where the electric field has a singularity r~
the distance to the edge). This led to an asymptotic method for
the approximate solution of the infinlte system of linear
equations in the domain ka<l. In 54, the asymptotiec method will
be extended to the domain considered in the present paper. The
results show that, as ka increases, the lowest-order evanescent
nodes become increasingly coupled with the principal mode, S0

that the asymptotlc "Ansatz" has to be modifled for these modes.’

In §5, we shall introduce a modification in the asymptotie
method, to take into account the 'non-asymptotic'" behaviour of
the lowegt-order modes. The corrected asymptotic method converges
very well up to ka = 1.0 and presumably also for larger values

of ka.
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In §6, we shall apply the “method of partial systems", in
which only the first { modes are considered in the Llth-order ap-
proximation.

In §7, we shall formulate a method which is a combination of
the asymptotic method with the method of partial systenms.

In the conclusion (§8), we shall dlscuss the obtained results,
the domain of validity of the approximations employed and the

agreement between thé‘results of different methods.

2. FORMULATION OF THE PROBLEM

The double wedge and the coordinste system are represented in
fig. 1. The incident wave is the principal mode, which travels
towards the open end, giving rise to radiation into free space
and exclting a reflected mode as well as all evanescent modes

within the wavegulde.

Fig. 1: The coordinate system
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The field can be r-epresented by a single scalar function
u(x, y), such that

H= (0, 0y ul(x, y) exp(-iwt) (2.1)

F=(=ldu 1 2u -

E (ik 5y Ik 5% 0) exp(-iwt) (2.2)
Hereafter the time factor exp(-iwt) will be omitted. The

function u{x, y) must satisfy the following conditions:

(a) pu + k2u = 0;

(b) g—% (0yy) =0 for |yl> a3
(e) %3% (xy3xa) =0 for x>0;

(@) u(0,, y) = u(0_y y) for |yl<aj;
(e) %;% (0,5 ¥) = %ﬁ' (0O_s y) for |yl<aj

(f) the only incoming wave i1s the incident mode (radiation

condition);

(g) grad u is square-integrable over any three-dimensional

domain (edge condition),

The general solution is region I, for an incident wave of

unit amplitude, is

00
u(xy y) = exp(~ikx) + > __ 8, cos ky y-exp(ik_ x) (2.3)
n=0 n "n

where k. = nn/a, and
In
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x. = (x° -k

2 )i-
Xn Tn

ka
for n<g T

K =12 - x&)F

for n> ka
X, Y ™

The coefficient 2, is the reflection amplitude; the remaining
coefficients are the amplitudes of excltation of the other modes,

which are all evanescent for O< ka< .

The general solution in region II is

0o
uII(x,y) = J A(ky) cos ky ¥ exp(-ikxx) dky, (2.4)
0
vhere N
PNY-SEN-2S - 2 _
ke = (K°-k2)® 1f k <k and ko =1 (kg k2 )
if
k
Y>k

It was shown in (N) that conditions (a) to (g), together with
(2.3) and (2.4), lead to an infinite system of linear equations

in the unknowns ane

Q0
a, = > Kom 2n = Fmo | (2.5)
n=0

Expressions for the coefflclents Kmn were given in (N). For

m =n = 0, it was shown that

Koo =

AV T

i
|:1- @ (K) + Hy(2K) + —} (2.6)

7K
where K = ka,

€, = Ho(v Jav,

o‘-——.,g
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and H0 and Hl are Hankel's functions of the first kind, of orders

zero and one, respectively. This integral can be rewritten as
follows € :
€, = kr[H,(208_y(20) + s (200K _y(2x)], (2.7)
with
2
Sa1 7 -8y H, =-H,

where Sn 1s Struve's function of order n.
Substituting (2.7) in (2.6), we obtain

1 i
K,, = . EL‘ZK'HO(ZK)+ H, (2K) et mK(H,(2K)- 8, (2K) ~ Hl(ZK)-SO(ZK))]

(2,2)
The expressions for the remaining coefficients Kmn were gilven

in (N): 2%
K (K) = (-1)m*1. ) 7w fnn dn (2.9)
mn = - °

2K 2
m frm-ofl

for m # n,

where M = nr/K, €g =2 form =0, €, =1 for m>0 and

2K
d;n(K) = J Ho(v)sin(?hv)dv; (2.10)
0

(1=.f>§)"“lr

d
= 2.k 21 Un
Knn(K) = 325 E_a: (1 m(}‘n) . an + = x [ZK.HO(ZK) +_....+.;:!;]

m

for n#0 (2.11)
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where _ 2K
gL(K) = J‘Hé(v) cos(y, v)dv. (2.12)
0
The above formulae reduce the evaluation of the coefficients
K, to that of the functionsd;ﬁK) and & (K). The approximation
methods which were employed, for this purpose, in the considered

domain of values of K, will be described in Appendix B.

3. ASYMPTOTIC METRHOD

It was shown in (N) that the asymptotie behaviour of the
amplitudes of evanescent modes of high order is essentially de=-
termined by the behaviour of the field in the neighbourhood of
the edge of the wedge. The electric field has a singularity in
r'"l/3 at each edge, where r is the distance to the edge. According
to (N), this implies that, for o, = mm/K>»1, a,(K) can be repre-
sented by an asymptotlec expansion of the form:

A, (K) A,(K) A3(K)
+

an(K) = (-1)2 +

15/3

-13/3 ( E.)
+ Oiln n» (3.1)
/3 L1173 ( )yt

For K<«<1, the coefficients Aj(K) ean be expanded in serles of
powers and logarithms of K. This method was applied in (N) for
K€0.1, and the convergence was very good in thils regilon. How~-
ever, for K2 0.1, these series do not converge well, so that we
shall compute AJ(K) by numerical methods for values of K in the
interval 0.1<K<1.7. We shall employ the representation (3.1)

starting from n = 1. For low values of n, the econdition n >> K/r
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will not be fulfilled, so that we have to expect appreciable
corrections in the amplitudes of the lowest-order modes. The
evaluation of these corrections will be discussed in $4. They

will be disregarded in the present section, in order to determine
the domain of applicability of the uncorrected asymptotic method.
The reliability of the results will also be assessed by comparing

them with the results obtained by different approximation methods
(§§5’6)n

The {th-order approximation of the asymptotic method will be
defined as follows. We shall denote by a(g) the right-hand side

of (3.1), restricted to its first ({- 1) terms. Replacing a, by

agu), for n»1y in the right-hand side of the first equation of

L

o as a funtion

system (2.5) (m=0), we get an expression for a
(%) (L),
Al, LU Aﬂ-l.

Q0 00
ag“u-xoo) =Sk oMk =AW ST (PB4

on n
n=l n=1

o0
+ Aép,) : (")n n-7/3 K0n+ “ee "'Kooo (3t2)
n=1

The coefficient K,  is given by (2.2), and the sums of the
series appearing in the last member of (3.2) can be computed for
cach value of K with the help of the expressions for the coef-

ficients Kon‘given in Appendix B.

(1)
n (n

Replacing a, by a >1) and a, by a(E) in (2.5) for

m
m>»>1l, we get
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O I R Y A S

9]

o0
Dl LA SR | (3.3)
nrTl
The asymptotic expansicn (for large m) of the series appearing
in the right-hand side will be given in Appendix C. According to
results given there, gll the terms in the left-hand side of (%.3)
are cancelled by corresponding terms appearing in the right-hand

2 logm, m-z,

side, and there remains a development in terms of m
m™4 logrn,nf4,..., which must vanish identically. Setting the
coefficients of the (L -1) first terms of this development equal
to zero, and neglecting the remaining ones, we obtain (l=- 1) linear

Agl), veey A(L) which, tOgether

equations in the unknowns a(ﬁ), g-17

(o]

with (3.2), allows us to determine them.
In the present work, we shall not go beyond the 3rd-order ap-
proximation, in view of the excessive amount of labour this would

require. The system of linear equations which must be solved in

the 3rd-order approximation is (ef. Appendix B):

(3)
A
. 1 am 2
1= (a?)- )[Koo- 1]+ — [(5 log —+1(1- Ho))§(8/3)- - E(8/3) +
Ka- 1 Ho " AéB) .
t= =1l =+ 8 | |5aam)| + — [+ 23] (3.4)
2 ' K4

iK K
0 = (2> -1) = + 43 — 5@/ +— §1e/3) -y(2/3)|+ 2L,

T 1 21 8T
- |:+ 2/3] (3.5)
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K 21 op] K o
0 = (a?)-l) — El- H) - — log -;;-T:l+ a$3) —, 108 — 5(8/3)-

x4 o iK% 1 1 | ik f1 1
- —log — §(14/3) - —— [ S+ — +H | E@/3) + — [ =+ =+
g6 K >3 \2 er 5

W 1K4 71
+ Hy |8(14/3) - — -Z=+ i HéIV) §(14/3) +
2 m

£'(2/3)

2
+ a3 |} -3-:| (3.6)

where E(A) and E(A) are Riemann's zeta functlon and its deriva-
tive, respectively, and the symbol [} 2/3] in the coefficients of
Aé3) indicates that they differ from the coefficient of AiE) in
the same equation only by the replacements: &£(1) > E(A+ %),
(1) — E(A+ %)o The numerical values of E£(A) and E(A) for
the relevant values of ) are given in Appendix A.

The 2nd-order approximation is obtained by omitting the last

equation as well as the terms in A2 in the first two equations.

The lst-order approximation follows from (3.4) by omitting the
terms in Al and Aas

(Koo-.l)-(agl)-al):l, agl)= - Koo/ (1=K ) - (3.7)
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This result is obviously equivalent to neglecting all evaneg

t

cent modes in system (2.5), so that the difference

Sa_ =a - atl) (3.8)

o o} 0
where a4, is the exact solution, will be called the gvanescent-mode
correction. The approximation (3.7) is also identical to  the
result obtained by Levine and Schwinger‘s method, with a constant

electric fleld over the aperture as a trial funetion 3’4°

We shall write
a, = ~la | exp(id) (3.9)

so that the phase ¢ approaches zero for K = 0. The reflection
coefficient, i.e. the ratio of the mean reflected energy current
to the mean incident energy current, per unit length in the Z
direction, is given by

(%.10)

T_z.lﬂg|2 , (3.10)

The numerical results obtained by the asymptotic method for
several values of K in the domain 0.1<K<€1,7 are given in Tables
I and II. Table I contains the values of aél), aéZ), aéB), a§2)=
=-a{2), A§3), Aé3), a{3) ana a§3)° Table II contains the values

of r and ¢ 1in the first three approximations.
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TABLE II: The vreflection coefficient and the phase of the reflection amplitude
in the first three approximations of the asymptotic method.

r |a§,1’|2 Iaf,Z)lz |a£3)|2 q,(l) 4,(2) ¢(3)
0.1 | 0.6810 | 0.6806 | 0.6807 | 23°39 | 22°88 | 23° o4
04 | 0.2713 | 0.2669 | 0.2692 | 5°88 | 52°91 | 53° 40
0.7 | 0.1340 | 0,2267 | 0.1313 | 73°55 | 70°04 | 70° 63
1.0 | 0.0727L | 0.06439 | 0.07041 | 87° 94 | 82°67 | 83° 03
1.1 | 0.05983 | 0,05148 | 0.05786 | 92°20 | 26° 26 | 26° 51
1.3 | 0.04056 | 0.03256 | 0.03937 | 200° 21 | 92° 70 92° 72
14 | 0,03331 | 0.02565 | 0,03253 | 103° 95 | 95° 52 | 95° 47
1.7 | 0.01785 | ©0.0117 | 0.01820 | 14° 22 | 101° 93 | 202° 42
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The values of Iag3)|2, |a§_3)|2 and |aé3)l2 as a function of X
are plotted in fig. 2, and the phase 4;3) is plotted in fig. 3.

The relative evanescent-mode correction 6r/r(1) to the reflection
coefficlent and the relative evanescent-mode correction 5¢/¢(1) to
the phase are plotted in fig. 4 and 5, respectively, both in the

2nd-order approximation and in the 3rd-order approximation.

It is clear from Table II or fig. 4 that, from K~0,5 onwards,
the 3rd approximation to r is closer to the 1lst than to the 2nd
one. This effect increases with X, in such a way that, for K=1.7,
Sr(Z)/r(l)z£33%, whereas Sr(B)/r(l):a - 1.74. Thus, insofar as
r 1s concerned, we see that the asymptotic method does not converge
well, at least in the first three approximations, from X =~ 0,5

onwards.

This does not happen with the phase. According to Table II
or flg. 5 the 3rd approximation to ¢>is, in genersl, much closer
to the 2nd than to the lst one. The mean relative deviation
(45(3)-49(2))/4>(2) in the interval 0.1<K<1.7 1s of the order of
0.5%, whereas the mean relative deviation @$(3)_,¢£l))/¢ﬂl) in the

same interval is of the order of 5%.

Tt can also be seen in Table I that a§3) is not in good agreg
ment with agz) for X 2 0,5, On the other hand, the condition
IA23)1<<|A§3)I, which would indicate rapid convergence of the
"Ansatz"(3.1); is fulfilled for Kw~1.l, but not for larger values
of K.

Thus, except for the phase, the convergence of the asymptotie

method; up to the 3rd order approximation, is not satisfactory for
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K20.5 and it gets worse as K increases. These results were to be
expected, for, as we have seen, the samllest value of n for which
(3.1) represents a good approximation must  increase’ with K,
whereas the aymptotic method employs (3.1) already for n=1. The
large discrepancy between the 2nd and the 3rd approximation is
also related with the fact that, for small m, the terms in n"Z,
which are neglected in the ”nd approximation, are of the same
-2

order ‘as the terms in m og m which are kept.

Physically, we can say that the amplitudes of the lowest-order
evanescent modes are determined by the edge singularities. only
for sufficiently small X, when the aperture, so to speak, consists
mainly of edge zones. As K increasesy; the influence of the edged
over the wave function in the central part of the aperture, and
consequently over the lowest-order modes,; decreases. This is
particularly true for the first evanescent mode, the critical fre

quency of which correspond to K =1,

According to Table I and fig. 2, Ia.(,Bj | becomes comparable
with |aé3)l for K®1, and is even larger than IaéB)l for K =1.7
on the other hand, Iaés)l is very small in the whole interval

0.1<K<1.7 which agrees with the above considerations.

4, CORRECTION TO THE ASYMPTOTIC METHOD

In order to improve the accuracy of the asymptotic method it
is necessary, as we have seen in the previous section, to intro=

duce a correction in the amplitudes of the lowest=-order modes.

Let aég) = aél)-F_AaéL) be the exact solution, aéz) being the
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ith-order approximation of the asymptotic method. The gbgolute

errors Aaég“) satisfy an infinlte system of linear equations which

differs from (2.5) only by the inhomogeneous term:

(e ¢
aalt) =57k pall) 4RIV, (4.1)
n=0
where the abgolute residusglg ngﬁ,) are given by
00
R;“=men ar(l“-a;“-xm . (4.2)
n=0
We are interested in the computation of Aag’) for small
values of m. For this purpose, we shall apply to (4.1) the method
of partial systems, which consists in-extracting finite systems of
linear equations from (4.2) by neglecting all eguations and un-

knowns beyond a certain order.

Thus, to compute the correction to the 2nd approximation of
the asymptotic method, we shall retain only the first two
equations of (4.1) and only the unknowns Aaéa), Aag_a); in the
correctlion to the 3rd approximation, we shall retain the first

three equations and the unknowns AaéS), Aa§_3), Aa?).

The residunals (4.2) can be computed by numerical methods. The

procedure will be described in Appendix D.

The correction to the asymptotic method has been evaluated
only for K = 1, The results are given in Table III. The corrected
values of Sr(a)/r(l) and 8¢(2)/4>(1) for K=1 are represented Dby

the points ©® 1n figs. 4 and 5 (the arrows represent the value of
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TABIE III - Values of agl') = agﬂ’ ) +Aa£2’), obtained in the corrected asymptotic
method, for K =1 and =2, 3.

a(2) -0.03239
o ~0,25174
(2) ~0,03278

%o ~0.26041

|a£2) |2 0.06439

|2 | o,06889
. (3) | -0.03218
o =0.26341

o 3) ~0.03425
o ~0.26281

Ia-(()B) '2 0.07041

lu‘(f) 2 | o.07022
$(2) 82°. 83

SI;(B) 82°. 57
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the correction). The corrections to the 2rd approximation are
not represented because the corrected points practically coincide
with the uncorrected ones.

The results show that the corrected asymptotic method con=-
verges quite well for K = 1, The corrected value of r(Z), in
contrast with the uncorrected one, is closer to r‘3) than to r(1’,
thus eliminating the main indication of poor convergence of the
asymptotic method. The correction in the phase, where the con-
vergence vas already good in the asymptotic method, is very small,
and improves the convergence still more. The corrected value of

aia) 1s also much closer to that of aiB)c

The correction to the 3rd approximation is much smaller than
that to the 2nd one, which indicates that the uncorrected 3rd
approximation of the asymptotic method is already a good approxi-
mation. Note also that IAaéB)/aé3)|4<1 and IR;E)/Km°I<<1, (ef,
Tables IX and X of Appendix D), which are also indications in the

same sense.

Of course, 1f we define e.g. the corrected 3rd approximation
by the corrected values of aé3), a§3) and aé3), the amplitudes of
the higher-order modes being given by the Ansatz (3.1}, wilth the
uncorrected values of A{B) and AEB), the corrections in the lowest
-order modes will contribute additicnal terms in m™2 log m to the
residuals of all the equations of system (3.5), but these contriby

tions are small, in view of the above results.
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5. IHE METHOD OF PARTIAL SYSTEMS

The method of partial systems can also be applied directly
to the system (2.5). 1In the Lth-order approximation of this
method, we neglect all equations and unknowns in (2.5) beyond the
ith, and then solve the remaining system of | equations. This
method was applied in (N) and led to good results for K<O0.1l.

The 1st approximation of this method coincides with the 1st
approximation of the asymptotic method. The 2nd and 3rd approxi-

mations have been computed for K = 0.1, 0.4, 1.0 and 1.7. The
resulting amplitudes and phases, denoted by d;ﬂ) and ¢;(g)’ (n =

=0,1,2; = 293), are giveh in Tables IV and V. The cor-
responding relative evanescent-mode corrections Sr/r(l) and

8¢/¢(1) are plotted in figs. 4 and 5, respectively. The 2nd and
3rd approximations to 6r/r(1) practically coincide, so that only
the 3rd approximations has been plotted. Both the 2nd and the 3rd
approximation to 8¢/¢(l) are shown in fig. 5.

The results show that the method of partial systems still
converges well in the considered domain. The maximum relative
deviation between the 2nd and 3rd approximation to the reflection
coefficlent, Ir'(s) -rl(a)l/riﬁa), 1s of the order of 0.7%, where
as that in the phése, l¢'(3)-J$'(2)I/¢'(2), is of the order of
2%. The 3rd approximation of the method of partial systems 1is
also in good agreementiwith the 3rd approximation of the asymptotic
method, both for the reflection coefficient and for the phase.

For ay and 857 the agreement is good for K<1.0, but not so good
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TABLE IV: Method of partial systems. Values of a.::”‘) forn=0,1, 2and =
; :
= 2, 3; (ao(l) = agl))o
1(2) 1(3) 1(2) t(3) '(3)
K a, & o &y 2
~0.7586 «0.7588 0.002779 0.002848 | =0.0007844
01 | 0.32451 | -0.32401 “0.014541 | -0.014931 | 0.0041301
=0,3062 -o.'3064 0.01912 .| 0.01940 -0.006079
04 | 0.22991 | -0.41991 ~0.044861 | -0,045581 | 0.015001
«0,02650 -0.02969 0.06927 0.06988 ~0.01899
10 | 0.26631 | -0.26511 -0.085084 | -0.086641 | 0.027791
+0,03447 0.03214 0.1555 0.1550 -0.03200
17 | 0.13461 | =-0.13571 ~0.091331 | -0.092141 | 0.021031

IABLE V: The reflestion coefficient and the phase of the reflection amplitude
in the 2nd and 3rd approximations of the method of partial systems.

K ¢,‘(2) 4,' (3) i‘;(2)‘2 | |a;(3)|2
0 | %16 | 23°12 | o.6808 0.6808
0.4 53° 90 | 53°8s | o.2701 0.2702
1,0 84°32 | 8°e1 | o.0m62 | 0.07115
.7 | 104°38 | 103°33 | 0.01932 | 0.01944
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for K = 1.7. One should expect the convergence of the method of
partial systems to become poorer as K increases, because of the

increase in the amplitude of the higher-order modes.

6. MIXED METHOD

The asymptotic method should lead to good results for the
amplitudes of high-order evanescent modes, to which we can apply
the Ansatz (3.1). However, as we have seen, it should not
converge very well for the lowest-order modes, unless we apply
the correction discussed in $4. The method of partial systems, on
the other hand, gilves good results for the amplitudes of the
lowest-order modes, but computational difficulties prevent its
applicatlion to determine the amplitudes of high-order ones. It
is natural, then, to try to combine the two methods. We shall now
introduce a mixed method, which will be applied only to the 3rd
approximation. In this approximation, we shall apply the Ansatz
(3.1), restricted to its first term, i.e., a = (1% A '5/3, for
n>2 and we shall employ the first three equations of system (2.5)
to determine the amplitudes.

Thus, if we denote by double dashes the results obtained

by this method, the first two equations are given by

"o n =5/3,
ap =Ko oa, + Ky a1+A Z: (-1) K = Knos (6.1)
n=2
. (m=0,l)
and the third equation is



"3) | _%(3) n(3)
K a, & a,
001 - 0.7592 00002849 - 0.0&09596
T = 0.32314 - 0.015091 0.0050684
0 4 - 003067 0.01912 - 00006010
* - 0.41831 = 0.,044951 0.014881
* - 0.26533 - 0.086141 0.027521
Lp| 0.02581 0.1584 - 0.03794,
¢ - 0.13501 - 0.,097731 0.034391

the 3rd approximation of the mixed method.

X 4;(3) h:(a)lz
0.1 | 23° 05 | o0.6808
0.4 | 53° 47 | o0.2691
1.0 | 8° 7 | 0.0719
1.7 | 100° 82 | o0.01890
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‘TABLE VI: Mixed method: values of an“’.),.faran =0, 1, 23 =3 and values of ‘i’u(3)°

£ VII: The reflection coefficient and the phase of the reflection amplitude in
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00
=5/% * - " " WS (1R -5/3
2 A =K, a, + Ky a; +A"3 (1) n K~ K

> oo * {6.2)
n=2

i 1t i
The unknownsa;, a; and A are determined by (6.1) and (6.2).

The method has been applied for K = 0.1, 0.4, 1.0 and 1.7.
The results are given in Tables VI and VII. The corresponding

relative evanescent-mode corrections are plotted in figs. 4 and

5.

As ought to be expected, the values obtained by this method
fall 1n between the values obtained in the 3rd approximations of
the asymptotic method and of the method of partial systems, though

they are closer, as a rule, to the result obtained by the method

of partial systems.

CONCLUSION

The behaviour of the reflection amplitude and the evanescent-
mode amplitudes in the domain 0.1€ K< 1.7 has been investigated by
three different approximation methods. The agreement among the
results obtalned in the 3rd approximation of these methods is

quite good up to K = 1 and is reasonably good up to K = 1.7,

It was shown in (N) that, in the long=-wavelength region (K«1),
the principal mode becomes practically uncoupled from the evanes-
cent modes. The former suffers strong reflection, while the ampli

tudes of the latter are determined by the quasi-static  behaviour
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of the field near the edgesof the double wedge (edge singularities).

The evanescent~mode corrections are very small.

In the intermediate-wavelength reglion studied in this paper,
the coupling between the principal mode and the evanescent ones
increases, speclally with respect to the lowest-order modes, which
become less affected by the edge singﬁlarities as K increases. The
relative evanescent-mode correction to the reflection coefficient is
still quite small (% 3%), but the correction to the phase reaches
~6% for K = 1 and ~12% for K = 1.7, so that it is much larger
than the correction to the reflection coefficlent. This result has

a simple physical interpretation.

' The coupling between the prinecipal mode and the evanescent
modes takes place at the open end of the wavegulde. The evanescent
medes are locallzed in this region, where they give rise to an e«
nergy accumulatlion. This corresponds to a delay of the incident
wave near the open end, which is represented by the correction to
the phase. On the other hand, while the evanescent modes store the
anergy, they do not contribute to the energy flux, so that their ef
feet on the reflection coefficient is much smaller than their ef-

fect on the phase.

The accuracy of the various epproximation methods can be est]l
mated by comparing them with one another. The simplest method of
partial systems, which allows us to obtaln only the amplitiudes of
the first few modes (it 1s true, however that higher-order modes
are physically less important). This method should converge the

better, the more rapid the debrease in magntitude of the unknowns.
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The convergence in the considered domailn is good, but it must be-
come worse as K Increases, due to the increase in the amplitudes

of the evanescent modes.

The mixed method takes into account in a simple way the ef-
fect of higher-order modes, giving rise to a small ecorrection in
the amplitudes of lower-order ones, together with an asymptotic
expression for the amplitudes. However, only the first few equa-

tions of the system are taken into account.

The asymptotic method takes into account all the equations
of the system. By construction, the residual obtained by this
method should decrease rapidly with the order of the equantion and
with the order of approximation. However, the method should not
lead to good results for the amplitudes of the first few modes, at
least in the lowest-order approximations. In faect, as we have
seen, this happens for the 2nd approximation. It is therefore
necessary to introduce a correction to the lowegt-order amplitudes.

This correction was introduced by applying the method of partial
C

n

this system should decrease more rapldly with n than the unknowns
(1)
&n

systems to the residusl system (4.1). As the unknowns Aa

in the original system (2.5), according to the Ansatz (3.1),
the method of partial systems should converge bhetter in the case
of (4.1). For K = 1, as we have seen, the convergence of the
corrected symptotic method is quite good and this should be true
a fortiori for smaller values of K. WNo caleculations were made
for K>1, but it is to be expected that the convergence becomes

worse as K increases: according to fig. 2, Ialla is already of
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the order of Iaol2 for K = 1.7. In order to improve the con-
veérgence of the corrected asymptotic method, one could take a; as
a new unknown, applying the Ansatz (3.1) only for n3 2. However,
this would require the solution of systems of a larger number of

equations than those which have been used.

The most reliable approximation methods in the considered
domains seem to be ithe corrected asymptotic method and .the mixed
method. The correction to the 2nd approximation for K = 1 is
quite larger (it is ~7% in r and ~1.7% in $), but the correction
to the 3rd approximation 1s very small. The 3rd approximation of
the asymptotic method can therefore be employed practically

- without correction at least for K< 1.

It would be interesting to extend the caleculations up to
K = my which is the critical frequency .of the first evanescent

mode.
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APPENDIX A

Riemann's zeta function

Riemann's zeta function £(A) is defined, for real positive
Ay by ® 4
E(A) = E —
p=1 p*

and its derivative is given by

@ 16
B0 = -5 B2

A
p=1 p

The values of §(A) and §(A) employed in the present work
have been obtained from those tabulated in Ref. 5 by applying
Everett's interpolation method(6)° For large enough A,

- &(A) and

obtained by Everett's method are contained in Table VIII.

linear

Interpolation can be applied. The values of E'(A)

IABLE VIII: Values of Riemsnnis zets function and its derivative.
2/3 4/3 /3 8/3 10/3 13/3 14/3 16/3
;(1) =2.447581( 3.600938| 1.415156| 1.284191| 1.147356 1.062564| 1.047919{ 1.028597
5'(;«) ~8.924085| =8,930514 | =0, 503620 | =0. 304660 | =0, 135160 | =0.050724 - -
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APPENDIX B

The coefficlents K .

The coefficients K  employed in the asymptotic method, in
the method of partial systems and in the mixed method are ap-
proximations of (2.9) and (2 11), except for K o2 which is compted
directly from (2.R). For 0.1€¢K<1.7, and n>3, the functions and
g;(K) can be asymptotically expanded in powers of 0;1.

For this purpose, let us rewrite (2.10) in the form:

00 00
(K) _ |
5n = f Ho(v) sin(?h v)dv = f H (v) sin(wn v )dv (B.1)
0 2K

The first integral in (B.1) is given by 2

21
Y 1--1—T-log o )y 1 (B.2)
/Y-l

J. H (v) sin(frnv)dv =
0 .
where
- %
o, = o + (5-1)7 .
The asymptotic expan_sion of the second integral in (B.1) for
’J’n >> 1 1is obtained by means of repeated partial integration:

@ 2p E28)(px)
1 ° -2p-2
Bo(v) sin(r vidv = — | 2 +0 (v, ) s
| " | s=0 (1 frn)as

2K |
(B.3)

where HgZS) denotes the derivative of order 28 of Ho'
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Expanding (Qg-l)'% and log o in (B.2) in inverse powers of

"

expansion of Jn(K) for o, » 1.

y and substituting (B.2) and (B.3), we obtain the asymptotie

The asymptotic expansion of Gh(K) is obtained by an entirely

similar procedure:

2 1| P H{ 25D (ox)
B(K) = (1-92) + = | 5 (-1)8 ‘ + 0 (v7EP3)[,  (B.4)
"™ | s=0 '7§S+1

For n = 1 or n = 2, these expansions do not converge well, so

that we write

CIP A (v o]
J Hb(v) sin(?nV)dv = J Hb(v) sin(qhy)dv + Jﬁo(v) sin@?ﬁv)dv (B,5)
2K 2K A

where A 1is chosen sufficiently large for the asymptotic expansion
of the integral from A to oo to converge well; the integral from
2K to A is computed by numerical integration. The same method 1is

applied to €h(K).

Substituting the above results in (2.9) and (2.11), we get
the asymptotic expansion of the coefficients Kmn‘ The flrst few
terms of the expansiormsare indicated below (where T has been

replaced by nw/K):

-1 |2 2 1 2 logn
K _(K) = = log — + 1 (1-H (2K)|= + = +
on ar I:TT gK ° n mT™ n

1 k2 [ 1H (2K) )
+ — - | — + + 1H (2K) |+ 0 (n™3 logn) (B.6)
h3 FZ o 2
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(-1 | 21 2r ] 1 21 logm

~4

K (K) = 1 - H(2K) ~ — log — | — - — + 0 (™ %10gm)
- ™ Kl 2 = .2

i}
+ 1 nlogm/n logm K2 1 K2
K., (K) = (-1)0 { — - - ot +
| & mf-n° m® o an? nd

1 | x¥* a1 kK% \ iK% [/ ot
*— | ——log —| =+ - — =+ —+ H (2K)) x
e P K 411.2{13. 237.3 2 2

2 2
K 71 K
X % - + (g— + — - HgV(EK)) >:I+ [ (m"4 1ogm)
223 16w 23

In order to derive the system of equations (3.4), (3.5),

(B.7)

(B.8)

(3.6), we proceed as follows.

We consider the expansion (3.1) reduced to its first twe
terms: A§_3)(K) | A?)(K)
al3x) = ()" . , el (B.9)
n5/3 n?/3

Substituting (B.6) and (B.9) in (2.5) for m = 0, and taking
into account the definitions of the zeta functlon and its deriva-

tive (aof. Appendix A), we get equation (3.4).

Substituting (B.7), (B.?) and (B.9) in (2.5), for m # 0 we

get: A3 (3)
(-1) + a,” (K)=1) === 1-H (2K)~
n®/3 w?/3 ol
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21 2rl1 21 logm % 1 n logw/n
- — log —|~= - — + 2 :(_1)m+n _— -
T Klm@ 7 n2 _ T2 mé-n2
n=1
logm K2 [1 %% 1 |{-k? or (1 K2
alnncull - Sels 4 v |—— Jog — |~ + -
2-"»2 n
m 41rr2n3 mZ Zva K AR 4#2 n3

2 2 ‘
iK 1 i ' 1 X 71
| 8

3\ 2 27 n 2.3 16m
K2 ERCORINIERS
X x (=1 x | -— o+ —— (B.10)
2 3 n5'3 0’3

In the right<hand side of (B.10) there appear the functions
E(Z/B, m) and H (4/3%, m), where H (A, m) is defined in Appendix
C. Replacing these functions by their asymptotle expansions for
large m, given by (C.3), we reproduce the left-hand side of (B.10)

and there remains an asymptotic expansion in terms of m'ziogm,m'Z,

-4: m_slogm, m"é which must vanish identlically. Setting

n~% logm, m
the coefficlents of m"zlogm and m™% equal to zero in this expansion,

and neglecting higher-order terms, we get (3.5) and (3.6).

* * %
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APPENDIX C

|y

The function H, (A .m)

The function H (A,m) is defined by

— 1 % logm - logn
2
=1

n*(m? - n?)

It satisfies the recurrence relation

E(+2,m) = m @ (Aym) + E(A+2)(mr)™2 logm+g! (A+2)(mr)™2  (C.2)

It was shown in (N) that, if O0<A<2, A# 1, "the following

asymptotic expansion is valid:

A, ]
1 +§( )1ogm+5(1)_

E(l,m) = o
4 cosPOm/2)m Tt (7m)? (lvw'm)2

1
- 8(ar 1 sin(An/2) §(3-2)- [ (3-2) x . E‘Cos (Am/2) +
(rm)*

g'(3-1) r'(;-x))] y £(3=20-T (3=

+ sin(An/2) x| log2mr -
. £(3-0 [(3-1)

(2mm)?

logm T
sin(An/2)- E(5-2). [ (5=2) ; [— cos (An/2) + sin(An/2) x
(Zw'm)é z

l;"(s-:\) F'(s-l)):l 5(5-1).['"(5-1)
- - X +

x| log 2w -
6(5-1) F(S-l)

(2rm)®
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wheére £(L) is Riemann's zeta function and [ (A) is the gamma

function.

Together with (C.2), this determines the asymptotic expansion

of E (A; m) for all positive non=-Iintegral values of 1.
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APPENDIX D

The residual Ru’) for X=1

The residuals R];“ are definedlby (4.2):

n=0
As Rém = 0, we have to compute only RéZ) and Hi?)o We

shall indicate the procedure only for R:(LB), since it is entirely
similar for the other ones. According to (D.1),

Qoo

(3) _ (3) (%) () (3)

313 = 10[3-11 [KllJ 3 + Ky ay 3 +lenan3, (D.2)
n=3

The amplitudes ar(13)(K=1) for n>1 are given by (B.10), with
the values of A§_3), Aéz) given in Table I. The coefficients
Kmn(K=1) for m<2 and n<2 are given in Table IX.

For larger values of m or n, we can employ the asymptotic
expansions glven in appendiz B. However, we must carry these

-6

expansions up to terms inm in order to get the residuals  for

K =1 with sufficlent precision.

The last term of (D.2) contains series of the type

o
Z n—(2p+4/3) % _j'_o_g_il__ (D.3)
n=3 (1-n2)
where p = 1, 2, ...y as well as series which are reducible to

;(1) and l;"(l), with A=2p + 10/3, p = 1y 24 «o. The series (D.3)
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can be summed with the help of (C.3). The results have been
checked by an independent calculation of (D.3) by means of the

Euler-Maclaurin expansion. The obtained agreement was good.

The calculated wvalues of RiB) for K =1 are listed in
Table X.

TABIE IX: The coefficient K_(K), for  TABLE X: Residuals nﬁ“ of the cor=

K=1,0and m, n =0, 1, 2 rocted asymptotic method.
| 0.075478 1)
oo | 0.2467351 B 0
K 00134662 3(2) -0, 0000079
ol | =0,0634561 o ~0,00012681
K 0.084411 (2) 0.03519
02 | 0.0310611 R 0.039194
_ 00042614 a(?) | -0.0000051
Ko | o.0904311 o 000008061
. 0.033791 (3) 0.006338
ll.11 =0.0105074 Ry =0, 0093061
~0,038143 a(3) | -0.0015%0
K2 | o0.0052861 | 2 0.0029114
K 0,010014 o
20 | -0,0272161
g | -0.018297
21 0.0025381
K 0.022864
22 | -0.0011741
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Fig. 2: Behaviour of |a |?, |a;|® end |a,|? as & function of K in the third
approximation of the asymptotic method.
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Fig, 3: Phase of the reflection amplitude as a function of K in the third ap-;-
proximation of the asymptotic method.
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Fig. 4: Relative evanescent-mode correction Sr/r(l) to the reflection coef-
fiolent in different approximations.

—e—iem..—..— 2nd approximation, asymptotic method;
------- +—.- 3rd approximation; method of partial systems;
e 3rd approximation, asymptotic method;
3rd approximation, mixed method;
————————— — 2nd approximation; msthod of partial systems;
@ corrected asymptotic method,
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Fig. 5: Relative evanescent-mode correction 5¢/¢(1) to the phase in dif-
ferent approximations. Same conventions as in fig. 4.



