NoTAS DE Ffsica

VOLUME 11
N2 11

RADIATION FIELD OF AN OSCILLATING DIPOLE - I

by

BERASMO MADUREIRA FERREIRA

CENTRO PR4QILEIRO DE PESGUISAS FISICAS
sv. Wenceslauw Braz, T1

RIO DR JANEIRO

1956



Notes de Fisloa Vol. II, N2 11

RADIATION FIELD OF AN OSCILLATING DIPOLE*- I*

Erasmo Madureira Ferreira
l ] - ( »
Centro Bragileiro de Pesquisas Fisicas

Rio de Janeiro, D.F.

(October 30, 1955)

The problem of the emission of radiation can be formulat
ed In a closed form in the special case in which the radiation source
can be_conéidered to be an harmonic oscillator (magnetic Qipo}e?. In
the fifst part of the present paper an approximate solution of the
problem, neglecting the reaction of the radiation field and corres=
pending closely to the classical theory, is obtained. _ Radiation
reaction 1s found to be closely comnected to the behaviour of the

system near reSonance, which will be dealt with in the second parte

THE EAMILTONIAN AND THE WAVE FUNCTION OF TIE SYSTEM

We will study the quantum radiation field produced by a
magnetic oscillating dipole, that is, by an alternmating electric cur

rent over a small closed circulte Let us suppose this circult fto
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have capacity C, seli-inductance {i>? end wesintence R = 0. If T is

the current, ngfﬁ;‘4_ﬂmj;__= 0. Thia ecustion ¢sn be substituted by .
2 ' T
at [>¢ : : 5 -
Hamilton equations, with hamlltonisn H = "WLME *._i_.<%l; +:£5'I'>,:
) ¢ pad ¢
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where (o = el is the frequency of the oscillation., We want

to write this homiltonlan of the cireult in the form
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and then we must put et = i3
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The hemiltonisn of the system sonstituted by the circuit
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and its field is
H=H
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circuit field interaction
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where the q 's and p 's are the coordinates and momenta of the

field oseillators, defined by
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L5 ie the volume of the cubic box which eincloses the fleld, A iz
4 ' "’ " - ~ >y . ‘
the potential vector of the megnevic Ilold, each a, 1s a anit
vectory and the star indicatas complex Conjusste.,

The interaction energy between o current of density J
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and a megnetic field Lls given by Bint. = Bo Je A dv. Let us

W

suppose the circuil to be constituted by a thin strip of width £

and negligible thickness, bent to form & cvlindar of radius o and

height jtq If the current is wniformly distributed, and I is the

vector with the modulus and the directilon of the total current,the
"

vector J cen be writlien

T o= 1 e 5 (0 7) tor |zl=< L/2
(/ . ;
o 4
= 0 for Izl % C/Z
where i) and z (along the simmetry exis ol the circuit) are cylin
o .—_&
A

drical coordinates. Using the expension of given in (3) we get:
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where Jﬁ i¢ the Bessel function of firgt Wind end first order; Z-g
magnetic moment of the circuit, is a vector dirscted along the 2
- ‘E i . . . i
axis, and of modulusg JAE T }3§I~ Wig o diuensionless gquantity,
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and is small 17 fgo ig small compared witlh L.
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The hamiltonian of the system constituted by the

cireult and the fleld 1s then

3

o P - w -
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Here we have the hamiltonian of a system of coupled oscillators.

There existe a linenr canonical transformation which transforms L

to principal axes:

¢ :
\ 1
gl = zﬁj G, a¥ = 0132 e
B > 2rwld ) '
T o= - --—- ~) W ’j' P~ > o
r g ¢ i) + const (7)

gliminating the coupling term. The solution of the Schroedinger

equation with hamiltonian (7) is of the Towe

o ' "'ﬁ{".m},'t
TH, Wyoe 7 :
L rj{’ ﬂ/u M (8)

Such a colution would colve in closed form the problem
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of the redistion field nroduced by the circult considered. But we
do not lmow explicitely the solution, that is, we cennot determine
the ::2; ., The field oscillators do not act directly one upon the
other, but only through the circuit. If the Mmass" =and the "mo-
mentun'of the oscillstor that represents the civcuilt are bilg encugh
compared with the Huasseeh end "momenta’ of the field oscilletors,the
resction of these uvon those is very weak 1f the rield oscillators
are far from resonance, chenging very 1little the motion of the cir
euit. Thig gmell altersiion in the circuilt motleon due to a given
field oscilletor, would produce a gmaller slteration in thr motion
of the other field oscillators. If we do not consider the con =
tribution due to the resonance, the coeficients é#p with A # v
and /1 or v % o are then very small 2nd crn be neglected with
goodrapproximation.

Tn this enpreximetion we crn solve sepavately the

problem of one field oscillator coupled with the cirenit, that 1s

4

we can work with the hamiltonian

1 (P ) 2z 17 A A 1w \.n P
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We have to find the o nenic 1l trensformetion that eliminetes the

N

counling tevn and raduces the problem to thet of two independent

oscillators. This transformation is {omitting the index A ):
|
Pt = ~ v VMG cos L Q,51nt{

f .
pt = - v o \/ﬁﬁ ( sin + - g CO8 kf
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As [ ig smell enough, we will have, fear from resonhaices
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The Schroedinger ecuetion for (712) hrs solutions of the form:
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where H indicates the Hermite polynomials.
We went = solution in which the current in the circuxit
hes the probebility distribution of & Geuss packet oscillating in

time. Let e call

Ji/ o, Juw o
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The general solution can be written in the form
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We know that 4.0z - Frr=- = g ; choosing Gy = m) x 1
i g \&/ T
where B

is 2 constant we have
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As x slovly varving function of P (end so of y) in

the
region Ter from rssonance, the probability distribution in P will
be given spproximetely by

a - ya - 2 wﬁ}m cos 2 («_)O‘t + 2 By cos (Jdot
Wiy o (v) = e

-~ (y = B cos £) 2
= ¢const. e

!

which is the oscilleting Gouss packel we want. The wave function
is then

pis i s
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Let us talke the field oscillators in the fundamental statese The

wave function is

- EEE - ¥o _ i w b (-B e“ : W’:’t)2+ Be-l o
e e 2 z o) e

‘y= consh. @ 7
| (17)
i -t (cP+ap)” |
8}— const. € /f (P,t)
This g} gives the smplitude of probebility of finding =at the
time t the field oscillator with momentum p »2nd the circuitl
oscillator with momentum P. We want to hnow the amplitude of prg
bability of finding the field pecill~tor with momentum P for any
value of P, that is, we want to lnow the behavicur of the field
oscillator after teliing the average over the quentum distribution
in the civecuit. By the fcet that x = cP + dp 1s, fer from vre-
sonence, o clowly verying function of P (bacause ¢ 1s very small),

we have, 1in our coproximation

0 (P) =ﬁ(const.) e NE(C o ip) f(P)/(P) ap

- ‘{/! « 7Y \J—ﬁ%‘ 2
R B A
(18)
The sversge velues of g 2nd p o over 0 (p) cTe
2 .
§g=0 end D= QE?TI%” B WEZ,L441HM. cos (] 19
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TiIE RADIATION FIALD

The average value of the potentisl vector is given by
e e ek ok 3 — —
1 - n-&a'Lwhz- - -Mwa - -
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The Fourier expansion of the classical figlid 1
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being then %( a vector narallel to “lfm'/\“”_u'“ﬂ that 1is,
kk
A

Comparing the classical end the cuentum fields we get

2
BB e el *3—9-”“ (20)

A L;u NEXW \lc
The avnoroximaticns mode are besed on the segsumption

. o e . 2
thet tg 250'/\‘( Ly tiet 1s, 77 *"1)}..1{» { <

we -

value of 77 given by (1) we see thet the lerger the box ,the closer

1. Looking at the
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we could go to resonance, setisfying these conditlons of the apprg
ximetion. But we have to remember that the lorger the boX, the
greate} the number of lovels thot exists nesr resonsnce; 1f the box
1g very lerge we heve to include the effects of resonance, which

have been nczlected.

BXPANSTON OF Iis WAVAE FUNCTION IN EIGENTFUNCTIONG

QF UHE IARMONIC OSCILLATOR

- .f.(_,.p, - b)a -
2\ \n o)

B (e ) - LB a)
‘ n

\ln W

where dég indicotes the normelized eigenfunctions of the hermonic

oscillator, =nd

Yy 2 7 W2 :
b = ,1.:_!.__:\,,. X ..,8.7?- 1o ,)2,_,.,_,,..,,..._,._.,‘,_., cos (.;L)Ot (21)
New  We Ne (02 - (o2
2
bt g ] bfyh |
We get o, = e (22)
\janx nl

P, cn8 represents the probability of finding the field oscillatar

of fundemental frecuency  ( i, vemembering the ind ca) in
the state of energy nh W .

We see that the cuantum fleld presents small fluctuat
ions around the everage velue, which equals the classical field;

The quentum trectment implies fluctustions of the finld end its
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energy density snd approaches classical results only in the limit
of strong ficlds.

The results expressed by (22) refer to the stotionay
states of the system: the fleld is enclosed in a box, and the cir-
cult emits and ebsorbs photons. The probabilities p, are periodic

functions of Time.

Ti1E VAVE FUNCTION OF THE WHOLE FISLD

-~

The formulae we have derived above are velid as  long
as the induced vibretvions in the field are so weak that they do not
appreciably alter the motion of the circuit. This will be the case
as long as our bor is so smell thet no vibrations of the field exst
in the immediate neighbourhood of resonance. They may also beused
outside of the domein of resonance, in cases in which e can
suppose that the oscilleting currents in the eircuit can be des -
oribed with sufficient epproximation by our wave packet (17), e.g.
neglecting & small damping of the swstem during a limited period
of time. A more complete treatment of the problem requires,howeven
a detailed study of the field in the resonence regiony vhich will
be attempted in tho zccond pert of this paper.

]'._, R
¥ 1R
Lo (AN

=
s

caatmed avwroximetions the weve function of

the whole fiecld is

O (pys mpre et = 01 0 () = T Hog |t -y (23)

If we expend this function in terms of the eigenfunctions of the

field oscillstor:
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the coefficients represent the amplitudes of prpbability of fingd

ing the filel oscillators in the different stetes. We have

1
=c. T[. oA

0 and so on, where
/’\ ;1{ 7 3

= Tl o

COO---O A 9] ? c'!Ol-oO ]
2
LXK
p? e L

A S N —

" \lan x ni

P 0 eesOnes = probability of finding all field ogeilletors in the

= T (cé)aze 2

ground state A PR
A

p?o,.-o,.. = probebility of finding the osgcillr-tor of frecuency u);
in the first excited sterte and £11 the cther ones in

the ground stete

. 2
57 L.Py

ERY-] - 1 2
= (01)? T1, ()7 = ef © ’
A Fl
J 2
| S D I
: [ el cooZ A
Analogouslys P00 s 00n o = =5 bz e , and so one

A ANz, . i
As each P = c les =meller then 7T and there is

an infinite nmunber of factors, These probabilities =2re zero; but a
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meening cen be given to the relrtive values of the probabilitieg arnd
in the nrobabilities of finding the oscillators with freguencles ca

tained in finite interv-ls AWy in the several states.

VIRTUAL PHOTONS

(Results which the perturbation method furnishes)

If we develop separately the wave function of each os-

cillator in seriles of eigenfunctions, the wave function of the whdle

field is
i LA PP : '
¢ =Ti ‘ j’«& ( ~\ + o, (wmp#»w) o (2)
A \ﬁiu“/ ' | \dﬁu«

The probability of finding zero virtual photons in all

the field (all oscillators in the gwound state) is

: 2
;
— 42 "a'zhbx
W) = | ET ¢l o= e

The p robebility of finding any one photon in the field, that is,

one, no m-tter which, of the oscillsiors in the first excited =tete

and all the others in the ground state, is

. e M2 2 3 E:i 112
WO = 2l Tzl e



15~

Analagously
. 1200
e . A2 4 (1 2V "% 4 A
J{z =.--J-T ‘Ckck i ¢ "-‘-—-"'“(—'):b) e
( ) 2 1 kﬁkt P ’{*k,k' 21\2 % k
! 2
- Loy
\/\/(n>=-flj~ > Zb/( e (25)

The number of photons hag then a Poisson distribution.

(2 (26

In this way we can estimate the number of photons in the field. In

The average number is

the cese of a dipole

IOO w k f +. kyz\ K1 and 2k, <4

this number diverges; in fact, using (5) we get

2 2
— (8 Tl 2 5\ 2 I,” cos w t ;: kg

o IO

w
The sum diverges 1i%i//f k d k.

AVERAGE ZNIERGY IN THE FIELD

- I /\12
B = *nwkiccﬂ ol

A Fk
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L A A |
= - R /;? 2
E = Z. oWy, (._é_ by, ) (27}
k Lo
Tn the case of dipole, this becomes
2 1 2 o 52 £ o
_L._-..,, (o p2)f LR oS N A
T Fo o2 A - 2)”2”
N A 0
] Q0
which diverges llke / k2 d % ag in the classical case.

J

PROBABILITIES IN A GIVEN INTERVAL OF FREQUENCIES

The probabillity of finding zero virtusl photons in E:kA

o2

s ()= T 1col =e
LEA Adn &k,
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where )w4 indicates sum over all the frequencies in the interval
ALI&A . The probability of finding n photons in..ékch is
‘ ' o1 - LSty 2

. . . . \

W o(a) =5 [+ 2 NERE: A (28)

Ak/\ . 4 hd ) +

. . . - TN, 2

The average number of photons in the interval i1s n = 5 2; b X

| o ASN -
This muper is large when by 1is lerge: thils happens In, the region
of resomance. The average energy in ékk)\is |
- ; 1 2
B = —%“ EE_ o) L&%Ab‘A .
&k)\
For large values of n +the maximum in the probability

distributions (25) and (28) occurs approximately for

—_— ‘l
n=n= —Eﬂ e N

ANOTHER DESCRIPTION OF THE FIELD.
THE EVOLUTIQN OF THE SYSTEM WITH TIME

We deslt with the staticnary cases. We have to see how
o desceribe in this formalism the non-stationary case. We have to
choose an initial configuration and to study how it develops in
time. In order to study the radiation process we could choose &s
simplified initisl conditions: the field not coupled with the cix

cuit, and this in sn excited state

y(o) = #6y (—\J‘iﬂ@;) "I;\f %O'\T%ﬁ-) (29)

To know how the system changes in time, we cipand jp(o) in ‘terms
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of the stationary solutions of the problems

¢ 0 = (i) T ARG = L g, $4f G

NBo/ g o1y i
0}
T (2 o ] ;
\"h \1))\ ' 4 :h- "‘JQ
D g
where = \J e S0Py,
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. N n LY P
50 (t) SV (d'L » e >) éi% T &“L:t....,.;‘“"‘" :") x
Lyl V7 NM B we
) I P ’ ‘
qu e N ~7mw~wﬂ:J (31)

dLszx represents the amplitude of probability of finding  the
circuit in the L - th excited state end ?,. photons of frequency

W in the field. Calculating in this way the emigsion process
we have & different description of the fieldj we may call ‘'resl
photons" these stotes of excitation.

The description of the initial condition as has been
done, defining them in terms of the states of the non~counled
system, is insatisfactory. TFor example, if initially, we have
the circult in the fundemental state end the field is the non-

coupled vacuumn, thst ils, 1if

. 2900 | e
g} {0) = g O ("‘:P::”"""‘;‘) T ¢ 0, ("m_f:»'“;*") (32)

\'iM ‘h. LJ,)Q
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we get
Porg = probahility of finding zerc photong in the field and. the
[ N ! \:.,! ) 2 Ay -1
cirvenlt in the fundamental cstate = ( “T“ /. )

H

P20 probability of finding two photons, no metter whlch, and the
. 2
.7 f .
circult in the fundamental state = (-%—-Za A) T+ L N 2)
- \

A TR DA Y PR T
—3x1x(y .

1

N

' =5
)\/ \ Gi\ y and so on.

pl-!i 0 -+ J;

So we have The probablilities of finding pholtons and excited states-
in a system which was initially in the state called Yvacvum. The
creation of these photons and excited states is due to the coupling.

Let us estimate the value of z:ld f . Ve have

- 2 _ !\. : . ‘\\ . 2 _ — w)\ q?)\ LL),\ Ll <] _
e = T sMY F A TOr T 2\2
- A I\U\))\ - U\)t') })
o me)? o wle > s
R - e ‘“2'>'"2‘””'Z“>'"'§"
+ -
Exn oy BN mE g
2 (L
sin (2 lag = /WMEM*WEE
e s T OAIR,T 4 &
(L x, )2 O W T Ay
2 Az

If L dis very large we may trensform the sum in an Integral; using
asymptotic expressions for the Bessel function, assuming that
Kofo<<1 omd that ¥ is smaller than 4 , and neglecting reso-

nence effects, we get
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If the values of the capacity, frecuency and dimensions of the cir-,

T

cuit are such that 2m=d E' <¢ 1 the probabilities of appearing pho
tons when we heve initially vacuum ere very small, and the prpbabil;
ty of the system to zo to the state celled "coupled vacuum" is very
nerr 1. In this case of wesk coupling there is sense in saying that
(32) represents the vacuum, and we ave entilled to use (29) as ini-
tial condition for the system: 1if we conglder high excitation levels
in the circuit at the initial state, that is, If we want, as in the
clasgical case, to describe the emission of a large number of photms
the contributions due to the coupling are of small lmportance, _and
our results will approximete those obtained by perturbation methods
(virtual photons). Ve may expect that the probabilities of the 4if-
ferent emigsion »rocesses calculated in this wey will be eflected by
errors of the order of the probabilities of these processes whep the
initial state 1s the vacuum, that ig we heve to note that some aft@e
photons that appears in the field are due to the coup}ingy&wse error
can be neglected in cases of weak coupling (}2(1? << 13.

our perticuler problem, excluding resonance, 1s then solved,
at leesst in principle, in cases of werok coupling. There exists the
possibility of applying this solution to the ceses of ;trong\coupl;
ing but this problemr has not gelt been soived. The ruestion of reg
gonance will be discussed in the second partrof this paper.

The asutheor is groteful to »rofessor Guilde Becl, who suggest

ed the present work, fov the guldance rnd meny discussions.,



