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Abstract

The infiuence of the gauge rotation in perturbation theory 1is
investigated. As an example, the fermion propagator is studied
in a gauge invariant form. The calculation is parametrized for
a straight line. A gauge independent renormalization constant

is obtained.



I. Introduction

The gauge principle is being considered as a source for gen-
erating interactions. At the moment, our best promise of unifi
cation lies here. However the characterization of the limita-
tions of this principle has not been fully developed yet. This
work will be an effort to understand the consequences of the
gauge transformation

ix(x)
P(x) -~ e P (x) (1)

The presence of the above relation in the calculations of phys
ical entities through perturbation theory is going to be inves
tigated. The difference between these new numbers generated by the field
rotation (1) and the old numbers calculated when the gauge con
cept was not considered will be referred to as the Gauge Effect.

Thus, inspite of the present success of Gauge Theories, two
kinds of criticisms can be levelled towards it. They are the Bohm
Aharanov Effect and the Gauge Effect value for some process being
analised. We intend to explore the second aspect in QED for the
Electron Self Energy.

The dynamics in field theory is given through a Lagrangian.
Usually the Green functions are defined, in the interaction pic

ture, in the following way [ 1|

Gxp sy, enex ) = <O [T ¢(x))e.o(x) 8]0> (2)

where ijdéxz. ()
T e int



The aspect to be analysed here is that although the gawe prin
ciple (1) unchange the Lagrangian it does not preserve
the Green function (2). In the literature an appropriate Gauge

Invariant Green function is

y
ief _(x')dx'u ieﬁﬁntdx4
Gop (XrY) = Gpylx,y) =<0 T [vix) e *e Ply) e 1lo>
(3)

that is being explored under differents oonsiderations EZ:I . It is

invariant under the gauge transformation

P (x) = e 1 Ax) Y (%)

v'(y) = e iMy) viy) (4)
A'x') = A (x') -L 5 a(x)

u u e u

The equation that correlates (2) and (3) is

y
L A (x") ax'™ =xeo-aty) (5)

e understand (4) as a relation that represents elec
tron and photon fields interdependence. They are conected through
the parameter X (x) that is unknown. Thus (5) represents a type
of connection between Au and A. The conventional interpretation
for propagator (2) is that an electron is destroyed in x and

. iefy A ax'¥
created in y. In (3) the presence of the term e %ol cre
ates a type of cable between x and y. In field theory the action

at a distance is usually defined as a limit sum over infinitesi

mal paths. Therefore a study of infinitesimal distances is suf

i



ficient. In (2) and (3) we will thus consider x-+y. It is then
natural to take the path C as being the straight line even though
the phase factor is path dependent

]

7 u
f dx'"" A_(x') = f du A (ux) x
I U
X,C 0

u (6)

Our objective will be to calculate the renormalization oonstant

zZ, from (3). Intuitively from

we expect that as GGI is gauge invariant (by construction) and

also G%I (because it is connected with experimental results),

NEW

then 22

will also be gauge invariant. Considering the influ-
ence of the renormalization constant parameters on the experi-
mental results a measure of the gauge effect will depend on the

difference between ZNEW in (6) and the usual 22 from (2). In

2
order to calculate it we are going through the following steps:
in part I, an expansion formula is established up to second or-
der; in part II and III, an expression for the new pieces of
the propagator is developed. Afterwards we calculate through a
method developed in Appendix A the corresponding renormaliza-

tion constants. In part VI the cancellation of the gauge depend

ence is shown followed by the conclusion.



TI. The Gauge Invariant Propagator up to Second order
Expanding (3) gives

g () = <0|Tux) Fy)]lo> +

(o] . n — —
yy el fd“xl...d“xn<o|T|_w<x)fint(xl)...fi\» (x )¥(y) |0>

' int n
n=1l n.

3 m
+ 1
m=

y
L dxdldx “szTrwbdA N&RA WX)H.(Yﬂw>

2

00 ., \0i,., M y
v el Oolf L d'xjaxh . atx ax! 0 TV 00 (o 6cp e

n,m=1 n! m! L
* A\) (xt'l)xint (Xn)l_p-(y) !O>
(8)

Considering up to second order

2) (y,y) = 13027 fd4x1d4xz <07 [veadky . ey Op) Py [0> +

21!

Cuew

y — -
(ie)? L axM dx”<o|T[Y) A (ux]) A vxy) v lo> +

v aer? fatx [(axtolrlvengmiZ, ) Ty lo>
x ©)

or

) = ¢ g o)

NEW OLD (10)

Thus, the gauge invariant propagator englobes the usual one

coming from (2). The possible new interpretation will be given

through the pieces G( ) and G(z)



(

2
ITII. The expression for GI')(X,Y)

Parametrizing (9) with a straight line as Fig. 1

2
e

(2)
G (x,y) =
I 2

fdu dv s, (x-y) D, [(x-y) ()] )" ey @D
nv

* -

and considering the Fourier transform

G(Z)(p_p.) _ Jd4x(i4y o ipx e—ipvy G(Z)(X_y)

yields,
b b
¢? (p-p') = - e’ [2 q: kal {8 [p-q-k(u-v)]| §(p-p")}
2 u v dg dag
Uy
1 (_gu\)+ oakuk\)/kz) (12)
;zj—m k2

Using the divergence theorem

2
fd4q d[’k dudv § [:p—q-k(u—v)] S (p-p')

<—guv+a]ﬂ#v)

dg,dq,, g-m k?

Giz)(P-p') = -

N O

(13)

Y

Fig. 1. The integral JAU(X')dX'U is parametrized for a straight line
c



Calculating the second derivative and making use of the delta
function gives
G§2)(p—p') = -waza(p-p')fd4kch1dv 1 Y11 1 Yv
Bku-vi-m  B~¥@u-v)-m
-g  +ak k /K
1 g‘ll\) akuk\)/k (14)
=K (u=v) -m k?
The gauge dependent part in (14) is
628 _ L% siomnt) a‘x R (15)
1 PP 7% LR T Fn -
. (2)
IV. The expression forGﬁ x,v)
From (9),
(2) 2 4 d
. — v —_
Gy~ (x,y) = (ie) fd X1£( d‘X'u<OlTE¢(X)AU(X')w(xl)Y w(xl)A\)(xl)kU(Y)|0>
(16)
Parametrizing as Fig.l and changing the variables to
x =0 , =X, T Y
gives,
2 . 2 -
G](I ) (x) = ie fdu day SF (y) Yv SF (x=vy) D, [:y—ux_|x}J (17)
v



Making the Fourier transform

2 —
e{?)(p) = = fdu d*ratqa*r 2 {[s(p-g+ku) } 6 [k +g-r]
o
(2m) or
n
(ot )
Loy 4 S (18)
Z4-m p-m k?
4

integrating over d°q and using the divergence theorem

2
G(z)(p) = -5 Jdu d4kd4r § (p~xr+ku)
I 4
(2m)
- + ]
— guv OCkuJ{u
3~ 1 v 1 - K
B y' =] -
Bru P-K-m g-m k —
. , , 4
Performing the Integration over d k
(2) e? b - 1 n 1 v 1
G~ (P} = =—, dud’k [ ——— ¥y Y
(2m) p+Ku-K-m p+Ku-¥-m p+ku-m
- 2
IR SV SRRV S ot Okt Y v
g+Ku-¥-m g+iu-m p+Ku-m~ k2
(19)

(19) can be splitted in terms of a gauge and non gauge parts

(2)

_ .(2),NG (2),G
Gy (p) = Gy + G (20)

I



V. Calculation of the non-gauge part in Z2

z. =M 5 (gem) G, (p) (21)
Studying first the non-gauge part contribution to (21) we get
from (14) that the ratio between the numerator and denominator

in the integrand is given by

(¥ (a-v) +n| ¥ [p-K(u-v) +n] v, [B-K (u-v) +n]

ol=

[p?-m? - 2kp(u—v)+k2(u—v)z:|3
Using the calculation process described in the Appendix A

N(u,v,...) = N(0,0,...) = ($+m) v¥ (F+m) Y, @+m)

and changing the variables to

X = u-v
y = utv
gives
N .
gom
(22)
4
.Jd k [dxdy 1

k? 2 [pz—m2—2kpx]3



Integrating over x and y

NG . 2 " 2m? +mg-p> 1 [d%{ 1

2,1 B 2 en? k¥ k.p?

In the Appendix B 1is calculated {dak. It is regularized

with k?-k2?+A%2 where A%~0. It gives

2 2 2 2 _
Z?GI = £ 5 4m” +2mp - 2p |_l+l(y—£n4ﬂ)+££n ilA——_]
’ (4) p? e 2 2 p?
(23)
VI. Calculation of the non-gauge part in ZZ,I[
From (21) and (19)
.2 4
zI;GH = lim e . f d K qu (g-m) {L+M}

’ (B=m) > 0 (2m) k?

where L and M are given by

1, = P-uk+ m Yu P-uk+ m Y 16+(l—u)‘,a(+m_
” (p~uk) ?-m 2] [ (p-uk)?-m?] * [ (g+(1-u)k)?-m?_]

and

p-(1-wK+m [ (2-n) (B+uk) +nm] [ g+uk+m] (24

2

M =

— -2
p- 1wk ] -n® [ (p+uk) -m?]

The integral over u is evaluated through the method of the
Appendix A. Considering the analvtic continuation to n dimensions

and symmetrizing the integrand with k--k,

N _ ie’ [a%  (p-m) (#tm) [(2-n) p+nm ] [ g-¥+m |

et e C(p=%)"-n”] 2pk (p*-m’)
(25)



- 10 -

and

NG ie? (@ (p-m) @-K+m) [@-n)p+nm] [B+m] (26)
noom% T k2 C(p-k)2-m?] 2pk (p?-m?)

Adding (25) and (26)

NG  _ ie? a"k 8m? - 2mK - 2k.p (27)
Z = :
2,10

(2m %’ k2 " (p-k)?-m? ] 2pk

Using the integrals of the Appendix B

2 2 2
NG _ _ 2e o [enh-1+in]- & (é+1)[.g+y—£n4w+2£nm—2]
2,11 2 2 - 2
(4m) P (4m) m £

(28)

VII. The gauge part

(2),6
I

tegral over du in (19), consider the identity

The G is written in (15). In order to calculate the in-

¥=p-uk-m- [ g+ (1-u) ¥K-m_|

it yields,

2 4
G(Z)’G (p) = o & .J§~]<du{N-+P}

where

1 1
¥ d

N:——-———-—_ —————————
p~uk-m g+ (1-u) K-m du p-ukK-nm
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and
1 1
p=2 L ) + K
du pPp+u¥ -m p-uK-m P +(1l-u) K-m
then,
(2),6 _ _ 282 a*x (1 1,
Sn = Z A -
(2m) k P-K-m g-m
(2),6 :
The gauge depend part for GOLD can be written as
(2,6 __ ae’ j&k 1o, 1,1
OLD B 4

(2m) k* g-m  p-K-m  p-m

Using the relation

K=§¢-m- (B-m-K)

and symmetrizing the integrand k ~ -k, yields

(2),6 _ _ae® fa% ,_1 1,
OLD

G =
2m* J k* g-¥-m g-n

(30), (14) and (29) in (10) gives

(2),6 _

G NEW

NEW

Then the new renormalization coefficient Z2

(29)

(30)

(31)

(32)

(33)

will be given

by (23), (28) and a part from the old propagator‘[l].ﬂ:yields,

(34)
16A°

2
Z;JEW,(Z) =1-2 C2+y-tndn-2in7] +
(4m) € | )
e? - 8
+ L=+ 4y -dndr +2n

(41T)2 £
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where the second term (34) is correlated with the wultraviolet

divergence and the third with infrared.
VIII. Conclusion

At present the belief is that physical entities must be gauge
invariant. Motivated by this a new propagator was defined in
(3). We could interpret the phase factor in it as cable that
controls messages that create and destroy particles in x and y.
Equation (5) would be a way to install such cable. Mathemati-
cally, it means that the gauge rotation (1) redistributes the
perturbation series as (8). There appears then two new terms
besides the common one. Physically, this new serie arose from
the fact that the photon and electron field are not independent.
The gauge concept brought a connection between them through the
parameter A (x).

The gauge rotation (1) and the property of gauge invariance
(independence of the parameter o in the photon propagator (12))
reveal different aspects of a Gauge Theory. Our observation is
that although these theories can generate a gauge invariant boson,
it may depend on (1) perturbatively.

The so called Gauge Effect will appear through the influence
of the new terms in the expansion in the calculations. For instance,
the cross section ¢ in a Compton Scatering will suffer this Effect
in order e4 as in Fig. 2. In order to have a complete calculation

NN
e AN

Fig. 2. A graph for the Compton effect in order e4. The Gauge Effect will bring
through (9) another two diagrams.




it is necessary to include graphs as in Fig. 3. They are based
on the vertex function. The difference in the cross section
using these new propagators must be evaluated. Its value will
tell us about the meaning of (1) in the Compton scattering. How-
ever it is a independent. We also would observe the possible ap

apearance of a new beta function.

Fig, 3. The gauge effect in the vertex renormalization through

(
ijA x") ax'?

. 4
1 az d x
<0[T [¥x)e 2 " V(y) A (2) e J T o>
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Appendix A - The method of calculation

A usual expression in the text is

1
L = lhn|:a.J L

5 £(u) du’|
a-+0 o (u+a)

Expanding in Taylor series

1 1 1 1
L = 1im { £(a) J du 5+ f'(a) J du —+ ,..1}
a~+0 0 (u+a) 0 u+a
that gives
L =1im {f(a) + af'(a) &n l+a + ... something a”}
a~0 a
L = £(0)
Example: a=p-m
L 1
lim (g-m) I du — = 1
pm 0 (B-m+u)

Another kind of expression is

where b==Anan+An a’ T+ ...+ cte

giving

(Al)

(A2)
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Similarly,

l —
N = lim [_a J 1 7 £(u) du | = £(0) (A3)
a-0 o (u?+u+a)
_ 1 1 - _£(0)
0 = 1lim [ a J , £(u) du| === (24)
a~0 o (u?+du+a)
- (! 1 £(0)
P = 1lim [_a J 5> £(u) du] = (AS)
a-0 0 (u?+du+b) A d

Appendix B - Some Basic Integrals

The first integral is

4
o= 1L 4J d’'k 1 ' (B1)
(2m) k*+7* (k.p)
Using Feynman parameters and integrating over a"k
n-4
T - i r(3-n) (p3)*7¢ L (-q) 2
(1672) 274 2 2 n-4
2
where o? =4A2
p
The other integral is
1 d4k 1 1
U = 7 J - = - (B3)
(2m) k*+A%2 [ (ptk)2-m?| 2pk
Integrating over a"k
U= - zjdxdy ¥ 1 (B4)
(4m) | I+y (x-1)] a’-y?p?
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where

a? = A2 (1-y) [ 1+y(x-1)] = A?-y®p?

Evaluating over x gives the following integrals

1 - - 1
I, = f dy [ en(l-y) +y | — = -1
2
0 Y
1
I, = J dy —L = —(Lnh+im)
0 y2_A2
that yields,
v=-2 L [-1+onn+in] (B5)
(4m)° 4p?
4 ;
v = 1.4 J d'k  _ ¥ _ (B6)
(2m) k2+A% | (p-k)?-m®_|(2pk)

Using the identity

¥ = £ (2pk)
2m?
will result for (B6) in an integral that does not have in-

fared divergences in the x integration. Then we can consider

A?* =0 and through dimensional regularization gives

ve-—t_ B 2.,y tudn+enn?-2] (B7)
(4m) m? e

where e=4-n is the dimensional regularization parameter and

Y 1s the Euler constant.
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