
ISSN 0101-9201

Notas de F́ısica CBPF-NF-011/11

July 2011

The vanishing volume of D = 4 superspace

Guillaume Bossard, P.S. Howe, K.S. Stelle and Pierre Vanhove



CBPF-NF-011/11
CPHT-RR045.0511

IHES/P/11/14
Imperial/TP/11/KSS/02

IPHT-T-11/124
KCL-MTH-11-11

NSF-KITP-11-069

The vanishing volume of D = 4 superspace

Guillaume Bossard,a P.S. Howe,b K.S. Stelle,c,d,e Pierre Vanhoved,f,g
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1 Introduction

The problem of ultraviolet divergences in supergravity has attracted the attention of theo-
rists since the origins of the theory. Early on, it was realised that candidate supersymmetric
counterterms, non-vanishing subject to the classical equations of motion, exist starting from
the 3-loop level in D = 4, where they would generically be of (curvature)4 structure [1–4].
It was noted at the time that, with respect to the full “on-shell” supersymmetry of the
N > 4 extended supergravities, these (curvature)4 counterterms need to be expressed as
subsurface integrals over the full superspace, i.e. as “BPS”, or “F-term” invariants. But
according to the understanding at the time of the possible linearly realisable “off-shell”
supersymmetry, which is less than the full on-shell degree, they appeared to be express-
ible as full superspace integrals of the linearly realisable off-shell supersymmetry and thus
were not thought to violate applicable non-renormalisation theorems [5]. Thus, despite
their BPS subsurface-integral structure, the ultraviolet divergences of D = 4 supergravity
looked set to begin at the 3-loop level, provided the maximal off-shell linearly realisable
supersymmetry corresponded to just half the full on-shell degree. Should the linearly real-
isable supersymmetry turn out to be more than half the full on-shell degree, e.g. through a
harmonic superspace formulation, the divergence onset loop order would correspondingly
rise [6, 7].

In case the non-renormalisation theorems for BPS invariants turned out to be stronger
than anticipated, it was also noted in the 1980s that full-superspace integral invariants
would in any case be available starting at the 7-loop or 8-loop order [3, 8]. The constraints
of continuous duality symmetries such as E7(7) for the maximal N = 8 theory were recog-
nised to be important as well. The 8-loop full-superspace counterterm was recognised to
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be manifestly duality invariant. But it was also anticipated that a duality-invariant coun-
terterm could exist already at 7 loops, where näıve power counting in D = 4 gives an
expectation of a dimension 16 counterterm, corresponding to the

∫
d32θ full-superspace

integral for maximal supergravity. An obvious candidate for such a dimension-16 duality
invariant non-BPS counterterm was the full volume of the N = 8 superspace,

∫
d4xd32θE,

where E is the Berezinian determinant of the supervielbein.
For the N ≤ 3 lesser extended supergravities, it was recognised that the volume of

superspace vanishes subject to the classical supergravity field equations, for a series of
specific reasons. For N = 1, the volume of superspace gives the dimension-2 supergravity
action [9], and thus vanishes on-shell for the “non-gauged” Poincaré supergravities without
a cosmological constant. Indeed, in the “new minimal” auxiliary-field formulation, the
superspace volume vanishes even off-shell [10, 11]. In the N = 2 case, the vanishing of
the superspace volume was expected because the corresponding dimension-4 (curvature)2

invariants are constrained by the Gauss-Bonnet identity to be equivalent, up to a total
divergence, to quadratic expressions in the Ricci tensor or its trace, thus leading to on-
shell vanishing counterterms. The vanishing of theN = 2 superspace volume was confirmed
explicitly in [12] by reducing it to a chiral integral. In theN = 3 case, it was similarly known
that there are no dimension-6 counterterms (corresponding to (curvature)3 structures) that
are non-vanishing subject to the classical equations of motion [13]. Aside from these rather
transparent low-N supergravity cases, however, there seemed to be no particular reason
why the superspace volume should vanish for the higher-N extended supergravities.

In the meantime, computational techniques have improved dramatically, and much
more is now known from explicit calculations about the ultraviolet divergences of super-
gravity (see [14] for a recent review). The result is that, despite the anticipation of first
maximal supergravity divergences at 3 loops, ultraviolet cancellations turn out to continue
unabated in D = 4 and also in D = 5 at the 3-loop [15, 16] and at the 4-loop levels
[17].1 This clearly required revisiting the analysis of the non-renormalisation theorems.
Indeed, although the earlier 1980s non-renormalisation analysis had relied upon the known
off-shell linearly realisable degree of supersymmetry, it turns out that the full on-shell su-
persymmetry imposes further constraints that were not initially recognised. Even though
the full on-shell supersymmetry involves nonlinear transformations and is thus subject to
complicated transformation renormalisations, the corresponding Ward identities, expressed
using BRST algebraic renormalisation techniques, show that the (curvature)4 counterterm
previously anticipated at the D = 4 3-loop level, is actually ruled out [7]. Similarly, the
BPS counterterms expected at loop orders up to 6 were brought under suspicion.

Another aspect of the BPS counterterms that was missed in the original 1980s analysis
is their delicacy with respect to the continuous duality symmetries. Originally, the only
analysis that could be carried out used linearised N = 8 supersymmetry transformations,
focusing purely on the leading 4-particle level of the candidate counterterms. At this lead-

1Owing to the on-shell conditions, no non-vanishing 4-loop divergences could have appeared in the

N = 8, D = 4 four-graviton amplitude. Moreover, nonlinear ∇2R4 and R5 invariants were ruled out in Ref.

[18]. A discussion of the kinematic structure of four-point counterterms in D = 4 non-maximal supergravity

will be given in Appendix B.
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ing order, the (curvature)4 candidate passed the only available test of duality invariance,
namely invariance under constant shifts of the 70 scalar fields. This happened because
at the 4-point level all scalar fields in the invariant are covered by derivatives [5]. But
little was known at the time about the full nonlinear structure of the (curvature)4 candi-
date. This became much clearer recently, however, through relations between counterterms
obtained via dimensional reduction, starting from field-theory limits of string-theory am-
plitudes [19–21] or purely within supergravity [22]. The result is that, contrary to the
initial 1980s impression that the (curvature)4 counterterm might be E7(7) invariant, it in
fact turns out to fail this test at the nonlinear level, owing to scalar-field “dressings” of the
purely gravitational (curvature)4 term. There are just two other linearised BPS invariants
in D = 4,N = 8 supergravity, at 5 and 6-loops [18, 23, 24], but these also turn out to be
incompatible with E7(7) invariance at the nonlinear level [22, 25]. So, none of the D = 4
F-term invariants can correspond to divergences, because it is now known that E7(7) can be
preserved in the quantum perturbation theory [26]. These duality invariance requirements
end up invalidating the previously-thought-acceptable BPS counterterms at 3 through 6
loops in D = 4 maximal supergravity [20–22, 25].

Consequently, the candidate counterterm at the 7-loop order assumes a greater impor-
tance than it was previously accorded: it is now the leading candidate for a D = 4 maximal
supergravity divergence. So the question of its structure becomes of key importance, and
in particular the question whether it can in fact be written as the full-superspace volume
of the maximal theory. This is the question that we will address in the present paper.

We will prove two main results: firstly, that the volume of superspace actually vanishes
on-shell for anyN , and secondly, despite this, that there are nevertheless duality-symmetric
invariants of the same dimension, schematically of the form ∇2N−8R4. These invariants
correspond to possible counterterms at the (N − 1)-loop level.

We do not currently know any obvious a priori reason why the D = 4 superspace
volumes should vanish. The proof that it does relies on harmonic superspace methods to
reduce full superspace integrals to integrals over superspaces with four fewer odd coordi-
nates. A quick way of understanding the result is to consider how one might integrate an
unconstrained scalar superfield Φ over the reduced superspace using an appropriate projec-
tion operator. For example, in off-shell minimal N = 1 supergravity the chiral projection
operator is D̄2 + S, where D̄2 := εα̇β̇D̄α̇D̄β̇ and S is a chiral superfield whose leading
component is the complex auxiliary scalar. So the integral of Φ over the full superspace is
equal to the integral of (D̄2 + S)Φ over chiral superspace. If we take Φ = 1, this integral,
which is just the volume of superspace, need not vanish. On the other hand, on-shell one
has S = 0, and so the volume vanishes on-shell. In the new-minimal formalism, however, a
U(1) connection is included in the covariant derivative, the superfield S vanishes and the
projector is simply D̄2 so that the volume vanishes even off-shell [10, 11].

In N -extended on-shell supergravity it turns out, as we shall see, that one can select
one undotted and one dotted covariant spinor covariant derivative, say D1

α and D̄α̇N , that
anticommute with each other when acting on scalar superfields. There are therefore G-
analytic superfields that are, by definition, annihilated by these derivatives and which can
be thought of as generalised chiral superfields. It turns out, as we shall prove later, that
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(D1)2 commutes with (D̄N )2 and that the associated projection operators are (D1)2(D̄N )2.
This means that we can integrate a scalar superfield Φ over a superspace with four fewer
odd coordinates and that, as a corollary, the volume of the full superspace must vanish
because we can write it as a sub-superspace integral of (D1)2(D̄N )2 acting on the constant
superfield integrand Φ = 1.

In Section 2, we define (N , 1, 1) harmonic superspace for supergravity theories and
show that the volume of superspace vanishes for all N . In Section 3, we show that full
superspace integrals can be reduced to integrals with respect to the (N , 1, 1) harmonic
superspace measure. In Section 4, using this harmonic measure, we construct fully super-
symmetric and duality-invariant (N−1)-loop counterterms of general structure ∇2(N−4)R4.
In addition, we construct nonlinear versions of the non-duality invariant 1/N -BPS super-
symmetry invariants of general structure ∇2(N−5)R4 and clarify the classification of duality
invariant N -loop candidate counterterms. Section 5 contains our conclusions. Conventions
and details about extended on-shell superspace are given in Appendix A. Appendix B con-
tains an analysis of the kinematic structure of the derivative expansion appearing in the
four-graviton amplitudes in supergravity.

2 Superspace formalism

2.1 Standard superspace

In D = 4, N -extended superspace, M , is a supermanifold with 4 even and 4N odd di-
mensions; local coordinates are denoted by zM = (xm, θµ, θ̄µ̇) where xm are the even,
spacetime, coordinates and the thetas are the odd coordinates. The preferred basis forms
are EA := (Ea, Eα, Eα̇) with Eα = Eαi , Eα̇ = Eα̇i. The index i runs from 1 to N , α and α̇
are two-component spinor indices and underlined indices combine internal and spinor ones.
The structure group, under which the preferred frames transform, is SL(2,C)×U(N ), with
the former factor acting on the vector index a in the usual way. The connection, torsion
and curvature are defined as usual with

TA = DEA := dEA + EBΩB
A ,

RA
B = dΩA

B + ΩA
CΩC

B . (2.1)

Because the structure group is purely even it follows that the mixed, even-odd, components
of the connection one-forms, ΩA

B, and the curvature two-forms, RAB, are zero. The
dimension-zero torsion does not involve the connection and takes the same form as it does
in flat superspace, namely

T i j cαβ = 0 ,

T i c
αβ̇j

= −iδij(σc)αβ̇ . (2.2)

These equations, together with the conventional constraints that allow one to choose the
connection and the vectorial basis Ea [27], determine the conformal constraints that were
discussed in [28], to which paper we refer for further details. (We also collect some useful
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results in Appendix A.) The Bianchi identities corresponding to these constraints were
solved in detail in [28]; we note here that the dimension one-half torsion components are
zero except for

T i jγ̇kαβ = εαβχ̄
γ̇ijk (2.3)

and its complex conjugate. The leading component of the field χαijk (in which roman-index
sequences like ijk are understood to be totally antisymmetric) denotes the 56 spin-one-half
fields in the supergravity multiplet for N = 8; there are additional independent spinors
χijklmα for N = 5, 6. The on-shell theory is completed at dimension one by specifying a
number of superfields in terms of the physical component fields [29]. In addition to the
geometrical fields, there are also spin-one field strengths and the scalars, the latter entering
via a coset sigma model K\G which for N = 8 is (SU(8)/Z2)\E7(7).

A key point about the above equations is that they are compatible with at most one
Dα and one D̄α̇ being in involution; indeed, one could say that the dimension-zero torsion
constraints are representation-preserving [27] for fields that are annihilated by such a set
of derivatives. However, we clearly cannot pick out such a pair in ordinary superspace
without breaking U(N ) symmetry, and for this reason we need to enlarge the setting to
harmonic superspace.

2.2 Harmonic superspace

Harmonic superspace (and the closely related projective superspace) is ordinary superspace
augmented by an additional bosonic space that parametrises sets of mutually anticommut-
ing fermionic derivatives [30–32]. In general, this space is the flag manifold

Fp,q(N ) ∼=
(
U(p)× U(N − q − p)× U(q)

)
\U(N ) (2.4)

which parametrises the possible sets of p undotted and q dotted spinorial derivatives that
anticommute on scalar fields [33]. In our case, we need p = q = 1 which gives F1,1(N ). One
way of working on such a coset space is to consider functions on the group K ∼= U(N ) that
are equivariant with respect to the isotropy group H ∼= U(p) × U(N − q − p) × U(q), as
advocated in the work of [31, 34]. In supergravity,2 U(N ) is a gauge group so this means
that in the equivariant formalism we should work on the principal U(N ) bundle which we
will call P . We denote an element of U(N ) by uI i where the local gauge group acts to the
right and the isotropy group acts to the left. The inverse is denoted uiI . We can split the
I index according to the structure of the isotropy group: I = (1, r,N ), and we use u or
its inverse to convert K indices to H ones. In particular, for the fermionic derivatives, we
have

DI
α = uI iD

i
α = (D1

α, D
r
α, D

N
α )

D̄α̇I = uiID̄α̇i = (D̄α̇1, D̄α̇r, D̄α̇N ) . (2.5)
2Other aspects of D = 4,N = 2 supergravity, including off-shell Poincaré supergravity, have been studied

in harmonic superspace, cf. for example [35, 36], and more recently in projective superspace [37, 38]. It has

so far proved difficult to extend the off-shell Poincaré formalism to N > 2 [39].
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One can immediately see that D1
α and D̄α̇N anticommute among themselves, at least as far

as the torsion is concerned, owing to the antisymmetry of χαijk. (The curvature terms will
be discussed shortly). In addition to the superspace derivatives, we also have the group
derivatives DI

J which are simply the right-invariant vector fields on K; they obey the Lie
algebra commutation relations for U(N ) and act in a simple fashion on u,

DI
Ju

K
k = δKJ u

I
k . (2.6)

(There is also a trace term for SU(8).) These derivatives split into those corresponding to
the isotropy algebra h, (D1

1, D
r
s, D

N
N ) and the remainder corresponding to the coset di-

rections f, where the Lie algebra k of K splits into k ∼= h⊕f. Since the coset space is complex,
the latter divide into two complex conjugate sets: (D1

r, D
r
N , D

1
N ) and (Dr

1, D
N
r, D

N
1).

In the principal bundle P there is a Lie-algebra-valued one-form ω that combines the
Maurer–Cartan form on the group with the U(N ) connection on the base:

ω = duu−1 + uΩu−1 . (2.7)

A complete set of basis forms is then given by adding to these the basis vielbein forms on
the supermanifold M . The dual basis vector fields are the right-invariant vectors fields on
K together with the horizontal lifts of the basis vectors on M , ẼA. The latter are given by

ẼA = EA − Ω I
A JD

J
I . (2.8)

The set of vector fields (D1
α, D̄α̇N , D

r
1, D

N
1, D

N
r) span a CR structure in the principal

bundle P , i.e. an involutive, complex distribution that has a null intersection with the
complex conjugate set. The proof of this is given in [40]; it depends on the details of
the curvature tensor. The number of odd vector fields in this set cannot be increased for
N = 5, 6, 8, although one can have (2, 1) structures in N = 3, 4, and a (2, 2) structure in
N = 4.

Instead of working on P it will turn out to be useful for the normal coordinate dis-
cussion to work directly on harmonic superspace MH . This is the associated fibre bundle
with fibre the coset space F ∼= H\K, where F is the flag manifold, i.e. F1,1(N ), described
above. To derive a convenient basis of forms on this space, one simply needs to split ω
into its isotropy and coset components, ω = ωh + ωf. The latter will be interpreted as a
vertical vielbein while the former is a connection for H. The form basis is completed by
the vielbein forms from the base, but we have to contract the fermionic ones with u or u−1

so that they are not acted on by K directly. Thus, EαI = Eαi u
i
I while Eα̇I = uI iE

α̇i. The
resulting space has the structure group SL(2,C)×H, although one should note that there
has not been a choice of U(N ) gauge. One can work out the components of the torsion
from the equation

dω + ω2 = uRu−1 , (2.9)

where R is the k ∼= u(N ) component of the curvature, simply by decomposing it into its
isotropy and coset components. We have

Dωf = −(ωf ∧ ωf)f + (uRu−1)f

dωh + ω2
h = −(ωf ∧ ωf)h + (uRu−1)h , (2.10)
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where D here denotes the exterior derivative which is covariant with respect to H. In these
equations, we have fixed the gauge with respect to the isotropy group acting on K so that
u should here be considered as a function of local coordinates, t say, on F . It will be useful
to introduce a quantity h(I) such that

h(1) = 1 , h(r) = 0 , h(N ) = −1 . (2.11)

The coset indices are then pairs I, J such that h(I) 6= h(J) while the H-indices are pairs
I, J with h(I) = h(J). The vielbein V I

J on F is (duu−1)f, and the corresponding quantity
on MH is Ṽ I

J which is given by ωf = (duu−1 + uΩu−1)f. Thus,

V I
J = duI i u

i
J

Ṽ I
J = duI i u

i
J + uI iΩi

ju
j
J , (2.12)

where in both of these expressions h(I) 6= h(J). The full set of basis forms is thus ẼA =
(Ṽ I

J , E
a, EαI , E

α̇I). The torsion 2-form on MH , T̃A , is given by

T̃ a = T a , T̃αI = Tαi u
i
I + EαJ ∧ Ṽ J

I , T̃ IJ = −Ṽ I
K ∧ Ṽ K

J + uI iR
i
ju
j
J , (2.13)

where h(I) 6= h(J) 6= h(K) .
We denote the vector fields on F dual to V I

J by dIJ ; they are only defined for h(I) 6=
h(J). The complete set of vector fields dual to the basis forms consists of the dIJ together
with the horizontal lifts of the basis vector fields of M which we shall call ẼA with the
understanding that the internal indices are capitalised. The full set is denoted ẼA =
(ẼA, dIJ). One has

ẼA = EA − Ω I
A, Jd

J
I . (2.14)

The combination ΩI
Jd

J
I (where the sum runs only over indices for which h(I) 6= h(J))

can be rewritten as Ωi
jK

j
i, where the Ki

j are the Killing vector fields on F that generate
the right action of K on the coset. The graded commutator of two basis vector fields is

[ẼA, ẼB] = CAB
CẼC :=

(
Ω̃A,B

C − (−1)ABΩ̃B,A
C − T̃ABC

)
ẼC . (2.15)

In particular, for two fermionic indices, for example undotted ones, we have

{ẼIα, ẼJβ } = T IJγ̇Kαβ Ẽγ̇K −RI J Kαβ, Ld
L
K + connection terms . (2.16)

The term involving the curvature here is a torsion term from the point of view of harmonic
superspace. Note that the connection terms refer to SL(2,C)×H and so do not mix the
indices (1, r,N ). This formula, together with those for mixed and undotted spinor indices,
allows one to show that the subset of vector fields

ÊÂ := {Ẽ1
α, Ẽα̇N , d

1
r, d

r
N , d

1
N} , 2 ≤ r ≤ N − 1 (2.17)

is in involution,
{ÊÂ, ÊB̂} = CÂB̂

Ĉ ÊĈ , (2.18)
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and is preserved under the action of the structure group SL(2,C) × U(1) × U(N − 2) ×
U(1). The vector fields (d1

r, d
r
N , d

1
N ) indeed close under commutation (they obey the

commutation relations of a Heisenberg algebra) and can be thought of as being in essence
the components of the anti-holomorphic Dolbeault exterior derivative ∂̄ on the coset. It is
obvious that they commute with Ẽ1

α and Ẽα̇N because the relation (2.6) is also valid for
the dIJ :

dIJu
K
k = δKJ u

I
k (where h(I) 6= h(J)) . (2.19)

It is also clear that the torsion term vanishes for the commutator of any two of these odd
basis vector fields owing to the total antisymmetry of χαijk in the ijk indices.

The curvature term also has the desired properties, as one can see from [28]. Setting
(Ẽiα, Ẽα̇N ) := Ẽα̂ , we need to show that [40]

R 1
α̂β̂, N

= R 1
α̂β̂, r

= R r
α̂β̂, N

= 0 , (2.20)

because these components of the curvature tensor couple to the derivatives (dr1, d
N
r, d

N
1)

in the commutator {Ẽα̂, Ẽβ̂}. It follows that this is indeed the case because

Ri j kαβ, l = δilN
jk
αβ + δjlN

ik
αβ , (2.21)

while

Ri k
αβ̇j, l

= −J ik
αβ̇,jl

+ δijH
k
αβ̇l

+
1
2
δkl H

i
αβ̇j
− δkjH i

αβ̇l
− δilHk

αβ̇j

−
(1

2
δijδ

k
l + δkj δ

i
l + δilδ

k
j

)
Gαβ̇ , (2.22)

where the tensors G, H, J and N are given in Appendix A. (The curvature with two dotted
spinor indices is the complex conjugate of the one with two undotted indices.) They are
all bilinears in the fermion fields χ, χ̄. To see more explicitly that the curvature has the
desired properties, consider first the undotted vector fields Ẽ1

α, Ẽ
1
β. In order for these to

be part of the involutive set (2.17), we require

R1 1 1
αβ, N = R1 1 1

αβ, r = R1 1 r
αβ, N = 0 . (2.23)

It is obvious that these conditions are satisfied owing to the presence of the Kronecker
deltas in (2.21). A similar discussion is valid for the case of two dotted indices by complex
conjugation. For the mixed index case, we need to show that

R1 1
αβ̇N , N

= R1 1
αβ̇N , r

= R1 r
αβ̇N , N

= 0 . (2.24)

The tensor J is not a problem because it is antisymmetric on both its upper and lower
indices, while the terms involving G and H cannot be non-zero, again because of the
Kronecker deltas.

The explicit form of the involution equations (2.18) is therefore

{Ẽ1
α, Ẽ

1
β} = 2Ω1 γ

(αβ) Ẽ
1
γ + 2Ω1

(α
1

1 Ẽ
1
β) − 2N1r

αβ d
1
r

{Ẽα̇N , Ẽβ̇N} = −2Ω(α̇N β̇)
γ̇Ẽγ̇N − 2Ω(α̇N

N
N Ẽβ̇)N − 2 N̄α̇β̇ N r d

r
N

{Ẽ1
α, Ẽβ̇N} = −Ω1

α β̇
γ̇ Ẽγ̇N + Ωβ̇N α

γ Ẽ1
γ − Ω1

α
N
N Ẽβ̇N + Ωβ̇N

1
1 Ẽ

1
α (2.25)

−1
6
C(1)

αβ̇
d1
N +

1
2
C(2)1

αβ̇ r
drN +

1
2
C(3)r

αβ̇ N
d1
r ,
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where N ij
αβ is given in (A.6), N̄α̇β̇ ij is its complex conjugate and where

C(1)

βα̇ =

{
χ̄rstα̇ χβ rst for N = 8 and N ≤ 4

χ̄rstα̇ χβ rst − 2
5χ

rstuv
β χ̄α̇ rstuv − 4χ1Nrst

β χ̄α̇1Nrst for N = 5, 6

C(2)1
βα̇ r =

{
χ̄1st
α̇ χβ rst for N = 8 and N ≤ 4

χ̄1st
α̇ χβ rst + 1

3χ
1stuv
β χ̄α̇ rstuv for N = 5, 6

(2.26)

C(3)r
βα̇ N =

{
χ̄rstα̇ χβ Nst for N = 8 and N ≤ 4

χ̄rstα̇ χβ Nst + 1
3χ

rstuv
β χ̄α̇Nstuv for N = 5, 6 .

We define a Grassmann-, or G-analytic, field on MH to be one that is annihilated by
Dα̂ and a harmonic-, or H-analytic, field to be one that is annihilated by d1

N , d
1
r, d

r
N .

Since the coset F is a complex compact manifold, it follows that H-analytic fields, which
are analytic in the usual sense on F , have short harmonic expansions, and since we are
on-shell, our superfields will be of this type. For G-analyticity, we note that the derivatives
Dα̂ will contain connection terms with respect to the structure group SL(2,C) ×H, and
that there may be restrictions on the representations under which they can transform.
Indeed, Lorentz scalar G-analytic fields can only be charged with respect to a certain U(1)
subgroup of H in such a way that they carry sets of indices with the same number of
upper 1 and lower N indices and no others. This restriction follows from the fact that the
anticommutator of Dα̂ and Dβ̂ will involve the curvature Rα̂β̂ with values in h. The proof
that this restriction is required again requires details of the U(N ) curvature tensor. We
have

R1 1 1
αβ, 1 = R1 1 N

αβ, N = 0 , (2.27)

and similarly for two dotted indices, while

R1 1
αβ̇N , 1

= R1 N
αβ̇N , N

= −1
2
H1
αβ̇N

. (2.28)

It is the latter equation that shows the need to match the upper 1 and lower N indices for
G-analytic fields. The tensor appearing on the right-hand side of this equation will play a
key role in the following so we give it its own name,

Bαβ̇ := 2H1
αβ̇N

. (2.29)

Explicitly, we have

Bαβ̇ =

χ̄
1ij

β̇
χαN ij for N = 4, 5, 8

χ̄1ij

β̇
χα 6ij + 1

3χ
1ijkl
α χ̄β̇ 6ijkkl for N = 6 ,

(2.30)

where i, j, k, l are (S)U(N ) indices.
The field Bαα̇ is also G-analytic, and since it also carries Lorentz indices there is an

additional integrability condition that it has to satisfy, namely

Rα̂β̂,γ
εBεβ̇ −Rα̂β̂,β̇

ε̇Bγε̇ = 0 . (2.31)
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The fact that this is true follows from the explicit forms for these curvatures,

R1
αβ̇N ,γ

δ =
1
2
δδαBγβ̇ −

1
4
δδγ Bαβ̇ , R1

αβ̇N ,γ̇
δ̇ =

1
2
δδ̇
β̇
Bαγ̇ −

1
4
δδ̇γ̇ Bαβ̇ , (2.32)

and
R1
α

1
β,γ

δ = R1
α

1
β,γ̇

δ̇ = Rα̇N β̇N ,γ
δ = Rα̇N β̇N ,γ̇

δ̇ = 0 . (2.33)

2.3 Normal coordinates

We are now going to evaluate on-shell the volume of N -extended superspace. In principle,
one could do this explicitly but it would be extremely tedious. Instead, we shall make use
of the normal coordinate method, introduced for superspace in [41] and further developed
in [42], to rewrite the volume integral as an integral over 4(N − 1) odd coordinates using
the harmonic superspace formalism. Our discussion follows that of [43] where the volume
of N = 2 superspace was reduced to a chiral integral by this method.

Although the conditions for the existence of normal coordinates [41]

ζÂ := {ζα := δαµθ
µ
i u

i
1 , ζ̄

α̇ := δα̇µ̇u
N
i θ̄
µ̇ i, zr1, z

N
r, z

N
1} (2.34)

associated to the vector fields (2.17) are satisfied, one must take into account the fact
that these vector fields are only defined on the complexified tangent space, and one must
therefore consider the associated normal coordinate expansion as a ‘holomorphic’ expan-
sion in complex coordinates, rather than describing strictly the expansion in coordinates
parametrising geodesics normal to a submanifold.

Nevertheless, the conditions assumed in [43] for the expansion in normal coordinates of
the superspace vielbein Berezinian are satisfied (since the vector fields ÊÂ are in involution
and span a representation of the structure group), and accordingly the harmonic superspace
vielbein Berezinian Ẽ = E × V (t), where V (t) is the determinant of the vielbein (2.12)
over F1,1(N ), satisfies the flow equation

ζÂ∂Â ln Ẽ = (−1)A
(
ΩAB̂

AζB̂ − ζB̂TB̂A
A
)

+ (−1)M̂δÂ
M̂

(
EÂ

M̂ − δM̂
Â

)
, (2.35)

where we have introduced the notation ∂Â := ∂/∂
ζÂ

. One computes that

(−1)ATB̂A
A = 0 . (2.36)

Note, moreover, that the same formula applies to the flag manifold F1,1(N ) itself for the
expansion of the vielbein determinant V (t) in terms of the normal coordinates zR :=
(zr1, z

N
r, z

N
1). Since V (t) does not depend on the fermionic variables by construction, one

can decompose
ζÂ∂Â ln Ẽ = zR∂R lnV (t) + ζÂ∂Â lnE , (2.37)

and, removing the pure harmonic component of equation (2.35), one computes that the
superspace vielbein Berezinian E(x, θ) satisfies the flow equation

ζÂ∂Â lnE = −
(
E1M
β ΩM α

β + E1M
α ΩM

1
1

)
ζα +

(
Eβ̇N

MΩM α̇
β̇ + Eα̇N

MΩM
N
N

)
ζα̇

−δαµ
(
E1
α
µ
1 − δ

µ
α

)
− δα̇µ̇

(
Eα̇N

µ̇N − δµ̇α̇
)
. (2.38)
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The right-hand side is left invariant by the derivatives d1
r, d

r
N , d

1
N . To show this, we first

note that, thanks to (2.23), (2.24) and (2.27), the normal-coordinate gauge condition(
Ωα̂A

B
)∣∣
ζ=0

= 0 (2.39)

extends to arbitrary ζÂ for the components

Ωα̂
1
r = Ωα̂

r
N = Ωα̂

1
N = 0 . (2.40)

It follows that one can neglect the harmonic components in ΩM
1

1 and ΩM
N
N when checking

that the right-hand side of (2.38) is left invariant by d1
r, d

r
N , d

1
N . We conclude that the

super-vielbein Berezinian E(x, θ) does not depend on the coordinates zr1, z
N
r, z

N
1 and thus

one can consider consistently its normal-coordinate expansion in terms of the Grassmann
variables ζα̂ := (ζα, ζα̇) alone, i.e.

ζα̂∂α̂ lnE = −Ωβ̂ α̂
β̂ζα̂ − δα̂µ̂

(
Eα̂

µ̂ − δα̂µ̂
)
, (2.41)

At this point, the computation goes exactly as in [43], and one deduces that the flow
equation can be rewritten as3

ζα̂∂α̂ lnE =
1
3
Rγ̂α̂β̂

γ̂ |ζ=0ζ
α̂ζ β̂ +

1
45
Rη̂α̂β̂

ρ̂Rρ̂γ̂δ̂
η̂|ζ=0ζ

α̂ζ β̂ζ γ̂ζ δ̂

+
5
12
Dγ̂Rδ̂α̂β̂

δ̂|ζ=0ζ
α̂ζ β̂ζ γ̂ − 3

40
Dα̂Dβ̂Rρ̂γ̂δ̂

ρ̂|ζ=0ζ
α̂ζ β̂ζ γ̂ζ δ̂ . (2.42)

Note that one can consider the Riemann tensor to be that of M (with appropriate harmonic
projections), since those of its components that are torsion components on MH do not
contribute to this equation. The curvature components appearing in (2.42) are expressible
in terms of Bαα̇ (2.30), as one can see from (2.28), (2.32) and (2.33). The G-analyticity
conditions of Bαβ̇ , i.e. D1

γBαβ̇ = D̄γ̇ N Bαβ̇ = 0 , imply that the second line in (2.42)
vanishes for all N . Therefore, the flow equation takes the form

ζα̂∂α̂ lnE = −1
3
Bαβ̇ζ

αζ̄ β̇ +
1
18
Bαβ̇Bαα̇ζ

αζβ ζ̄α̇ζ̄ β̇ . (2.43)

Integrating this equation, we conclude that, for all N , the supervielbein Berezinian has the
expansion

E(x̂, ζ, ζ̄) = E(x̂)
(

1− 1
6
Bαβ̇ζ

αζ β̇
)
, (2.44)

where x̂ stands for all the harmonic superspace coordinates aside from ζα̂.
In the end, we are not forced to consider the expansion of the fibre determinant V (t)

in normal coordinates, and so we can avoid dealing with the issue of reality of the “holo-
morphic” expansion in the variables zR. Moreover, the expansion of E(x̂, ζ, ζ̄) is manifestly
real with respect to the twisted anti-involution [31, 40]

(u1
i)∗ = uiN , (uN i)∗ = −ui1 , (uI i)∗ = uiI , (2.45)

3The summation convention is such that for fermion bilinears one has φα̂ψα̂ = φα1ψ
1
α + φ̄Nα̇ ψ̄

α̇
N .
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preserving G-analyticity, and so one is ensured that the integral is real.
We conclude that the superspace volume, subject to the vacuum equations of motion,

vanishes for all N :

VN = κ2(N−2)

∫
d4x d4Nθ E(x, θ)

= κ2(N−2)

∫
dµ(N ,1,1) d

4ζ

(
1− 1

6
Bαβ̇ζ

αζ β̇
)

= 0 , (2.46)

where κ2 is Newton’s constant (in four dimensions) and we have introduced the 1/N -BPS
harmonic measure dµ(N ,1,1) defined as

dµ(N ,1,1) := d4x d4N−6t d2(N−1)θ d2(N−1)θ̄ E(x̂)V (t) . (2.47)

At the linearised level, this reduces to the measure discussed in [18]. In the next section
we will discuss some properties of this measure.

3 Full superspace integrals

Let us now interpret formula (2.44). The normal-coordinate expansion of a generic scalar
superfield Φ (not necessarily of mass dimension 0) is [43]

Φ = exp
(
ζÂDÂ

)
Φ
∣∣∣∣
ζ=0

. (3.1)

However, because Φ does not depend on the harmonic variables and because the covariant
derivatives in the harmonic direction commute with the Grassmann covariant derivatives,
this expansion reduces to

Φ = exp
(
ζα̂Dα̂

)
Φ
∣∣∣∣
ζ=0

. (3.2)

The expansion of the vielbein Berezinian is such that(
1− 1

6
Bαβ̇ζ

αζ̄ β̇
)

exp
(
ζα̂Dα̂

)
Φ
∣∣∣∣
ζ=0

=
1
2

{
exp

(
ζαD1

α

)
, exp

(
ζα̇D̄α̇N

)}
Φ
∣∣∣∣
ζ=0

(3.3)

and so it plays the role of a normal-ordering operator. It follows that∫
d4xd4Nθ E(x, θ) Φ =

1
2

∫
dµ(N ,1,1) d

4ζ
{

exp
(
ζαD1

α

)
, exp

(
ζα̇D̄α̇N

)}
Φ
∣∣∣∣
ζ=0

=
1
4

∫
dµ(N ,1,1)

(
(D1)2(D̄N )2 Φ

)∣∣∣
ζ=0

, (3.4)

where (D1)2 := εαβD1
αD

1
β and (D̄N )2 := εα̇β̇D̄α̇N D̄β̇N and where we have used the com-

mutation property
[(D1)2, (D̄N )2] = 0 . (3.5)

Therefore, the form of the Berezinian derived in the previous section implies that any
full superspace integral can be rewritten as an integral over the harmonic measure (2.47).
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Conversely, using this measure one can define supersymmetric invariants for any G-analytic
integrand. The integrand in (3.4) is indeed G-analytic with the correct U(1)-charges.

We note further that this confirms the vanishing of the full superspace volume, because
it can be thought of as the integral of Φ = 1 over the full superspace.

In the following section, we will use the harmonic measure to construct non-vanishing
supersymmetric duality invariants.

4 Invariants in extended superspace

The result that the extended superspace volumes all vanish might be considered disturbing,
since one expects the existence of a duality invariant of this dimension from the linearised
supersymmetry analysis [25]. Nevertheless, we shall see that such invariants do indeed
exist as 1/N -BPS integrals.

4.1 (N − 1)-loop supersymmetric & duality invariants

By integrating G-analytic quartic expression in the fermions over the harmonic measures
dµ(N ,1,1) , we obtain a set of fully supersymmetric duality-invariant integrals

IN := κ2(N−2)

∫
dµ(N ,1,1)Bαβ̇ B

αβ̇ . (4.1)

One can check that the integrand of (4.1) is the unique duality-invariant G-analytic scalar
superfield at this dimension for N = 4, 5, 8. This is also the G-analytic duality-invariant
scalar operator of smallest mass dimension. We will show that this reduces to the quartic
invariant

∫
d4Nθ (WijklW̄

ijkl)2 ∼ (∂N−4CC̄)2 in the linearised approximation.
For N = 6 there is an additional integral

I6
2 := κ8

∫
dµ(6,1,1) ε

αβεα̇β̇
(
Jαβ̇

1i
6iJβα̇

1j
6 j +

4
3
Jαβ̇

1i
6 jJβα̇

1j
6 i

)
, (4.2)

which we will show to correspond to an independent combination of
∫
d24θ (WijklW̄

ijkl)2

and the additional linearised quartic invariant
∫
d24θ WijklW̄

klmnWmnpqW̄
pqij . These two

invariants contribute to the two inequivalent forms of (∂2CC̄)2.
These expressions are non-vanishing, fully supersymmetric and duality-invariant can-

didate counterterms that could correspond to (N −1)-loop logarithmic divergences in four-
dimensional N -extended supergravity.

Importantly, these invariants cannot be rewritten as full superspace integrals because
there is no duality-invariant dimension-zero scalar superfield Φ such that the integrand
of (4.1) is given by (D1)2(D̄N )2Φ. We will see below that such a scalar can be found at the
linearised order but that it does not extend to the full theory in a duality-invariant way.

• For N = 4, 6 and N = 8, we evaluate the integral in (4.1) in the linearised approximation.
First of all, we note that in this approximation the scalar superfield Wijkl satisfies the linear
constraints

Dp
αWijkl = 2δp[iχα jkl] , D̄α̇pWijkl = χ̄α̇ pijkl , (4.3)
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and similarly for its complex conjugate W̄ ijkl. For N = 8, W̄ ijkl = 1
24ε

ijklmnpqWmnpq. As
a direct consequence, Wijkl and W̄ ijkl also satisfy the quadratic constraints

D1
αD

1
βWijkl = D1

αD
1
βW̄

ijkl = D̄α̇N D̄β̇NWijkl = D̄α̇N D̄β̇NW̄
ijkl = 0 . (4.4)

The components W1rsN and their complex conjugates satisfy in particular

D1
αW1rsN =

1
2
χαNrs , D1

αW̄
1rsN = 0 , D̄α̇NW1rsN = 0 , D̄α̇NW̄

1rsN = −1
2
χ̄1rs
α̇ .

(4.5)
It follows, in the linearised approximation, that for N = 4, 5 and 8, one has

(D1)2(D̄N )2
(
W1rsNW̄

1rsN
)2 =

1
4
Bαβ̇B

αβ̇ . (4.6)

The integration over the harmonic variables is done using the measure du := d4N−6t V (t)
with respect to which one has the relations∫

du 1 = 1 ,
∫
duui1u

1
j =

∫
duuiNu

N
j =

1
N
δij ,

∫
duui1u

N
j = 0 , (4.7)

and ∫
duui11u

i2
1u

1
k1u

1
k2u

j1
Nu

j2
Nu
N
l1u
N
l2 =

4
(N − 1)N 2(N + 2)(N + 3)

×
(

(N + 2) δ(i1
(k1
δ
i2)
k2)δ

(j1
(l1
δ
j2)
l2) − 4 δ(i1

(k1
δ
i2)
(l1|δ

(j1
|k2)δ

j2)
l2) +

2
N + 1

δ
(i1
(l1
δ
i2)
l2)δ

(j1
(k1
δ
j2)
k2)

)
. (4.8)

Using this result, we find that

IN = κ2(N−2)

∫
d4x du d4Nθ (W1rsNW̄

1rsN )2 (4.9)

=
κ2(N−2)

(N 2 − 1)N 2

∫
d4x d4Nθ (I1 + 2I2 + I3) ,

where

I1 = (WijklW̄
ijkl)2 , I2 = WijkmW̄

ijknWrstnW̄
rstm , I3 = WijrsW̄

ijmnWpqmnW̄
ijpq .

(4.10)
We have I3 = I1/6 and I2 = I1/4 for N = 4 & 5, and I3 = I1/12 and I2 = I1/8 for N = 8.
We conclude that, in the linearised approximation for N = 4, 5 and 8, IN evaluates to yield
the full superspace integrals analysed in [8, 25]:

IN = κ2(N−2) 5− δN ,8
3(N 2 − 1)N 2

∫
d4x d4Nθ (WijklW̄

ijkl)2 (4.11)

∼ κ2(N−2)

∫
d4x (∂N−4(C̄α̇β̇γ̇δ̇Cαβγδ)∂

N−4(C̄α̇β̇γ̇δ̇Cαβγδ) + s.s.c.) .

As shown in detail in Appendix B, these linearised expressions are unique. Because N -
extended supergravity admits an enhanced SU(2, 2|N ) superconformal symmetry in the
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linearised approximation, one can use superconformal representation theory to determine
the number of independent integrands defined as functions of the scalar superfields [18, 24].
A U(N ) scalar monomial in (WW̄ )n is a superconformal primary operator of conformal
weight 2n, and zero R-charge whereas the only short such superconformal primary operators
are necessarily of conformal weight 2 (or zero) [24, 44]. So it follows that any independent
U(N ) scalar monomial of order four in W gives rise to a non-trivial superspace integral in
the linearised approximation which is not a total derivative, and which can be shown to
include (∂N−4CC̄)2 type terms.4 To see this property explicitly in N = 8 supergravity,
it is convenient to consider a formulation in (8, 4, 4) linearised harmonic superspace. We
note here that, although this harmonic superspace formulation cannot be extended to the
non-linear level, it is perfectly well defined in the linear approximation [40]. Using the
linear constraints on Wijkl, one computes that

(D1)2(D2)2(D3)3(D4)2(D̄5)2(D̄6)2(D̄7)2(D̄8)2 (WijklW̄
ijkl)2 ∼ (∂2W1234)4 , (4.12)

because SU(8) considerations imply that the result must be quartic in the (8, 4, 4) G-
analytic superfield W1234 ; and this expression cannot be a total derivative because (WW̄ )2

is a long primary operator. It is straightforward to check that the contractions of the
derivatives are uniquely fixed by Lorentz invariance up to a total derivative. Using the
property that the derivatives commute with integration over the fermionic variables, to-
gether with the fact that (W1234)4 integrates in (8, 4, 4) superspace to yield the linearised
(CC̄)2 invariant [18], one concludes that∫

d4x d32θ(WijklW̄
ijkl)2 ∼

∫
dµ(8,4,4)(∂2W1234)4

∼
∫
d4x
(
(∂2C∂2C̄)2 + s.s.c.

)
, (4.13)

which clearly coincides with the invariant exhibited in [45].

• For the N = 6 case, one must consider in addition the components Wrstu and their
complex conjugates, which satisfy

D1
αWrstu = 0 , D1

αW̄
rstu = χ1rstu

α , D̄α̇6Wrstu = χ̄α̇ 6rstu , D̄α̇6W̄
rstu = 0 . (4.14)

Note that Wrstu with 2 ≤ r, s, t, u ≤ N − 1 vanishes identically for N < 6, and is equal to
1
2εrstuvwW̄

1vw8 for N = 8. In N = 6, one has in the linearised approximation

(D1)2(D̄6)2

(
W1rs6W̄

1rs6 +
1
12
WrstuW̄

rstu

)2

=
1
4
Bαβ̇B

αβ̇ . (4.15)

The invariant (4.1) evaluates to give

I6
1 := I6 = κ8

∫
dµ(6,1,1)

(
4W1rs6W̄

1rs6 +
1
3
WrstuW̄

rstu
)2

(4.16)

=
κ8

945

∫
d4x d24θ

(
23(WijklW̄

ijkl)2 + 12WijklW̄
klpqWpqmnW̄

mnij
)
,

4The leading ∂4F 4 term in the analogous (WijW̄
ij)2 integrand in N = 4 abelian super Yang–Mills

theory was evaluated explicitly in [18].
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while the invariant (4.2) evaluates to yield

I6
2 = κ8

∫
dµ(6,1,1)

(
(W1rs6W̄

1rs6)2 +
4
3
W1rs6W1tu6W̄

1tr6W̄ 1su6
)2

(4.17)

=
κ8

30240

∫
d4x d24θ

(
23(WijklW̄

ijkl)2 − 58WijklW̄
klpqWpqmnW̄

mnij
)
.

These two invariants clearly define the supersymmetrisation of two different combinations
of the two linearised independent (∂C̄∂C)2 structures that exist for N = 6 (see Appendix B
for details). Since pure N = 6 supergravity is a strict truncation of N = 8 theory, the
four-graviton amplitudes are different in these theories.

4.2 ∇2(N−5)R4 invariants

Using the (N , 1, 1)-measure, by integrating G-analytic functions of the scalar fields general-
ising the ones given in [18], we can construct nonlinear versions of the 1/N -BPS invariants
of general structure ∇2(N−5)R4. These will be invariant under supersymmetry and the the
corresponding R-symmetry groups K, but not under the continuous duality symmetries G
as were the ∇2(N−4)R4 invariants of the last section.
• For N = 8, let us define the superfield (SU(8)/Z2)\E7(7) representative in the funda-
mental 56 representation decomposed as 28⊕ 28 of SU(8)

V :=

(
Uij

IJ VijKL
V̄ klIJ ŪklKL

)
, (4.18)

where I, J . . . stand for the rigid SU(8) indices while the i, j, indices stand for local
SU(8) indices as used throughout this paper. The derivative Di

α acts on these superfields
as follows

Dk
αUij

IJ = 2δk[iχα j]pqV̄
pqIJ , Dk

αŪ
ij
IJ =

1
12
εijklmnpqχα lmnVpqIJ ,

Dk
αVijIJ = 2δk[iχα j]pqŪ

pq
IJ , Dk

αV̄
ijIJ =

1
12
εijklmnpqχα lmnUpq

IJ , (4.19)

and similarly for D̄α̇i by complex conjugation. It follows that the superfields U8r
IJ , V8rIJ ,

Ū1r
IJ and V̄ 1rIJ are all G-analytic. There are a priori several combinations of these

superfields that are of the right U(1) weight and that are left invariant under the rigid
SU(8) symmetry, but we are going to see that they are all equivalent because of E7(7)

identities, consistently with the property that there is a unique SU(8)-invariant G-analytic
function of the scalar superfield in the linearised approximation. A first set of conditions
arises from the fact that [46]

V−1 =

(
Ū ijIJ −VklIJ
−V̄ ijKL Ukl

KL

)
. (4.20)

This implies that the G-analytic superfields satisfy

U8i
IJ Ū1j

IJ = V8iIJ V̄
1jIJ , U8i

IJV8jIJ = U8j
IJV8iIJ , Ū1i

IJ V̄
1jIJ = Ū1j

IJ V̄
1iIJ .

(4.21)
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Using the fact that, for any element X of the complex Lie algebra e7, V−1XV is also an
element of e7, one deduces further identities satisfied by UijIJ and VijIJ [46]. In particular,
taking the sl(8,C) ⊂ e7 element

X :=

(
2δ[k

[i u
1
j]u

l]
8 0

0 −2δ[i
[k u

1
l]u

j]
8

)
, (4.22)

one obtains

U8i
IJ Ū1i

IJ = V8iIJ V̄
1iIJ = 0 ,

U8i
IJ Ū1i

KL + V8iKLV̄
1iIJ =

2
3
δ

[I
[K

(
U8i

J ]PŪ1i
L]P + V8iL]P V̄

1iJ ]P
)
, (4.23)

Ū1i
IJV8iKL + Ū1i

KLV8iIJ = − 1
12
εIJKLMNPQU8i

MN V̄ 1iPQ .

Using the converse, i.e. the fact that for any element Y of the complex Lie algebra sl(8,C) ⊂
e7, VY V−1 is an element of e7, one obtains similarly

U8i
IKV8jJK + U8j

IKV8iJK =
1
4
δIJU8i

KLV8jKL , (4.24)

U8s
IKŪ1r

JK + V8sJKV̄
1rIK =

1
4
δIJV8sKLV̄

1rKL +
1
6
δrs
(
U8i

IKŪ1i
JK + V8iJKV̄

1iIK
)
.

Using these identities, one shows that all G-analytic SU(8) invariant functions of the scalar
superfields are determined as functions of one single expression which reproduces the unique
1/8 BPS integrand defined in [18] in the quartic approximation, viz.

F11
88 (V) := u1

iu
1
ju
k

8u
l
8 V̄

imIJ V̄ jnKLVkmKLVlnIJ , (4.25)

so that ∫
dµ(8,1,1) F11

88 (V) ∼
∫
d4x e

(
f8

6 (φ)∇3R2 · ∇3R2 + s.s.c.
)
, (4.26)

where∇kR2 is the rank k+4 symmetric traceless tensor obtained by acting with k covariant
derivatives on the Bel–Robinson tensor, and f8

6 (φ) is the (appropriately normalised) SU(8)
invariant function of the 70 scalar fields discussed in [22, 25]. This provides a nonlinear
supersymmetric SU(8), but not E7(7), invariant form for the 1/8-BPS coupling (∇3R2)2 in
N = 8 supergravity.

• For N = 6, we define the superfield U(6)\SO∗(12) representative in the vector represen-
tation 12 decomposed as the 6(−1) ⊕ 6(1) of U(6)

V :=

(
Ui
I ViJ

−V̄ jI Ū jJ

)
, (4.27)

similarly as for N = 8. In this case, it is enough to use the property that V preserves the
Kähler metric

G :=

(
0 δJK
δLI 0

)
, (4.28)
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i.e. VGVT = G, to find that there is a unique G-analytic superfield of the correct U(1)
weight left invariant by the rigid U(6), i.e.

F11
66 (V) := u1

iu
1
ju
k

6u
l
6 V̄

iIV̄ jJVkIVlJ . (4.29)

The resulting integral is of the form∫
dµ(6,1,1) F11

66 (V) ∼
∫
d4x e

(
f6

4 (φ)∇R2 · ∇R2 + s.s.c.
)
. (4.30)

This provides a nonlinear supersymmetric U(6), but not SO∗(12), invariant for the 1/6-
BPS coupling (∇R2)2 in N = 6 supergravity.

• For N = 5, we define the superfield U(5)\SU(5, 1) representative in the fundamental
representation 6 decomposed as the 1(5) ⊕ 5(−1) of U(5)

V :=

(
U VI
V i U iI

)
. (4.31)

In the same way as above, the unique G-analytic superfield of the right U(1) weight that
is left invariant by the rigid U(5) is

F11
55 (V) := u1

iu
1
ju
k

5u
l
5 V

iV j V̄kV̄l . (4.32)

The resulting integral is of the form∫
dµ(5,1,1) F11

55 (V) ∼
∫
d4x e

(
f5

3 (φ)R2 ·R2 + s.s.c.
)
. (4.33)

This provides a nonlinear supersymmetric U(5), but not U(5, 1), invariant for the 1/5-BPS
coupling R4 in N = 5 supergravity.

4.3 Duality-invariant full-superspace integrals

The vanishing of the superspace volume implies that the first duality-invariant full super-
space integrals available as invariant candidate counterterms will start from the N -loop
order for N -extended supergravity.

For the N = 8 case, the candidate counterterm contributing to four-point amplitudes
is the invariant discussed in [3, 8]

I(χχ̄)2 := κ14

∫
d4x d32θ E(x, θ) εαβεα̇β̇χα ijkχ̄

ijk
α̇ χβmnpχ̄

mnp

β̇
. (4.34)

It can be computed to give rise to a (∂5CC̄)2 contribution in the linearised approximation,

I(χχ̄)2 ∼ κ14

∫
d4x e

(
(∇5R2)2 + s.s.c.

)
. (4.35)

At the same dimension, there are also the duality invariants

Iχ2χ̄2 := κ14

∫
d4x d32θ E(x, θ) εαβεα̇β̇χα ijmχ̄

ijn
α̇ χβ pqnχ̄

pqm

β̇
(4.36)
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and
Iχ2M := κ14

∫
d4x d32θ E(x, θ) εαγεδβ εijklmnpqχα ijkχβ lmnMγδ pq , (4.37)

where Mαβ ij is the dimension-one superfield for the vector field-strengths, viz

Fαβ,α̇β̇ ij = −iεα̇β̇Mαβ ij +
i

72
εαβ εijklmnpqχ̄

klm
α̇ χ̄npq

β̇
. (4.38)

Using the relation

εαβεγδ εjklmnpqrDi
α

(
χγ ijkχβ lmnχδ pqr

)
= 9εαβεγδεijklmnpqMαγ ijχβ klmχδ npq (4.39)

−90εαβεα̇β̇χα i[jkχβ lmn]χ̄
i[jk
α̇ χ̄

lmn]

β̇

and (2.36), one shows that

Iχ2M = 10κ14

∫
d4x d32θ E(x, θ) εαβεα̇β̇χα i[jkχβ lmn]χ̄

i[jk
α̇ χ̄

lmn]

β̇
, (4.40)

because the difference is the superspace integral of a total superspace derivative. We con-
clude that at mass dimension 18 there are only two nonlinear supersymmetric duality
invariants. These invariants are fully E7(7) invariant because they are constructed from a
full superspace integral of the superfield entering in the superspace torsion. They are inde-
pendent as can easily be seen from the inequivalent SU(8) structures in (4.34) and (4.40).

Since at the linearised order there is only one kinematic structure (∂5CC̄)2 contributing
to the 4-point amplitude [25], one expects that the second invariant Iχ2M will only start
contributing at 8-loop order from the five-point amplitude

Iχ2M ∼ κ14

∫
d4x e(∇8R5 + s.s.c.) . (4.41)

This can be proved using the analysis in [25] which states that the superconformal rep-
resentation theory of SU(2, 2|8) implies that there is only one linearised invariant of this
dimension that contributes first at four points, and only one complex (two real) linearised
invariant that contributes first at five points. They are the only invariants of this dimen-
sion that are left invariant by a shift of the scalar fields in the linearised approximation.
However, the parity-odd linearised five-point invariant does not extend at the non-linear
level to a duality-invariant full superspace integral, because the imaginary part of Iχ2M is
the integral of a total derivative and thus vanishes. It is possible that there exists a duality-
invariant parity-odd invariant which would be defined as the (8, 1, 1) harmonic superspace
integral of a G-analytic superfield of mass-dimension 4. We will not investigate this pos-
sibility further because such an invariant would be ruled out as a possible counterterm by
the odd parity.

To understand why the invariant associated to the cubic integrand (4.37) indeed starts
contributing only from five points, it is relevant to compare it to the linearised Konishi
operator WijklW̄

ijkl. They both satisfy the quadratic constraint

εαβDi
αD

j
βL = εα̇β̇D̄α̇iD̄β̇jL = 0 , (4.42)
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in the linearised approximation [18]. Their superspace integrals therefore vanish in the
linearised approximation. However, computing the G-analytic descendent of the näıve
nonlinear equivalent of the Konishi operator, i.e. VijIJ V̄ ijIJ , according to formula (3.4),
one obtains that (D1)2(D̄8)2VijIJV

ijIJ is quartic in fields in the linearised approximation,
and the corresponding terms can be identified with (D1)2(D̄8)2(WW̄ )2 in this approxima-
tion. We conclude therefore that the existence of the Bαα̇ term in the normal-coordinate
expansion of the supervielbein Berezinian has the effect that a superfield L satisfying the
quadratic constraint (4.42) in the linearised approximation, without being a total derivative
at the non-linear level, is effectively equivalent to the operator (WW̄ )L in the linearised
approximation. In the case of the nonlinear integrand Mχ2 in (4.37), this has the result
that this integral is effectively equal to the superspace integral of (WW̄ )(Mχ2 + M̄χ̄2)
in the linearised approximation, which is precisely the operator defining the (parity-even)
five-point invariant discussed in [25].

5 Conclusion

In this paper we have seen, perhaps surprisingly, that the volume of four-dimensional N -
extended superspace vanishes on-shell. This means that the leading fully supersymmetric
and duality invariant candidate counterterms for the first ultraviolet divergences of N ≥ 4
supergravity cannot after all be written as full superspace integrals.

On the other hand, in section 4.1 we have exhibited a fully supersymmetric and duality
invariant expression for the (N−1)-loop N -extended supergravity counterterm of structure
∇2(N−4)R4 in the form of an integral over the (N , 1, 1) harmonic superspace measure. This
measure exists [40] at the non-linear level as opposed to the cases of harmonic measures
(N , p, q) with either p > 1 or q > 1 (for N ≥ 5). These invariants cannot be rewritten as
full superspace integrals at the nonlinear level. For the N = 8 case, the purely gravitational
component of this invariant is of the general form

I8 ∼ κ12

∫
d4x e

(
(∇4R2)2 + s.s.c.

)
. (5.1)

It was shown in [47] that the absence of a superdiffeomorphism anomaly implies that there
exists a duality-invariant form for the associated corrected action S = Sclass + I8 + . . . in
the Henneaux–Teitelboim formalism [48], which is equivalent to the existence of an action
satisfying the Gaillard–Zumino constraint in the standard formulation. Duality invariance
therefore poses no obstacle to the occurrence of a 7-loop logarithmic divergence, as opposed
to what was claimed in [49].

There is no known requirement that the counterterm to an ultraviolet divergence be
given by a full superspace integral with respect to the full on-shell supersymmetry. The
situation is similar for counterterms to the ultraviolet divergences of maximal supergravity
in higher dimensions, where BPS counterterms, written as subsurface integrals with respect
to the full on-shell superspace (at least at the linearised level [7]), are known to occur in
many cases. For example, the one-loop counterterm in eight dimensions is the R4 invariant
expressed as an on-shell half-superspace integral, the two-loop ∇4R4 counterterm in seven
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dimensions is an on-shell quarter-superspace integral, and the three-loop∇6R4 counterterm
in six dimensions is an on-shell eighth-superspace integral. Off-shell supersymmetry or
algebraic renormalisation methods or superstring limiting methods [6, 7, 19, 20, 22, 25]
can rule out certain BPS structures with respect to the full supersymmetry, but none of
these methods are known to apply to the D = 4 seven-loop counterterm (4.1) for the
N = 8 theory, or to the same structure at corresponding loop orders for lesser N -extended
supergravities.

Nonetheless, the fact that the invariants (4.1) and (4.2) are not associated to full-
superspace integrals might give one pause about their ultimate acceptability as countert-
erms. One can conceive of further non-renormalisation restrictions that might follow from
nonstandard methods. And a full nonlinear analysis of their cocycle structure in the ecto-
plasm formalism has not yet been carried out.

There are possible analogues of further non-renormalisation restrictions in super Yang–
Mills theories. An example concerns the absence of the three-loop double-trace divergence
in six-dimensional N = 2 super Yang–Mills theory [50]. In that case, the double-trace
invariant (∂ trF 2)2 descends from a 1/4 BPS primary operator. The cocycle structure of
this invariant is moreover identical to that of the classical action, so that one does not at
present have a non-renormalisation theorem for it within the framework of algebraic renor-
malisation. Since the 7-loop maximal supergravity divergence candidate turns out to be the
superspace integral of a G-analytic superfield, it might have similar properties. Arguments
using the pure spinor formalism in string theory and field theory [51–53] show the super
Yang–Mills invariant to be protected beyond the two-loop order, but these arguments do
not, however, carry over straightforwardly to the gravitational case.

In spacetime dimensions D > 4, it seems most likely that the full on-shell superspace
volumes do not vanish. The volume of superspace is only pertinent for higher dimensional
logarithmic divergences in the case of N = 1 (half maximal) supergravity in 8 dimensions
at one loop, and for N = 2 (maximal) supergravity in nine dimensions at two loops.
For example, the two-loop, four-graviton amplitude for maximal D = 9 supergravity is
ultraviolet divergent with a ∇8R4 counterterm [54]. The duality-invariant supersymmetric
counterterm of this dimension will be either the full superspace volume for D = 9 maximal
supergravity or a partial superspace integral along the lines of Section 4.1 of this paper.
If it turns out to be the superspace volume, this would not be in contradiction with the
vanishing of the D = 4 superspace volumes that we have found, however. If a superspace
volume is non-vanishing in a dimension D > 4, its reduction to D = 4 would lead to
a non-duality-invariant D = 4 full-superspace integral of some function of the dilatonic
scalars arising from the dimensional reduction, and not to one of the duality-invariant
counterterms that we have constructed in Section 4.1.

For maximal supergravity in D = 5 the volume is not a possible counterterm. The
first possible counterterms that are duality invariant and fully supersymmetric occur at
the 6-loop order and are schematically of the form ∇12R4. These can be expressed as full
superspace integrals of dimension 4 superspace integrands constructed from the superspace
tensors but with no explicit factors of the scalars.

The duality-invariance properties of a counterterm can be classified by the Laplace
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equation satisfied by the scalar-field prefactor of the purely gravitational part of the in-
variant [22, 55]. In perturbative supergravity field theory, where one requires invariance
under continuous duality transformations, the scalar prefactor of a duality-invariant coun-
terterm [19, 21, 22, 25, 56] as constructed in Section 4.1 must be an eigenfunction of the
duality-invariant Laplace operator with zero eigenvalue.

In contrast, at the nonperturbative string-theory level, maximally supersymmetric
string-theory considerations indicate [57] that the scalar prefactors of effective-action con-
tributions such as the dimension-16 ∇8R4 operator will be sums of automorphic forms
under the corresponding discrete duality group, arising from solutions to the correspond-
ing Laplace equation with various eigenvalues. In the field-theory limit, such contribu-
tions nonetheless reduce to continuously duality-invariant expressions. For example, it was
shown in [57] that the 2-loop D = 9 maximal supergravity divergence is contained in the
zero-eigenvalue SL(2,Z) invariant automorphic contribution to the ∇8R4 operator.

Of course, should duality symmetries be broken by anomalies, they cannot be used
to constrain ultraviolet counterterms. This caveat applies in particular to the case of
N = 4 supergravity, where quantum corrections break the corresponding global SU(1, 1)
symmetry, so that one can consider a full-superspace integral of any function F (WW̄ ) of
that theory’s complex scalar field W parametrising U(1)\SU(1, 1) ,

I4
F = κ4

∫
d4x d16θ E(x, θ)F (WW̄ ) ; (5.2)

such integrals are in general non-vanishing and will contribute in the linearised approxima-
tion to couplings of the form F (2)(φφ̄)R4 plus supersymmetric completions. So one should
keep in mind that the strong limitations on the forms of ultraviolet counterterms that we
have considered in this paper follow both from supersymmetry and from the requirement
of continuous duality invariance where applicable.
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A On-shell extended Superspace

In this appendix, we review the main properties of N -extended superspace in four dimen-
sions needed for the computation in the main text. We follow the conventions and notation
of [28].

At the nonlinear level, the solutions to the Bianchi identities are expressed in terms of
the spin 1/2 fermions χijkα and χα ijklm and their complex conjugates:

Rij = −1
3
P̄ iklm ∧ Pjklm

P iαjklm = 2δi[j χαklm] , Pα̇i jklm = χ̄α̇ ijklm

Di
αχ̄β̇ jklmn = 5iδi[jPαβ̇klmn] , D̄α̇ iχβ jkl = 2iPβα̇ ijkl

Di
αχ

jklmn
β = M ijklmn

(αβ) − 5
2
εαβ χ̄

i[jk
α̇ χ̄α̇ lmn]

Di
αχβ jkl = 3δi[jMαβ kl] + εαβ

( 2
N − 4

χ̄α̇ ijkmnχ̄
α̇ lmn (A.1)

− 3
(N − 3)(N − 4)

δl[iχ̄α̇ jk]mnrχ̄
α̇mnr

)
.

All i, j, . . . indices are (S)U(N ) indices.
For N = 8, we have also P̄ ijkl = 1

24ε
ijklmnpqPmnpq.

It was shown in [28] that the fermions χijkα and χα ijklm arise from the fermionic part of
the off-diagonal components of the superspace Maurer–Cartan form for the scalar potential
V parametrising the coset space K\G given by U(4)\

(
SU(1, 1)×SU(4)

) ∼= U(1)\SU(1, 1)
for N = 4, U(5)\SU(5, 1) for N = 5, U(6)\SO∗(12) for N = 6 and (SU(8)/Z2)\E7(7) for
N = 8. For N = 8

dV · V−1 =

(
2
3δ

[i
[kΩ

j]
l] Pijkl

P̄ ijkl −2
3δ

[k
[i Ωl]

j]

)
. (A.2)

For further reference, we define the quantities

Jαβ̇
ij
kl = χ̄ijm

β̇
χαklm , Kαβ̇

ij
kl = χijmnpα χ̄β̇ klmnp (A.3)

and

Hαβ̇
i
j =

{
1
2 Jαβ̇

ik
jk −

1
16δ

i
j Jαβ̇

mn
mn for N = 4, 8

1
2 Jαβ̇

ik
jk −

1
16δ

i
j Jαβ̇

mn
mn + 1

6 Kαβ̇
ik
jk −

1
80δ

i
jKαβ̇

mn
mn for N = 5, 6

(A.4)

Gαβ̇ =

{
− 1

48 Jαβ̇
mn
mn for N = 4, 8

− 1
48 Jαβ̇

mn
mn + 7

240 Kαβ̇
mn
mn for N = 5, 6

(A.5)

and

N ij
αβ =


0 for N = 4
1
3 χ

ijklm
(α χβ)klm for N = 5, 6

− 1
72 ε

ijklmnpqχαklmχβnpq for N = 8 .

(A.6)
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A.1 G-analyticity conditions in N = 4 superspace

We can check that Jαβ̇
1i
4j is G-analytic because Dk

αχ
α
ijk = 0 in [28, eq. (5.5)]:

D1
αJαβ̇

1i
4j = 0 , D̄α̇ 4Jαβ̇

1i
4j = 0 (A.7)

so Bαβ̇ = Jαβ̇
1i
4i is G-analytic, as well as

C4 = εαβεα̇β̇ Jαβ̇
1i
4jJβα̇

1j
4i . (A.8)

However, in SU(4) this expression for C4 turns out to be proportional to εαβεα̇β̇Bαβ̇Bβα̇ .
Therefore for N = 4, Bαβ̇ and all its powers are G-analytic.

A.2 G-analyticity conditions in N = 5 superspace

For N = 5, we have that

Kαβ̇
1i
5 j = −6δi5δ

1
j χ

12345
α χ̄β̇ 12345 . (A.9)

This implies that Kαβ̇
1i
5 i = 0 . Acting with the fermionic derivatives leads to

D1
γJαβ̇

1i
5j =

1
6
δi5δ

1
j εγαχ̄

15p

β̇
χ̄δ̇ 1pqr5χ̄

δ̇ 1qr

D1
γKαβ̇

1i
5j = δi5δ

1
j

(
−3

2
εγα χ̄

15p
α̇ χ̄α̇ qr1χ̄β̇ 1pqr5 − i6χ

12345
α Pγβ̇ 2345

)
, (A.10)

with equivalent expressions for the action of D̄γ̇N . These equation imply that D1
γJαβ̇

1i
5i =

D̄γ̇ 5Jαβ̇
1i
5i = 0 , so Bαβ̇ = Jαβ̇

1i
5i is G-analytic.

Since Jαβ̇
11
55 = Kαβ̇

11
55 = 0 , we find that Jαβ̇

1i
5jKαβ̇

1j
5i = 0 and Kαβ̇

1i
5jKαβ̇

1j
5i = 0 , so the

only term to analyse at quartic order is

C5 = εαβεα̇β̇ Jαβ̇
1i
5j Jβα̇

1j
5i , (A.11)

but C5 ∝ εαβεα̇β̇Bαβ̇Bβα̇. Therefore for N = 5, Bαβ̇ and all its powers are G-analytic.

A.3 G-analyticity conditions in N = 6 superspace

For N = 6, the J and K fermion bilinears are non-vanishing and are independent.
The variation of these bilinears is given by

D1
γJαβ̇

1i
6j = εγαχ̄

1im
β̇

(
χ̄δ̇ 6jmrsχ̄

δ̇ 1rs +
1
6
δ1
j χ̄δ̇ 6mpqrχ̄

δ̇ pqr

)
D1
γKαβ̇

1i
6j =

(
−3

2
εγα χ̄

1[ip
α̇ χ̄α̇ qr]1χ̄β̇ jpqr6 − 5iδ1

j χ
1ipqr
α Pγβ̇ pqr6

)
, (A.12)

with equivalent equations for the action of D̄γ̇ 6 .
These equations and the Fierz identity θαψβψβ = −2θβψβ ψα imply that

Bαβ̇ = Jαβ̇
1i
6i +

1
3
Kαβ̇

1i
6i (A.13)

C6 = εαβεα̇β̇
(
Jαβ̇

1i
6iJβα̇

1j
6 j +

4
3
Jαβ̇

1i
6 jJβα̇

1j
6 i

)
. (A.14)

Therefore Bαβ̇ and all its powers and C6 are G-analytic.
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A.4 G-analyticity conditions in N = 8 superspace

In N = 8, because we have the relations

χ̄ijklmα =
1
12
εijklmnpqχαnpq , χ̄α̇ ijklm =

1
12
εijklmnpqχ̄

npq
α̇ , (A.15)

We find that the G-analyticity conditions lead to

D1
γJαα̇

1i
8j = − 1

48
εγαε

γ̇δ̇ ε18ikmnpq χ̄
1jk
α̇ χ̄1mn

γ̇ χ̄1pq

δ̇
,

D1
γJαα̇

1i
8i = 0 , (A.16)

and similarly for the complex conjugate. Therefore Bαβ̇ and all its powers are G-analytic.

B Kinematic structure

Supersymmetry Ward identities imply that the four-graviton amplitude kinematic structure
is always of the form

P (s, tu)C(1)

αβγδC
(2)αβγδC̄(3)

α̇β̇γ̇δ̇
C̄(4) α̇β̇γ̇δ̇ + c.c.+ perms (2, 3, 4) (B.1)

where
C(n)

αβγδ = σab(αβσ
cd
γδ) k

(n)
a k(n)

c ε(n)

bd (k(n)) (B.2)

is the Weyl tensor associated to the nth graviton of momentum k(n) and polarisation ε(n),
and perm (2, 3, 4) denotes the sum over the permutations of the labels of the external
particles while s = (k(1) + k(2))2, t = (k(1) + k(4))2 and u = (k(1) + k(3))2 since we are
working with the signature (+−−−). For the contribution of order ∇2kR4, Pk(s, tu) is a
polynomial of degree k in s, t, u:

Pk(s, tu) =
bk/2c∑
i=0

cik s
k−2i (tu)i . (B.3)

One sees immediately that there are bk/2c+ 1 independent monomials at each order.
In the case of N = 8 supergravity, Cαβγδ and C̄α̇β̇γ̇δ̇ occur in the same linearised

supersymmetry multiplet, and the supersymmetry Ward identities therefore imply that the
dependence on the polarisations factorises the four-graviton amplitude such that Pk(s, tu) is
a symmetric function in s, t, u. P (s, tu) is then expressed as a polynomial in the invariants
σ2 = s2 + t2 + u2 = 2(s2 − tu) and σ3 = s3 + t3 + u3 = 3stu as shown in [58]. The
kinematic structure ∇2kR4 has degeneracy b(k + 2)/2c − b(k + 2)/3c, and is unique for
k = 0, 2 ≤ k ≤ 5 and k = 7.
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NOTAS DE FÍSICA is a preprint of original unpublished works in Physics.
Request for copies of this report should be addressed to:

Centro Brasileiro de Pesquisas F́ısicas
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