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Abstract

We discuss four off-shell N = 4 D = 1 supersymmetry transformations, their
associated one-dimensional σ-models and their mutual relations. They are given by

I) the (4, 4)lin linear “root” supermultiplet (supersymmetric extension of R4),
II) the (3, 4, 1)lin linear supermultiplet (supersymmetric extension of R3),
III) the (3, 4, 1)nl non-linear supermultiplet living on S3 and
IV) the (2, 4, 2)nl non-linear supermultiplet living on S2.
The I → II map is the supersymmetric extension of the R4 → R3 bilinear map,

while the II → IV map is the supersymmetric extension of the S3 → S2 first Hopf
fibration. The restrictions on the S3, S2 spheres are expressed in terms of the stere-
ographic projections. The non-linear supermultiplets, whose supertransformations
are local differential polynomials, are not equivalent to the linear supermultiplets
with the same field content.

The σ-models are determined in terms of an unconstrained prepotential of the
target coordinates. The Uniformization Problem requires solving an inverse problem
for the prepotential.

The basic features of the supersymmetric extension of the second and third Hopf
maps are briefly sketched.

Finally, the Schur’s lemma (i.e. the real, complex or quaternionic property) is
extended to all minimal linear supermultiplets up to N ≤ 8.
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1 Introduction.

In recent years the linear off-shell representations of the one-dimensional N -extended
superalgebra underlying the Supersymmetric Quantum Mechanics [1] have been substan-
tially elucidated [2]–[11]. The superalgebra admits N odd generators QI (the super-
charges, with I = 1, 2, . . . ,N ) and a single even generator (the Hamiltonian H), satisfying

{QI , QJ} = δIJH,

[H,QI ] = 0. (1)

A lot of information is now available concerning the minimal linear representations (also
known as irreducible representations) [4]–[9] based on the minimal number of time-
dependent bosonic (and an equal number of time-dependent fermionic) fields belonging
to a (1) supermultiplet, as well as the non-minimal linear representations (admitting a
reducible, but indecomposable set of fields), see [5, 10, 11].

The most interesting linear representations can be encoded in graphs [12, 6, 7, 8, 9]
(the fields are visualized by dots, the supertransformations by edges) and are further
characterized by their field content (the mass-dimension of the fields entering the graph),
their connectivity (number of edges entering dots at a given mass-dimension), etc.

A systematic construction of one-dimensional N -extended supersymmetrically invari-
ant σ-models is made possible by the knowledge of the linear representations, see [5, 13].
This systematic approach, alternative to the standard construction based on constrained
superfields (see [14, 15]), already proved its usefulness for building N > 4 invariant ac-
tions.

A large part of this activity is inspired by the so-called “oxidation program” [16, 17],
i.e. the construction of one-dimensional, off-shell supersymmetric actions, invariant for a
sufficiently large value ofN , as a preliminary step to construct “oxidized” supersymmetric
models in higher dimensions. In this context “off-shell” is the keyword. A properly
conducted oxidation program would require the knowledge of all off-shell realizations of
(1). Besides the linear representations, a much less understood class of off-shell realizations
of (1) is given by the non-linear realizations (the supertransformations are non-linear
functions of the fields entering the supermultiplets and their time-derivatives). Non-
linear off-shell realizations have been constructed in the literature with a large variety
of methods [18, 19, 20, 21, 22, 23, 24] (using, in most of the cases, the manipulation of
superfields). The interested reader can consult the cited papers to appreciate the variety
of methods which have been used.

Despite the richness of the results so far obtained (or, better, due to this richness),
the status of the non-linear off-shell realizations of (1) is at present somehow confusing.
This situation has to be compared with the rather clear picture concerning the linear
representations. Some very natural questions can be addressed. One for all: under
which condition a non-linear off-shell realization is genuinely non-linear and not a linear
representation “in disguise”? A partial answer to this one and similarly related questions
will be given in the following.

In this paper we construct genuine non-linear off-shell realizations of the (1) superalge-
bra in terms of a very precise geometrical setting, based on the supersymmetric extensions
of the Hopf maps. Essentially, a bilinear map between Euclidean spaces (R2k → Rk+1, for
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k = 1, 2, 4, 8) can be supersymmetrically extended to a map connecting one-dimensional,
off-shell, linear supermultiplets. The restrictions of these supermultiplets on spheres in-
duce non-linear, off-shell realizations of the supersymmetry (non-linear supermultiplets).
The spheres can be parametrized using stereographic projection, hyperspherical coor-
dinates, etc. (in the following we will make use of the stereographic projection which
induces non-linear, local, supertransformations). The supersymmetric extension of the
Hopf map is the generalization of the S2k−1 → Sk Hopf fibration as the map connecting
their associated non-linear off-shell supermultiplets. An explicit construction is carried
out for k = 2 (corresponding to the first Hopf map) producing N = 4 non-linear off-shell
supermultiplets.

The main virtue of this construction is its very natural geometrical setup. On the other
hand, nothing can be said concerning other possible non-linear off-shell supermultiplets
not arising from the supersymmetric extension of a Hopf fibration. It is quite likely that
the (3, 4, 1)nl and the (2, 4, 2)nl N = 4 non-linear off-shell supermultiplets introduced in
the following are related with the non-linear supermultiplets of the same field content
already appearing in the literature [24, 25] and also constructed in association with a
Hopf map, but with a more pragmatic approach. This possible equivalence would require
an investigation of its own and will not be conducted here. Instead, in this paper we
further use the geometrical setup to construct one-dimensional N = 4-invariant σ models
based on the non-linear supertransformations and investigate the Uniformization problem
associated to their bosonic limit. The present scheme can be in principle further applied
to the supersymmetric extensions of the second and third Hopf maps. Some comments
on that are made in the text.

The bosonic Hopf fibrations are based on maps which are U(1)-invariant (for k = 2)
or SU(2)-invariant (for k = 4). This invariance is closely related with the Schur’s lemma
applied to Clifford algebras [26]. The Schur’s lemma admits a natural extension to mini-
mal, linear off-shell supermultiplets. For completeness, we present here for the first time
the supersymmetric extension of the Schur’s lemma to all minimal linear supermultiplets
up to N ≤ 8.

We should mention that in a different context and framework (in application to higher-
dimensional quantum Hall systems [27]) supersymmetric extensions of Hopf maps were
considered in [28], while in [29] non-compact manifolds, associated to split-algebras, were
investigated. In [30] a superextension of the Dirac monopole was obtained in terms of
superfiber bundle. Several works, see e.g. [31, 32, 33, 34, 35, 36] and references therein,
have discussed physical applications of supersymmetric systems and their relation with
supermultiplets.

We postpone to the Conclusions a more detailed discussion of the results here found
and of the lines of research that they open.

The scheme of the paper is as follows. In the next Section the bosonic Hopf fibrations
will be reviewed on the basis of the formalism which in the following will be supersymmet-
rically extended. In Section 3 linear and non-linear N = 4 off-shell supermultiplets are
induced from the first Hopf fibration. In Section 4 the mappings connecting these N = 4
off-shell realizations are explicitly presented. We discuss in Section 5 the construction
of the N = 4 off-shell supersymmetric invariant actions expressed, for each off-shell su-
permultiplet, in terms of an unconstrained prepotential. The connection of the invariant
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actions with the one-dimensional σ-models arising as bosonic limits and the Uniformiza-
tion problem are explained in Section 6. In Section 7 some features of the supersymmetric
extensions of the second and third Hopf maps are outlined. In Section 8 we mention some
possible applications of the construction of one-dimensional off-shell supersymmetry re-
alizations for the oxidation program, namely the reconstruction of higher-dimensional
supersymmetric theories from one-dimensional data. For completeness, in Section 9 we
extend the Schur’s lemma to all off-shell, minimal, linear supermultiplets up to N = 8. In
the Conclusions we make some comments on our construction and outline some further
possible applications. In the Appendix we present, for completeness, theN = 4 non-linear
supermultiplet (3, 4, 1)nl in a quaternionic covariant form with one supercharge linearly
realized.

2 Hopf fibrations. The bosonic case.

The four Hopf maps (for k = 1, 2, 4, 8) can be illustrated by the following commutative
diagram

R2k p−→ Rk+1

ρ↓ ↓ρ′

S2k−1 h−→ Sk
(2)

which connects four spaces (two Euclidean spaces and two spheres) which, for later con-
venience, can be identified as I, II, III, IV according to

I
p−→ II

ρ ↓ ↓ρ′

III
h−→ IV

(3)

The four arrows correspond to the following maps:
- the bilinear map p : I → II, sending coordinates ~u ∈ R2k into coordinates ~x ∈ Rk+1

according to

p : ~u 7→ xi = uTγiu, (4)

(γi are the Euclidean gamma matrices of Rk+1);
- the restrictions ρ, ρ′ on spheres, where ρ : I → III and ρ′ : II → IV ;
- the hopf map h : II → IV , admitting Sk−1 as a fiber (for k = 8, S7 is a parallelizable
manifold but not, properly speaking, a group-manifold due to the nonassociativity of the
octonions; for k = 1, S0 ≡ Z2).

For k = 1, 2, 4, 8 the map (4) preserves the norm, allowing to induce the map h from
p:

uTu = R 7→ xTx = r, with r = R2. (5)

By setting k = 2l, the four Hopf maps h will be referred to (for l = 0, 1, 2, 3 respectively)
as the 0th, 1st, 2nd and 3rd Hopf map.
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In the following we will give a detailed description of the supersymmetric extension of
the first Hopf map (k = 2), corresponding to the diagram

R4 p−→ R3

ρ ↓ ↓ρ′

S3 h−→ S2

(6)

In the supersymmetric extension R4 is replaced by the N = 4 root supermultiplet (4, 4)
whose four bosonic (target) coordinates correspond to the coordinates of R4. The off-shell
supermultiplets extending II, III and IV are induced by applying, respectively, the map
p and the restriction ρ to (4, 4), as well as the restriction ρ′ on the induced supermultiplet
generalizing III.

For our purposes it will be convenient to define the target coordinates of the supermul-
tiplets extending III (IV ) in terms of the stereographic projection of the I (II) target
coordinates.

For k = 2 we can express the three Euclidean gamma matrices γi as

γ1 = τ1 ⊗ 12, γ2 = τA ⊗ τA, γ3 = τ2 ⊗ 12, (7)

where

τ1 =

(
0 1
1 0

)
, τ2 =

(
1 0
0 −1

)
, τA =

(
0 1
−1 0

)
. (8)

With this convention the bilinear map p is explicitly presented as

x1 = 2(u1u3 + u2u4),

x2 = 2(u1u4 − u2u3),

x3 = u1
2 + u2

2 − u3
2 − u4

2. (9)

It is invariant under the σ transformation (σ2 = −1), given by

σ : u1 7→ u2, u2 7→ −u1, u3 7→ u4, u4 7→ −u3. (10)

3 Linear and non-linear off-shell supermultiplets.

The construction of the supersymmetric extension of the 1st Hopf map has been outlined
in the previous Section. Here we present and discuss the results.

Induced by the N = 4 (4, 4) root supermultiplet, three more (inequivalent) N = 4
off-shell supermultiplets are obtained. They correspond to the supersymmetric exten-
sions of II, III and IV . The supertransformations extending II are all linear. This
supermultiplet has field content (3, 4, 1) and will therefore be denoted as (3, 4, 1)lin. The
supermultiplets extending III and IV possess supertransformations which are differential
polynomials in their component fields. Since their field content is, respectively, (3, 4, 1)
and (2, 4, 2), the supermultiplets will be denoted as (3, 4, 1)nl and (2, 4, 2)nl, respectively.
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Schematically, we have

(4, 4) −→ (3, 4, 1)lin
↓ ↓

(3, 4, 1)nl −→ (2, 4, 2)nl

(11)

Their component fields are parametrized according to

(u1, u2, u3, u4;ψ1, ψ2, ψ3, ψ4) −→ (x1, x2, x3;µ1, µ2, µ3, µ4; f)
↓ ↓

(w1, w2, w3; ξ1, ξ2, ξ3, ξ4; g) −→ (z1, z2; η1, η2, η3, η4;h1, h2)
(12)

The greek letters have been employed to denote the fermionic fields; ~u, ~x, ~w, ~z denote the
bosonic target coordinates of the respective supermultiplets, while f, g, h1,2 denote the
auxiliary fields.

We present at first the supersymmetry transformations of the four supermultiplets
above (the presentation of the transformations explicitly connecting their component
fields, namely the “arrows” in (12), will be given in the next Section). In the follow-
ing tables the entries give the supertransformations of the component fields under the
action of the QI supersymmetry operator.

The N = 4 (linear) (4, 4) root supermultiplet can be explicitly presented as

Q1 Q2 Q3 Q4

u1 ψ1 ψ2 ψ3 ψ4

u2 ψ2 −ψ1 ψ4 −ψ3

u3 ψ3 −ψ4 −ψ1 ψ2

u4 ψ4 ψ3 −ψ2 −ψ1

ψ1 u̇1 −u̇2 −u̇3 −u̇4

ψ2 u̇2 u̇1 −u̇4 u̇3

ψ3 u̇3 u̇4 u̇1 −u̇2

ψ4 u̇4 −u̇3 u̇2 u̇1

(13)

The (3, 4, 1)lin supermultiplet is given by

Q1 Q2 Q3 Q4

x1 µ1 −µ2 −µ3 µ4

x2 µ2 µ1 −µ4 −µ3

x3 µ3 µ4 µ1 µ2

µ1 ẋ1 ẋ2 ẋ3 −f
µ2 ẋ2 −ẋ1 f ẋ3

µ3 ẋ3 −f −ẋ1 −ẋ2

µ4 f ẋ3 −ẋ2 ẋ1

f µ̇4 −µ̇3 µ̇2 −µ̇1

(14)
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The (3, 4, 1)nl supermultiplet is given by

Q1 Q2 Q3 Q4

w1 ξ1 + 1
R (w1ξ4) ξ2 + 1

R (w1ξ3) ξ2 − 1
R (w1ξ2) ξ4 − 1

R (w1ξ1)
w2 ξ2 + 1

R (w2ξ4) −ξ1 + 1
R (w2ξ3) ξ4 − 1

R (w2ξ2) −ξ3 − 1
R (w2ξ1)

w3 ξ3 + 1
R (w3ξ4) −ξ4 + 1

R (w3ξ3) −ξ1 − 1
R (w3ξ2) ξ2 − 1

R (w3ξ1)
ξ1 ẇ1 − 1

R (w1g + ξ1ξ4) −ẇ2 + 1
R (w2g − ξ1ξ3) −ẇ3 + 1

R (w3g + ξ1ξ2) −g
ξ2 ẇ2 − 1

R (w2g + ξ2ξ4) ẇ1 − 1
R (w1g + ξ2ξ3) −g ẇ3 − 1

R (w3g + ξ1ξ2)
ξ3 ẇ3 − 1

R (w3g + ξ3ξ4) g ẇ1 − 1
R (w1g + ξ2ξ3) −ẇ2 + 1

R (w2g − ξ1ξ3)
ξ4 g −ẇ3 + 1

R (w3g + ξ3ξ4) ẇ2 − 1
R (w2g + ξ2ξ4) ẇ1 − 1

R (w1g + ξ1ξ4)
g ξ̇4 −ξ̇3 −ξ̇2 −ξ̇1

(15)

Finally, the (2, 4, 2)nl supermultiplet is given by

Q1 Q2 Q3 Q4

z1 η1 + 1
r (z1η3) −η2 + 1

r (z1η4) −η3 + 1
r (z1η1) η4 + 1

r (z1η2)
z2 η2 + 1

r (z2η3) η1 + 1
r (z2η4) −η4 + 1

r (z2η1) −η3 + 1
r (z2η2)

η1 ż1 − 1
r (z1h1 + η1η3) ż2 − 1

r (z2h1 + η1η4) h1 −h2 − 1
r (η1η2)

η2 ż2 − 1
r (z2h1 + η2η3) −ż1 + 1

r (z1h1 − η2η4) h2 − 1
r (η1η2) h1

η3 h1 −h2 − 1
r (η3η4) −ż1 + 1

r (z1h1 + η1η3) −ż2 + 1
r (z2h1 + η2η3)

η4 h2 − 1
r (η3η4) h1 −ż2 + 1

r (z2h1 + η1η4) ż1 − 1
r (z1h1 + η2η4)

h1 η̇3 η̇4 η̇1 η̇2

h2 η̇4 − 1
r (h1η4 − h2η3) −η̇3 + 1

r (h1η3 + h2η4) η̇2 − 1
r (h1η2 + h2η1) −η̇1 + 1

r (h1η1 + h2η2)

(16)

A few comments are in order:
- The non-linearity of the (3, 4, 1)nl and (2, 4, 2)nl supertransformations is the mildest pos-
sible nonlinearity, since at most bilinear combinations of the component fields appear in
the entries.
- The constant parameters R (entering (3, 4, 1)nl) and r (entering (2, 4, 2)nl) can be re-
absorbed (set equal to 1) through a suitable rescaling of the component fields. It is
however convenient to present them explicitly to show that in the contraction limit (for
R, r →∞) the linear supermultiplets (3, 4, 1)lin and, respectively, (2, 4, 2)lin are recovered.
As a consequence, (3, 4, 1)nl and (2, 4, 2)nl are more general than the corresponding linear
supermultiplets with the same field content. Indeed, while the latter can be recovered
from the non-linear ones, the converse is not true, as it will be clear from the discussion
at the end of the next Section.

We can summarize the results of this Section as follows. Besides the N = 4 min-
imal linear supermultiplets classified in [4], at least two extra, non-linear, inequivalent
supermultiplets are found. They are geometrically induced by the restriction of the (4, 4)
and (3, 4, 1)lin linear supermultiplets on spheres. The inequivalent supermultiplets of field
content (3, 4, 1) ((2, 4, 2)) are determined in terms of a parameter ε = 0, 1 (basically, ε = 1

R

or, respectively ε = 1
r
, with the radius of the sphere suitably normalized, either R = 1

or R = ∞). We can write (3, 4, 1)lin ≡ (3, 4, 1)ε=0, (3, 4, 1)nl ≡ (3, 4, 1)ε=1 and analogous
relations for the (2, 4, 2) field content.
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4 The “non-linear dressing”.

We present here the transformations connecting the supermultiplets introduced in the
previous Section (the “arrows” in the (12) diagram).

The map (4, 4) → (3, 4, 1)lin is the supersymmetric extension of the bilinear bosonic
transformation p given in (4). (4, 4) → (3, 4, 1)lin is given by

x1 = 2(u1u3 + u2u4),

x2 = 2(u1u4 − u2u3),

x3 = u1
2 + u2

2 − u3
2 − u4

2,

µ1 = 2(u1ψ3 + u2ψ4 + u3ψ1 + u4ψ2),

µ2 = 2(u1ψ4 − u2ψ3 − u3ψ2 + u4ψ1),

µ3 = 2(u1ψ1 + u2ψ2 − u3ψ3 − u4ψ4),

µ4 = 2(u1ψ2 − u2ψ1 + u3ψ4 − u4ψ3),

f = 2(u1u̇2 − u2u̇1 + u3u̇4 − u4u̇3) + 4(ψ1ψ2 + ψ3ψ4). (17)

We should stress the fact that the (3, 4, 1)lin supermultiplet is recovered from (4, 4) also
via another transformation, the linear dressing discussed in [4] which, essentially, allows
to identify the auxiliary field f with a time-derivative of one of the ui’s fields; let’s say
f = u̇4. We have therefore a double derivation of N = 4 (3, 4, 1)lin from the N = 4 (4, 4)
root supermultiplet.

The transformation (4, 4) → (3, 4, 1)nl is induced after identifying the three target
coordinates entering (3, 4, 1)nl with the coordinates of the stereographic projection of the
S3 sphere embedded in R4. For (4, 4) → (3, 4, 1)nl we obtain, explicitly,

wi =
Rui

R− u4

, for i = 1, 2, 3,

ξj =
Rψj
R− u4

, for j = 1, 2, 3, 4

g =
Ru̇4

R− u4

. (18)

Similarly, the transformation (3, 4, 1)lin → (2, 4, 2)nl is induced after identifying the two
target coordinates entering (2, 4, 2)nl with the coordinates of the stereographic projection
of the S2 sphere embedded in R3. For (3, 4, 1)lin → (2, 4, 2)nl we have

zi =
rxi

r − x3

, for i = 1, 2,

ηj =
rµj
r − x3

, for j = 1, 2, 3, 4,

h1 =
rẋ3

r − x3

,

h2 =
rf

r − x3

. (19)

The last transformation connects the component fields of the two nonlinear supermulti-
plets. It corresponds to a nonlinear version of the dressing transformation. For (3, 4, 1)nl →
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(2, 4, 2)nl we have

zi =
r

R
wi, for i = 1, 2,

ηj =
r

R
ξj, for j = 1, 2, 3, 4,

h1 =
r

R
g,

h2 =
r

R
(ẇ3 − w3g). (20)

This transformation requires the identifications Q1
IV = Q1

III and Ql
IV = −Ql

III for
l = 2, 3, 4.

Some comments are in order. The (18) map is not covariant with respect to the u(1)
(σ2 = −1) action given by the combination of (10) on the bosonic component of (4, 4),
together with

σ : ψ1 7→ ψ2, ψ2 7→ −ψ1, ψ3 7→ ψ4, ψ4 7→ −ψ3, (21)

on the fermionic component fields of (4, 4).
Imposing a u(1)-covariance would have required another parametrization for the spheres.

Indeed, taking a hyperspherical parametrization for the bosonic target coordinates we
would have obtained, by construction, a u(1)-covariant description of the supertransfor-
mations of the nonlinear supermultiplets. There is a price to be paid, however. Using
the hypersperical parametrization the supertransformations are nonlocal differential func-
tions involving quotients of trigonometrical functions of the component fields. The use of
the stereographic projection, as recalled, gives us local supertransformations, expressed
as differential polynomials of the component fields. In this paper we put the emphasis on
the non-linear realizations of the off-shell supersymmetry, rather than on the N = 4 su-
persymmetric systems with global U(1) invariance (supersymmetric systems with gauged
U(1) were analyzed in [37, 38, 39]). In this context the stereographic projection is the
natural choice due to its much simpler (and local) description of the nonlinear supersym-
metry. The use of the stereographic projection allows to positively answer the question
concerning the genuine nonlinearity of (3, 4, 1)nl and (2, 4, 2)nl. The nonlinearity of their
supertransformations is not “fake”. Stated otherwise, these supermultiplets are not linear
supermultiplets “in disguise”, due to an awkwardly chosen reparametrization of the com-
ponent fields of the linear supermultiplets. For both (3, 4, 1)nl and (2, 4, 2)nl the best one
can do is to realize linearly, via reparametrization of the component fields, at most one
of the four supercharges QI . The three remaining supercharges are necessarily realized
non-linearly. A quaternionic covariant presentation of (3, 4, 1)nl with one linearly realized
supercharge and three non-linear supercharges is explicitly shown in the Appendix.

The component fields of (3, 4, 1)nl and (2, 4, 2)nl are obtained (just like (3, 4, 1)lin and
(2, 4, 2)lin) as functions of the (4, 4) component fields and their time-derivatives. However
(this is the crucial feature), they cannot be obtained as functions of the component fields
(and their time derivatives) which belong to the linear supermultiplets possessing the
same field content. There is no local map sending (3, 4, 1)lin → (3, 4, 1)nl or viceversa.

It is worth recalling here that the field content is an important physical characteriza-
tion of the supersymmetric system. It gives in particular the dimensionality (number of
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target coordinates) of the target manifold induced by a one-dimensional supersymmetric
invariant σ-model (we recall that one-dimensional supersymmetric σ-models were first
considered in [40, 41]).

5 Invariant supersymmetric actions.

We summarize at first the results derived so far. The supersymmetric extension of the
1st Hopf map produces four (two linear and two non-linear) off-shell realizations of the
D = 1 N = 4 supersymmetry. The off-shell realizations, denoted as the supermultiplets
(4, 4), (3, 4, 1)lin, (3, 4, 1)nl, (2, 4, 2)nl, are interconnected via the transformations obtained
in the previous Section.

We use now these ingredients to construct four (in association with each one of the
above supermultiplets) N = 4-invariant one-dimensional supersymmetric σ-models whose
target manifold is parametrized by the target coordinates of the associated supermultiplet.
These σ-model are determined in terms of an unconstrained function (the prepotential
F ) of the target coordinates. The construction of the invariant action with the correct
mass-dimension of the kinetic term (no higher derivatives) follows the prescription given
in references [5] and [13]. For our purposes here it is sufficient to recall that the super-
symmetry operators QI act as odd derivatives which satisfy the graded Leibniz rule.

The invariant action S = 1
m

∫
dtL is expressed through the lagrangian L s.t.

L = Q1Q2Q3Q4(F ), (22)

where F is the unconstrained prepotential.
By specializing the above formula in terms of the given off-shell supermultiplets we

obtain that, for (4, 4), the corresponding lagrangian LI is given, up to a total derivative,
by

LI = Φ(u̇1
2 + u̇2

2 + u̇3
2 + u̇4

2 − ψ1ψ̇1 − ψ2ψ̇2 − ψ3ψ̇3 − ψ4ψ̇4) +

(∂1Φ)(u̇2(ψ1ψ2 + ψ3ψ4) + u̇3(ψ1ψ3 − ψ2ψ4) + u̇4(ψ1ψ4 + ψ2ψ3)) +

(∂2Φ)(−u̇1(ψ1ψ2 + ψ3ψ4) + u̇3(ψ1ψ4 + ψ2ψ3)− u̇4(ψ1ψ3 − ψ2ψ4)) +

(∂3Φ)(−u̇1(ψ1ψ3 − ψ2ψ4)− u̇2(ψ1ψ4 + ψ2ψ3)− u̇4(ψ1ψ2 + ψ3ψ4)) +

(∂4Φ)(−u̇1(ψ1ψ4 + ψ2ψ3) + u̇2(ψ1ψ3 − ψ2ψ4)− u̇3(ψ1ψ2 + ψ3ψ4)) +

(�Φ)(ψ1ψ2ψ3ψ4), (23)

where Φ is determined in terms of the prepotential through

Φ = ∂2
1F (u1, u2, u3, u4) + ∂2

2F (u1, u2, u3, u4) + ∂2
3F (u1, u2, u3, u4) + ∂2

4F (u1, u2, u3, u4)

= �F (u1, u2, u3, u4) . (24)

For (3, 4, 1)lin, the corresponding lagrangian LII is given by

LII = Φ(ẋ1
2 + ẋ2

2 + ẋ3
2 + f 2 − µ1µ̇1 − µ2µ̇2 − µ3µ̇3 − µ4µ̇4) +

(∂1Φ)(ẋ2(µ1µ2 + µ3µ4) + ẋ3(µ1µ3 − µ2µ4) + f(µ1µ4 + µ2µ3)) +

(∂2Φ)(−ẋ1(µ1µ2 + µ3µ4) + ẋ3(µ1µ4 + µ2µ3)− f(µ1µ3 − µ2µ4)) +

(∂3Φ)(−ẋ1(µ1µ3 − µ2µ4)− ẋ2(µ1µ4 + µ2µ3) + f(µ1µ2 + µ3µ4)) +

(�Φ)(µ1µ2µ3µ4). (25)
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In this case we have the position

Φ = ∂2
1F (x1, x2, x3) + ∂2

2F (x1, x2, x3) + ∂2
3F (x1, x2, x3) = �F (x1, x2, x3) . (26)

For what concerns the non-linear supermultiplets we proceed in the same way. For
(3, 4, 1)nl we construct the invariant action, for simplicity, in terms of an SO(3)-invariant
prepotential that, without loss of generality, can be expressed (F (ρ)) as a function of the
coordinate ρ s.t.

ρ =
√
w2

1 + w2
2 + w2

3. (27)

It is convenient to introduce A(ρ) through

A(ρ) =
d

dρ
F (ρ) ≡ F ′ (28)

(in the following a prime denotes a ρ-derivative).
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Up to a total derivative, the lagrangian LIII derived from (22) is

LIII =
[2

ρ
A+ A′

](
ẇ2

1 + ẇ2
2 + ẇ2

3 + g2 − ξ1ξ̇1 − ξ2ξ̇2 − ξ3ξ̇3 − ξ4ξ̇4
)

+

1

ρ

[ 2

ρ2
A− 2

ρ
A′ − A′′

][
ẇ1

(
w2

(
ξ1ξ2 + ξ3ξ4

)
+ w3

(
ξ1ξ3 − ξ2ξ4

))
−

−ẇ2

(
w1

(
ξ1ξ2 + ξ3ξ4

)
− w3

(
ξ1ξ4 + ξ2ξ3

))
− ẇ3

(
w1

(
ξ1ξ3 − ξ2ξ4

)
+ w2

(
ξ1ξ4 + ξ2ξ3

))
−

−g
(
w1

(
ξ1ξ4 + ξ3ξ4

)
− w2

(
ξ1ξ3 − ξ2ξ4

)
+ w3

(
ξ1ξ2 + ξ3ξ4

))]
+

[4

ρ
A′′ + A′′′

]
ξ1ξ2ξ3ξ4 +

1

R

{
−

[2

ρ
A+ A′

](
w1ẇ1 + w2ẇ2 + w3ẇ3

)
g −

[4

ρ
A+ 4A′ + ρA′′

]
·

·
(
ẇ1

(
ξ1ξ4 + ξ2ξ3

)
− ẇ2

(
ξ1ξ3 − ξ2ξ4

)
+ ẇ3

(
ξ1ξ2 + ξ3ξ4

))}
+

1

R2

{
ρ
[
2A+ ρA′

](
ẇ2

1 + ẇ2
2 + ẇ2

3 + 2g2 − ξ1ξ̇1 − ξ2ξ̇2 − ξ3ξ̇3 − ξ4ξ̇4
)
−

[4

ρ
A+ 4A′ + ρA′′

]
·

·
[
ẇ1

(
w2

(
ξ1ξ2 + ξ3ξ4

)
+ w3

(
ξ1ξ3 − ξ2ξ4

))
− ẇ2

(
w1

(
ξ1ξ2 + ξ3ξ4

)
−

−w3

(
ξ1ξ4 + ξ2ξ3

))
− ẇ3

(
w1

(
ξ1ξ3 − ξ2ξ4

)
+ w2

(
ξ1ξ4 + ξ2ξ3

))
+

−2g2
(
w1

(
ξ1ξ4 + ξ2ξ3

)
− w2

(
ξ1ξ3 − ξ2ξ4

)
+ w3

(
ξ1ξ2 + ξ3ξ4

))]
+

2
[4

ρ
A+ 14A′ + 16ρA′′ + ρ2A′′′

]
ξ1ξ2ξ3ξ4

}
+

1

R3

{
2ρ

[
2A− ρA′

](
w1ẇ1 + w2ẇ2 + w3ẇ3

)
g − ρ

[
6A− 6ρA′ − ρ2A′′

]
·

·
(
ẇ1

(
ξ1ξ4 + ξ2ξ3

)
− ẇ2

(
ξ1ξ3 − ξ2ξ4

)
+ ẇ3

(
ξ1ξ2 + ξ3ξ4

))}
+

1

R4

{
ρ3

[
2A+ ρA′

]
g2 + ρ

[
6A+ 6ρA′ + ρ2A′′

](
w1

(
ξ1ξ4 + ξ2ξ3

)
− w2

(
ξ1ξ3 − ξ2ξ4

)
+

w3

(
ξ1ξ2 + ξ3ξ4

))
g + ρ

[
24A+ 36ρA′ + 12ρ2A′′ + ρ3A′′′

]
ξ1ξ2ξ3ξ4

}
. (29)

We also present the most general invariant action for the (2, 4, 2)nl supermultiplet induced
by a global SO(2) invariant prepotential. After setting

ρ =
√
z2
1 + z2

2 (30)
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and, as before, A(ρ) = F ′(ρ), the lagrangian LIV is expressed as

LIV =
[1

ρ
A+ A′

](
ż2
1 + ż2

2 + h2
1 + h2

2 − η1η̇1 − η2η̇2 − η3η̇3 − η4η̇4

)
+

1

ρ

[ 1

ρ2
A− 1

ρ
A′ − A′′

]
[(
ż1z2 − ż2z1

)(
η1η2 + η3η4

)
− h1

(
z1

(
η1η3 − η2η4

)
+ z2

(
η1η4 + η2η3

))
−

−h2

(
z1

(
η1η4 + η2η3

)
− z2

(
η1η3 − η2η4

))]
+

[ 1

ρ3
A− 1

ρ2
A′ +

2

ρ
A′′ + A′′′

]
η1η2η3η4 +

1

r

{
− 2

[2

ρ
A+ A′

](
z1ż1 + z2ż2

)
h1 − 2

[1

ρ
A+ A′

]
h2η3η4 −

[1

ρ
A+ 3A′ + ρA′′

]
·

·
(
ż1

(
η1η3 − η2η4

)
+ ż1

(
η1η4 + η2η3

)
− h2

(
η1η2 + η3η4

))}
+

1

r2

{[
ρ2A′

](
ż2
1 + ż2

2 + h2
1 + h2

2 − η1η̇1 − η2η̇2 − η3η̇3 − η4η̇4

)
+

[
2ρA

](
h2

1 + h2
2 −

−η3η̇3 − η4η̇4

)
+ ρ

[
A+ ρA′

]
h2

1 +
[
2A′ + ρA′′

](
ż1z2 − ż2z1

)(
η1η2 + η3η4

)
−

−2
[1

ρ
A+ A′

](
ż1z2 − ż2z1

)
η3η4 +

[3

ρ
A+ 7A′ + 2ρA′′

](
z1

(
η1η3 − η2η4

)
+

z2

(
η1η4 + η2η3

))
h1 +

[2

ρ
A+ 4A′ + ρA′′

](
z1

(
η1η4 + η2η3

)
+

z2

(
η1η3 − η2η4

))
h2 + 2

[
− 15

ρ
A+ 14A′ + 12ρA′′ + ρ2A′′′

]
η1η2η3η4

}
+

1

r3

{
− 2

[
ρ2A′

](
z1ż1 + z2ż2

)
h1 + 2ρ

[
A+ ρ2A′

]
h1η3η4 − ρ2

[
4A′ − ρA′′

]
·

·
(
ż1

(
η1η3 − η2η4

)
+ ż1

(
η1η4 + η2η3

)
− h2

(
η1η2 + η3η4

))}
+

1

r4

{[
ρ4A′

]
h2

1 + ρ2
[
4A′ + ρA′′

](
z1

(
η1η3 − η2η4

)
+ z2

(
η1η4 + η2η3

))
h1 +

ρ2
[
4A′ + 8ρA′′ + ρ2A′′′

]
η1η2η3η4

}
. (31)

Without loss of generality we could have set R = 1 in (29) and r = 1 in (31). It is
however convenient to make explicit which terms entering the above lagrangians are due
to the nonlinearity of the supertransformations. They enter (29) as powers of 1

R
and

(31) as powers of 1
r
. The N = 4 invariant actions for the (3, 4, 1)lin and (2, 4, 2)lin linear

supermultiplets are recovered from (29) (respectivey (31)) when taking the limit R→∞
(respectively r →∞).

6 Prepotentials and their associated σ-models. The

Uniformization.

The N = 4 supersymmetric invariant actions defined in the previous Section induce σ-
models Σ which are one-dimensional mappings on a Riemannian target manifold Mg
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endowed with a metric g:

Σ :
R → Mg,

t 7→ ~X(t).
(32)

~X denotes the local coordinates of the target manifolds. They correspond to the physical
bosonic component fields (called, for this reason, “target coordinates”) entering the off-
shell supermultiplets. The remaining bosonic components are the auxiliary fields.

The associated σ-models are constructed by
i) consistently setting equal to zero all the fermionic fields in the supermultiplets,
ii) solving the algebraic equations of motion for the auxiliary fields,
iii) reexpressing the resulting lagrangians as L = gijẊ

iẊj.

The metric gij is a functional of the prepotential F ( ~X), s.t. gij ≡ gij[F ( ~X)].
For the (3, 4, 1)nl supermultiplet with prepotential F (ρ) (29) the metric is diagonalized

when expressed in terms of the redefined target coordinates ρ, θ1, θ2 s.t.

w1 = ρcos(θ1)sin(θ2), w2 = ρsin(θ1)sin(θ2), w3 = ρcos(θ2). (33)

The non-vanishing components of the metric (gρθ1 = gρθ2 = gθ1θ2 = 0) are

gρρ =
4
(
ρ2 + 1

)
ρ

[
ρF ′′(ρ) + F ′(ρ)

]
,

gθ1θ1 = ρ
(
ρ2 + 1

)
sin(θ2)

[
ρF ′′(ρ) + F ′(ρ)

]
,

gθ2θ2 = ρ
(
ρ2 + 1

)[
ρF ′′(ρ) + F ′(ρ)

]
. (34)

For the (2, 4, 2)nl supermultiplet with prepotential F (ρ) (31) the metric is diagonalized in
terms of the redefined target coordinates ρ, α s.t.

z1 = ρ cos(α), z2 = ρ sin(α). (35)

The non-vanishing components of the metric (gρα = 0) are

gρρ =

{
ρ2

[
F ′′(ρ)

]2(
4ρ6 + 9ρ4 + 6ρ2 + 1

)
+ 2ρ

[
F ′′(ρ)

][
F ′(ρ)

](
5ρ4 + 6ρ2 + 1

)
+

[
F ′(ρ)

]2(
6ρ2 + 1

)}/
ρ

{
ρ
[
F ′′(ρ)

](
ρ2 + 1

)2
+

[
F ′(ρ)

](
3ρ2 + 1

)}
,

gαα = ρ

{[
F ′(ρ)

]
+ ρ

(
ρ2 + 1

)[
F ′′(ρ)

]}
. (36)

An inverse problem can be defined. It consists in the determination (from (34) or (36))
of a prepotential F which reproduces a given reference metric ĝij.

For linear supermultiplets (see (23) and (25)) the induced metric gij is conformally

flat (gij = Φ( ~Xδij). In particular the constant flat metric is recovered from a quadratic
prepotential. For a two-dimensional target manifold a special case of the inverse problem is
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the century-old Uniformization Problem discussed by Liouville. A conformally flat metric
admits constant curvature everywhere if the (suitably normalized) conformal factor Φ
satisfies the Liouville’s equation �Φ = exp(Φ).

For the non-linear supermultiplets the choice of a quadratic prepotential (F ∝ ρ2)
does not reproduce a constant metric. The curvature tensor Rijkl, the Ricci tensor Rij

and the curvature scalar R can be computed from (34) and (36).
It is useful to present some results for the (2, 4, 2)nl supermultiplet (we will follow the

conventions of ([42]) which, in particular, sets R = −2 for a sphere of radius r = 1). The
curvature R associated to the quadratic prepotential

F = Cρ2 (37)

is given by

R =
[
ρ2 − 44

]/[
C(ρ2 + 1)2(ρ2 − 8)2

]
. (38)

Setting C = 11
32

normalizes R(0) = −2 at the origin.
In this context the Uniformization Problem can be attacked through Taylor-expansion

as follows. One can express F in powers of ρ2 (F =
∑

i=1Ciρ
2i) and adjust the coefficients

in order to make vanishing the ρ-derivatives of R at the origin. If we set, e.g.,

F = N(ρ2 + kρ4) (39)

(that is C1 = N , C2 = kN , Cj = 0 for j = 2, 3, . . .) we obtain, for the corresponding
curvature scalar R,

R(0) =
[
(8k + 1)(8k2 + 18k + 1)

]/[
8(2k + 1)(2 + k)N

]
,

R′′|ρ=0 = −1536k7 + 6400k6 + 8744k5 + 4332k4 + 266k3 − 227k2 − 39k + 12

4k(2k + 1)2(2 + k)2N
(40)

(the odd-derivatives of R are all vanishing at ρ = 0).
Requiring R′′|ρ=o = 0 implies that k is fixed to be a root of the 7th-order polynomial

at the numerator of the r.h.s. of the second equation. Its unique real root is

k ≈ −1.97997. (41)

The normalization R(0) = −2 gives for N the approximate numerical solution

N ≈ 51.2779. (42)

This choice of the prepotential produces a metric whose curvature is approximately con-
stant in the neighborhood of the origin.

7 Some remarks on the supersymmetric extension of

the 2nd and 3rd Hopf maps.

It is worth to point out some basic features of the supersymmetric extensions of the
second and third Hopf maps (that is, the supersymmetric extensions of the (2) diagram
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for k = 4, 8). In [43] the supersymmetric extension of the bilinear mapping p : R8 → R5

was introduced and applied to the construction of supersymmetric systems in the presence
of an SU(2) Yang monopole. The supersymmetric extension of the Hopf map (the entire
(2) diagram) would require, of course, the restrictions on the spheres. We will briefly
summarize the results of [43] (see also [44]) and make further comments.

The (8, 8) root supermultiplet corresponds to a minimal, linear, off-shell representation
for all values N = 5, 6, 7, 8. On the other hand the p map is (globally) SU(2)-invariant.
In accordance with the Schur’s lemma, whose supersymmetric extension is presented
in Section 9, N = 5 is the maximal number of supersymmetric generators acting on
(8, 8) and commuting with the su(2) algebra. The k = 4 supersymmetric extension of p
produces the N = 5 linear mapping (8, 8) → (5, 11, 10, 5, 1). The latter supermultiplet
is a linear dressing of the N = 5 non-minimal “enveloping” (see [43]) supermultiplet
whose field content is given by the (N = 5) Newton’s binomial (the linear dressing maps
(1, 5, 10, 10, 5, 1) 7→ (0, 5, 11, 10, 5, 1)). Four of the five supercharges can be picked up
to construct, with the method illustrated in Section 5, a manifestly N = 4 off-shell
invariant action depending on an unconstrained prepotential depending on five bosonic
target coordinates. Imposing the invariance under the fifth supercharge puts a constraint
on the superpotential.

The compatibility of this construction with the restriction on spheres was not inves-
tigated in [43]. This program can now be completed by applying the methods discussed
in the present paper. The use of the stereographic projection allows us to produce non-
linear off-shell realizations for N > 4. It is expected that the restriction R8 → S7 would
produce an N = 8 non-linear realization of supersymmetry which is local and could be
expressed in terms of the octonionic structure constants. The use of the hyperspherical
coordinates on the other hand would induce non-local realizations of the supersymmetry
(based on ratio of trigonometric functions) which, on the other hand, are covariant under
the SU(2) group of transformations. These extensions are currently under investigation.

There is no obstruction in further applying these methods to the third Hopf map. The
bosonic bilinear map p sends now R16 → R9. A (16, 16) root supermultiplet carries a min-
imal linear representation for N = 9. The supersymmetric extension of the map p sends
the root supermultiplet into the non-minimal N = 9 linear supermultiplet of field content
(9, 37, 84, 126, 126, 84, 36, 9, 1), which is a linear dressing of the N = 9 “enveloping super-
multiplet” based on the N = 9 Newton’s binomial ((1, 9, 36, 84, 126, 126, 84, 36, 9, 1) 7→
(9, 37, 84, 126, 126, 84, 36, 9, 1)). As before, the restrictions on spheres can be presented in
terms of the stereographic projection or the hyperspherical parametrization.

8 Some remarks on the oxidation program.

A major area of applications of the construction and classification of one-dimensional N -
extended off-shell realizations (linear and minimal, linear and non-minimal, non-linear)
of supersymmetry and their invariant actions concerns the so-called “oxidation program”
[16, 17], i.e. the reconstruction of higher-dimensional supersymmetric theories from 1D
supersymmetric data. Several types of supermultiplets of given field content arises from
the dimensional reduction of known supersymmetric theories. For instance, the reduction
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to a 0 + 1 quantum mechanical system of the N = 4 Super-Yang-Mills theory in 3 + 1
dimension produces a supermultiplet of field content (9, 16, 7) which carries an off-shell
representation of 9 supercharges. The remaining 7 supersymmetry generators (= 16− 9)
can only be realized on-shell [17] (this is in consequence of the [4] result and counting).
Similarly, for the maximal, eleven-dimensional supergravity, the transverse-coordinate
supermultiplet containing the graviton, the gravitinos and the 3-form admits field content
(44, 128, 84). As such, it carries an off-shell representation for N = 16 supercharges. The
remaining 16 supersymmetry generators which complete the total number of 32 = 8 × 4
supercharges only close on-shell. Due to the [4] counting, an off-shell formulation of
the eleven-dimensional M-theory would require (if it exists) a supermultiplet with at least
32, 768 = 215 bosonic component fields and an equal number of fermionic component fields.
These features have been discussed in greater detail in [17] and will not be further repeated
here. In this paper it is sufficient to mention that the oxidation program can be carried
out in two steps. In the first step an N -extended, one-dimensional, supersymmetric
theory has to be constructed for a sufficiently large value of N . The most interesting
values for N correspond to N = 4, 8, 16, 32 which can be associated to a dimensional
reduction of a 4, 6, 10, or 11-dimensional supersymmetric theory, respectively. This first
step produces a one-dimensional supersymmetric theory possessing a necessary, but not
sufficient condition allowing its oxidation to a higher-dimensional supersymmetric theory.
The second step consists in deriving the conditions on the 1D supersymmetric data in
order to reconstruct the oxidized data. For instance, questions to be answered concern
the organization of the 1D supermultiplets in representations of the higher-dimensional
Lorentz groups. This second part of the program, see the references [45, 46], is still at its
infancy.

Further comments on the possible relevance of the present results to the oxidation
program will be made in the Conclusions.

9 The Schur’s lemma extended to minimal, linear,

supermultiplets.

The Schur’s lemma [26] is a statement about the most general matrix S commuting with
all the p+ q gamma matrices γi (i = 1, . . . , p+ q) which define the C(p, q) Clifford algebra
over the reals (p matrices of the set have square +1 and q matrices have square −1).
Depending on the (p, q) pair, the three following cases are obtained:
i) the real case (R) s.t. S = λ01,
ii) the almost complex case (C) s.t. S is given by the sum S = λ01+λ1τ1, with τ1

2 = −1,
iii) the quaternionic case (H) s.t. S is given by the sum S = λ01 +

∑3
j=1 λjτj,

with [τj, τk] = εjklτl and τj
2 = −1.

In the above formulas λk’s are real numbers.
The one-to-one connection, pointed out in [4], between irreducible representations

of Clifford algebras and representation of the N -extended superalgebra (1) given by the
minimal linear supermultiplets of field content (n, n) (the “root”’ supermultiplets) implies

that the most general matrix S commuting with the Q̃I (I = 1, . . . ,N ) supersymmetry
operators of the root representation is directly read from the associated Clifford irrep.
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The higher length minimal linear supermultiplets (see [5]) of field content (n1, n2, n3, . . .)

are expressed in terms of the supersymmetry operators Q̂I = DQ̃ID
−1, where D is the

diagonal dressing operator whose entries are 1 and powers of the time-derivative operator
∂t. The most general S commuting with the dressed operators Q̂I is recovered by imposing
the further condition [S,D] = 0. As a consequence, a necessary but not sufficient condition
for S to be of C type (H type) is that the set of integers ni entering the field content are
all even numbers (all multiples of 4).

We are now in the position to write down the Schur’s type (R, C, H) of all inequiv-
alent minimal linear supermultiplets up to N ≤ 8. For N 6= 5, 6, such inequivalent
supermultiplets are uniquely characterized by their field content. Their complete list is
given in [5]. For N = 5, 6 inequivalent linear supermultiplets with the same field content,
but differing in connectivity (of the associated graph, see [8]) are encountered. Their
admissible connectivities, expressed through the ψg symbol, are classified in [8] (see also
[9]).

The following results are obtained:
- for N = 1, 7, 8 all minimal linear supermultiplets are of R type,
- for N = 2 the (2, 2) supermultiplet is of C type ((1, 2, 1) is of R type),
- for both N = 3, 4 the (4, 4) supermultiplet is of H type, (2, 4, 2) is of C type, while the
remaining supermultiplets are of R type.

For N = 5 the results are summarized in the following table. The Schur’s type is
reprorted in the last column. The ψg connectivity of reference [8] is reported in the third
column. The decomposition into N = 4 supermultiplets (see [9]) is reported in the second
column. The labels (A,B,C) are introduced to distinguish supermultiplets with the same
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field content.

fields cont. N = 4 decomp. ψg connectivities labels Schur’s type

(8, 8) (4, 4) + (4, 4) 80 H

(1, 8, 7) (0, 4, 4) + (1, 4, 3) 35 + 54 R
(2, 8, 6) (0, 4, 4) + (2, 4, 2) 25 + 24 + 43 A C

(1, 4, 3) + (1, 4, 3) 64 + 23 B R
(3, 8, 5) (0, 4, 4) + (3, 8, 5) 15 + 34 + 42 A R

(1, 4, 3) + (2, 4, 2) 24 + 53 + 12 B R
(4, 8, 4) (0, 4, 4) + (4, 4, 0) 44 + 41 A H

(1, 4, 3) + (3, 4, 1) 14 + 33 + 32 + 11 B R
(2, 4, 2) + (2, 4, 2) 43 + 42 C C

(5, 8, 3) (1, 4, 3) + (4, 4, 0) 43 + 31 + 10 A R
(2, 4, 2) + (3, 4, 1) 13 + 52 + 21 B R

(6, 8, 2) (2, 4, 2) + (4, 4, 0) 42 + 21 + 20 A C
(3, 4, 1) + (3, 4, 1) 22 + 61 B R

(7, 8, 1) (3, 4, 1) + (4, 4, 0) 51 + 30 R

(1, 5, 7, 3) (1, 4, 3) + (0, 1, 4, 3) 54 R
(1, 6, 7, 2) (1, 4, 3) + (0, 2, 4, 2) 15 + 54 R
(1, 7, 7, 1) (1, 4, 3) + (0, 3, 4, 1) 25 + 54 R
(2, 6, 6, 2) (2, 4, 2) + (0, 2, 4, 2) 24 + 43 C
(2, 7, 6, 1) (2, 4, 2) + (0, 3, 4, 1) 15 + 24 + 43 R
(3, 7, 5, 1) (3, 4, 1) + (0, 3, 4, 1) 34 + 42 R

(43)

A similar table is produced for the N = 6 minimal linear supermultiplets. It is given by

fields cont. ψg connectivities labels Schur’s type

(8, 8) 80 C

(1, 8, 7) 26 + 65 R
(2, 8, 6) 26 + 64 A C

45 + 44 B R
(3, 8, 5) 25 + 24 + 43 A R

64 + 23 B R
(4, 8, 4) 44 + 42 A C

24 + 43 + 22 B R
83 C R

(5, 8, 3) 43 + 22 + 21 A R
23 + 62 B R

(6, 8, 2) 62 + 20 A C
42 + 41 B R

(7, 8, 1) 61 + 20 R

(1, 6, 7, 2) 65 R
(1, 7, 7, 1) 16 + 65 R
(2, 6, 6, 2) 64 C
(2, 7, 6, 1) 16 + 64 R

(44)
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10 Conclusions.

Let us first summarize the main results of the present paper.
We explicitly constructed the supersymmetric extension of the first Hopf map, which

results in connecting four N = 4 one-dimensional off-shell supermultiplets. As a conse-
quence, the linear (3, 4, 1) supermultiplet, as well as the non-linear (3, 4, 1)nl and (2, 4, 2)nl
supermultiplets, are induced from the N = 4 (4, 4) “root” linear supermultiplet, whose
four bosonic target coordinates can be regarded as a parametrization of R4. The stereo-
graphic projection acting on the bosonic target coordinates is used to induce the non-linear
supermultiplets. Such a non-linearity is local, i.e., the supertransformations are differen-
tial polynomials in the component fields entering the supermultiplets. We further applied
a construction introduced in previous works [5, 13] to obtain the one-dimensional N = 4
off-shell invariant actions associated to each supermultiplet. Each such an action depends
on an unconstrained prepotential of its bosonic target coordinates. An Inverse Problem
for the prepotential corresponds to its determination in order to reproduce (in the purely
bosonic sector of the theory) a σ-model of a given target metric ĝij of reference.

The same procedure can be rather straightforwardly applied to the supersymmetric
extensions of the second and third Hopf maps. The main differences with respect to the
first Hopf map case have been outlined. The first and the second Hopf maps admit S1

(respectively S3) as a fibration. The covariance under the U(1) or the SU(2) group would
require the use of another parametrization (for instance the hyperspherical coordinates)
instead of the stereographic projection to induce the non-linear supermultiplets. There
is a price to be paid in this case, however, since the resulting non-linear supertransfor-
mations are non-local. The construction of the non-linear supertransformations under
hyperspherical coordinates is under investigation and left for future works. In the bosonic
case the existence of the U(1) or the SU(2) fiber can be regarded to be a consequence of
the Schur’s lemma. For completeness, we extended here the Schur’s lemma to all minimal,
linear, off-shell supermutiplets up to N ≤ 8, listing the ones which commute with the
u(1) or the su(2) algebra generators.

The theory of non-linear off-shell realizations of one-dimensional N -extended super-
symmetry is rather poorly understood. It is based on a set of consistency conditions to
be fulfilled. Finding their general solution for a given, generic, value of N is a formidable
task. The determination of their inequivalent classes (under reparametrization of their
component fields) is another extremely hard task (both these problems are currently in-
vestigated with brute-force techniques). The local non-linear supertransformations are
more manageable. For instance, one is guaranteed that the local, non-linear supermulti-
plets here obtained are not equivalent to the linear supermultiplets with the same field
content. The (3, 4, 1)nl and the (2, 4, 2)nl non-linear supermultiplets have a very com-
pelling geometrical origin and are nicely formulated (the fact, e.g., that (3, 4, 1)nl can be
expressed through the quaternionic structure constants). We leave for future works the
analysis of their possible relations with analogous non-linear supermultiplets of the same
field content, previously obtained in the literature in terms of different constructions, see
[24, 25].

Concerning the possible applications of the present results (as well as their further
extensions to the second Hopf map) we can mention the investigation concerning the
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motion of superparticles in the presence of an U(1) or a SU(2) Yang monopole (extending
the analysis of [43] to a non-flat geometry).

Let’s say some final words concerning the applications to the oxidation program. We
have already commented, in this context, about the importance of the construction of
the most general class of linear and non-linear one-dimensional off-shell realizations of
supersymmetry. We limit here just to mention that a very promising line of investigation
concerns the one-dimensional Supersymmetric Quantum Mechanics viewpoint concerning
the topological twist of SuperYang-Mills Theory [48], as well as the dimensional reduction
of the maximal supergravity (associated with billiards, with a special role played by the
E10 algebra [49, 50]).
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Appendix: quaternionic covariance of the N = 4
(3, 4, 1)nl non-linear supermultiplet.

The non-linear N = 4 (3, 4, 1)nl supermultiplet (15) can be expressed in terms of
the su(2) (or quaternionic) structure constants δij and εijk. At most one of the four
supersymmetry generators can be linearly realized (it will be denoted as “Q4”). The
three remaining supersymmetry generators Qi (i = 1, 2, 3) are non-linearly realized. The
covariant basis for (3, 4, 1)nl is written in terms of the bosonic fields ŵi, ĝ and the fermionic

fields ξ̂i, ξ̂. Their explicit expression in terms of the component fields entering the (4, 4)
root multiplet (13) is given by (without loss of generality we have set R = 1, see (15))

ŵi = ui

1−u4
, g = u̇4

1−u4
,

ξ̂i = ψi

1−u4
+ uiψ4

(1−u4)2
, ξ̂ = ψ4

1−u4
.

(45)

The supersymmetry transformations, acting on ŵi, ξ̂i, ξ̂, ĝ, are given by

Q4ŵi = ξ̂, Q4ĝ =
˙̂
ξ4,

Q4ξ̂i = ˙̂wi, Q4ξ̂ = ĝ,
(46)

together with

Qiŵj = εijk(ξ̂k − ŵkξ̂)− (δij + ŵiŵj)ξ̂ + ŵj ξ̂i,

Qiξ̂j = −εijk( ˙̂wk − ŵkĝ − ξ̂kξ̂)− ŵj( ˙̂wi − ŵiĝ) + (ŵiξ̂j + ŵj ξ̂i)ξ̂ + δij ĝ,

Qiξ̂ = −ξ̂ξ̂i − ˙̂wig,

Qiĝ =
˙̂
ξi − ˙̂wiξ̂ + ŵi

˙̂
ξ. (47)

One should note that in this covariant basis for (3, 4, 1)nl with one linearly realized su-

persymmetry generator, the right hand side is no longer bilinear in the fields since Qiξ̂j
contains a trilinear term.
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