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A method for performing quantum state tomography for quadrupole nuclei is 
presented in this paper. First, it is shown that upon appropriate phase cycling, the 
NMR intensities of quadrupole nuclei depend only on diagonal elements of the 
density matrix. Thus, a method for obtaining the density matrix elements, which 
consists of dragging off-diagonal elements into the main diagonal using fine phase-
controlled selective radiofrequency pulses, was derived. The use of the method is 
exemplified through 23Na NMR (nuclear spin I = 3/2) in a lyotropic liquid-crystal at 
room temperature, in three applications: (a) the tomography of pseudo-pure states; (b) 
the tomography of the quadrupole free evolution of the density matrix, and (c) the 
unitary state evolution of each qubit in the system over the Bloch sphere upon the 
application of a Hadamard gate. Further applications in the context of pure NMR and 
in the context of quantum information processing, as well as generalizations for 
higher spins, are discussed.  
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I. Introduction  
 

NMR quantum computing appeared in the late 90’s as the main candidate for 
implementation of quantum processors1. However, it was soon recognized2-4 that 
exponential loss of NMR signal upon increasing number of qubits would pose severe 
restrictions concerning the scalability of systems for quantum computing in large 
scale. Such observations stimulated a very interesting debate5, 6 about the capability of 
NMR to implement true quantum operations, particularly to produce entanglement1. 
In this context, it is rather surprising that not much effort has been directed to the 
experimental demonstrations of quantum information processing by NMR, in spite of 
many claims of quantum algorithm implementation7-9. For instance, to the best of our 
knowledge, no experiment has clearly shown the unitarity and reversibility of an one 
qubit gate such as the Hadamard gate and its adjoint, or the quantum circuit which 
generates entanglement10. By this we mean experiments where quantum state 
tomography is implemented at every step of the gate and the trajectory of the one 
qubit state is traced over the Bloch sphere (see however reference8, where quantum 
state tomography is implemented for the whole cycle of Grover algorithm).   
In this sense, it appears that, from the point of view of pure quantum information 
processing by NMR, there is still something left to be learnt from one and two qubit 
systems! For this purpose, quadrupole nuclei are particularly well adapted. 
Implementation of pseudo-pure states11, elementary logic gates12, simulation of 
quantum systems13 and relaxation studies14 have been reported in the recent literature 
of NMR quantum computing. All these studies were based only on NMR spectral 
analysis, that is, none of them exhibited quantum state tomography. From the strict 
point of view of quantum information processing, they are intrinsically less 
informative, since different density matrices can give rise to the same NMR spectrum.  
In this paper we report a method for quantum state tomography in quadrupole nuclei. 
We show that, upon appropriate phase-cycling of the selective radiofrequency reading 
pulses, the NMR intensities will be related only to the density matrix diagonal 
elements. After “dragging” the non-diagonal elements to the main diagonal, using 
phase controlled selective pulses a set of coupled equations was obtained, from which 
the real and imaginary parts of the density matrix can be determined. We apply the 
method to a spin I = 3/2 (two-qubit) system formed by 23Na nuclei in a lyotropic 
liquid-crystal at room temperature. Three applications are shown: (a) the four pseudo-
pure states; (b) the free-evolution of the density matrix under quadrupole interaction, 
and (c) the unitary evolution of a single qubit under the application of a double 
Hadamard gate. From this experiment, we rebuilt the evolution of the Bloch vector of 
one qubit over the Bloch sphere.   
This paper is organized as follows. The experimental details are given in Section II. 
Some features of the quadrupole systems are presented in Section III, and the process 
for obtaining the quantum state tomography for quadrupole nuclei is discussed in 
Section IV. Finally, the results are presented in Section V, followed by the 
conclusions.   The Appendix shows some results of tomographed density matrices 
compared to calculated ones using ideal rotations.    



CBPF-NF-011/04 

 

2 

 

 
II. Experimental Procedures 
 

The 23Na NMR experiments described in this paper were performed using a 9.4 T – 
VARIAN INOVA spectrometer in a lyotropic liquid crystal system prepared with 
35.9 wt% of sodium decyl sulfate (Fluka), 7.2 wt% of decanol (Supelco), and 56.9 
wt% deuterium oxide (D2O, Merck), following the procedure described elsewhere15. 
23Na NMR data were recorded at room temperature using a home-built single-
resonance probe with radiofrequency (RF) Helmholtz-like rectangular coils (only one 
loop 2.5 cm high and 1 cm wide) separated by 7.5 mm. The geometry of the coils was 
chosen in order to improve RF magnetic field homogeneity along the sample, which 
was packed in a 5 mm NMR tube 0.5 cm high. Numerical simulations showed that the 
RF field homogeneity is higher than 95% over the sample volume. The B0 field 
homogeneity was about 0.1 ppm. Gaussian shaped RF pulses were used to perform 
selective saturation (π/2) and inversion (π) of populations. Pulses durations were set 
to provide a multiple of 2π rotation under the quadrupolar interaction in order to 
minimize possible effects of the quadrupolar evolution during the pulses. The mean 
RF amplitudes and the frequency offsets were carefully adjusted to satisfy the 
selectivity condition16-18. The experimental calibration was checked against numerical 
simulations using the full Hamiltonian, which showed that the single-quantum 
transition, the case of the Hadamard operation on the first qubit, is not affected by the 
quadrupolar interaction. A non-selective hard π/20 pulse 1.5 µs long was applied in 
order to measure the differences of populations for the three pairs of neighbor levels. 
Experiments were performed with a recycle delay of 500 ms. The 23Na NMR spectra 
were obtained averaging the free induction decay (FID) signal, obtained for each 
phase (x, y, -x, and -y) of the reading π/20 hard pulse accompanied by the 
corresponding receiver cycling (standard CYCLOPS scheme). Finally, all the spectra 
were normalized using the intensities of the equilibrium state. 
 
III. NMR Quadrupole Systems 
 

The most relevant interactions of a quadrupole nucleus are the Zeeman interaction 
with a magnetic field and the electric quadrupole moment with an electric field 
gradient. The Hamiltonian for this system can be described in first order by eq. 1, 
where Lω  is the Larmor frequency of the nuclear magnetic moment in the presence of 
a magnetic field, and Qω  is the effective quadrupole frequency characterized by the 
interaction between the nuclear quadrupole moment with the electric-field gradient19.   

 ( )223 III −+−= zQzLH ωω hh              (1) 
For a spin 3/2 system this Hamiltonian gives rise to four unequally spaced energy 
levels, originating an NMR spectrum containing three lines, corresponding to 
transitions between adjacent levels (see fig. 1). These energy states 2/3 , 2/1 , 

2/1− , and 2/3−  can be labeled as 00 , 01 , 10 , and 11  in analogy to two-
qubit system containing two I = 1/2 coupled spins11, 12, 14. From the Hamiltonian, the 
density matrix can be obtained according to equation 2, in the high temperature 
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regime, where Z is the partition function, n is the number of qubits, β = 1/kBT and 
5102 −≈= nβε  for n = 2 at room temperature.  

 

 
Figure 1: Schematic representation of the energy levels, for a spin 3/2 system, 
with their respective labels. 
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Since radiofrequency pulses are unitary operations, they act only on the part Hε  of 
Eq. 2. Therefore, the measured quantity in NMR experiments is the traceless 
deviation density matrix, which in the equilibrium is given by:  

Heq ερ −=∆                                                (3) 
Before performing quantum computing, it is necessary to prepare the system in a 
pseudo pure state. This can be done using the pulse sequences described by Fung11 
and Sinha12, and then applying a magnetic field gradient to the system, in order to get 
rid of undesired off-diagonal elements. In this work, the pseudo-pure states were 
prepared using the same pulse sequences described in references11,12, but employing 
an additional two-fold phase cycling (x, y) in the π/2 pulses as an alternative to the use 
of magnetic field gradient. The quantum operations were applied to the sates obtained 
for each phase of the π/2 pulse, which creates the pseudo pure states. Therefore, four 
distinct NMR signals were detected, and the final result, obtained after averaging, was 
the same as if the quantum gates had been applied to a pseudo pure state. For instance, 
the sequences for creating the pseudo pure state, represented by 

0000)1(
2
1

00 εερ +−= n , are shown in Eq. 4, where αβY  represents a selective π/2 

pulse applied to the transition (α⇔β) along y direction, and αβX  represents a 

selective π/2 pulse applied to the transition (α⇔β) along −x direction. The squared 
symbols represent selective π pulses.  
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Therefore, the pseudo pure state 00ρ  can be constructed from the equilibrium 
state, eqρ , as described in eq. 5. 

∑=
j

jeqj UU †
00 4

1
ρρ                                            (5) 

 
IV. Tomography Method 
 

The density matrix of a general system and, consequently, its deviation contains 
complex elements, except in the main diagonal, which contains only positive real 
numbers. In addition, the elements above the main diagonal are the complex 
conjugate of the ones below, so for a spin 3/2 system deviation density matrices have 
the general form:   
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Therefore, to obtain the quantum state tomography of any state, it is necessary to 
determine 16 variables, which are the four real elements of the main diagonal, and the 
other 12 formed by real and imaginary parts of the non-diagonal elements. For 
quadrupole systems, the averaged NMR spectrum, obtained after applying the 
CYCLOPS scheme to the π/20 reading pulse and receiver, depends only on the 
diagonal elements of ∆ρ. In fact, for the spin 3/2 system described by ∆ρ, the 
intensities of each peak of the NMR spectrum obtained after applying the reading 
scheme are given by eq. 7.  
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The eij are absolute values of the π/20 reading pulse matrix elements along any 
direction, as described in the Appendix. A1, A2, and A3 stand for the NMR spectra 
intensities for the transitions (0⇔1), (1⇔2) and (2⇔3), respectively. Because 
observable NMR deviation matrices are traceless, 0a b c d+ + + = , a fourth equation 
can be added to the system. Therefore, the four diagonal elements can be obtained 
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after measuring each of the line intensities of the averaged spectrum and solving the 
set of Eq. 7. The first step of the state tomography is to obtain the deviation density 
matrix main diagonal, by using the process described above. For a spin 3/2 system, 
the result gives the four diagonal elements, a, b, c and d of eq. 6. In order to get the 
off-diagonal elements and determine the state tomography, RF transition-selective 
pulses were used. The evolution operators for these pulses can be constructed 
according to Eq. 8, in the rotating frame.  

[ ]( )hhh pzRF tHiU ⋅−+⋅−= αωω II 1exp                      (8) 

The parameter RFω  is the selective pulse carrier frequency, 1ω  is the amplitude of the 
RF pulse ( 11 Bγω = ), Ia is the angular momentum spin operator in the α direction, 
and tp is the pulse duration.  The effect of the pulse operator is to induce rotations in 
the spin system, allowing the manipulation of the phase of the off-diagonal elements 
of the  density matrix, and consequently controlling the phase of the quantum state.  
A complete set of these ideal pulse matrices is shown in the Appendix. The symbols 

01X  and 23Y  stand for π/2 pulses applied to the transition (0⇔1) along the x direction 
and to the transition (2⇔3) along the y direction, respectively. The effect of the 
application of such pulses to the system is to bring the off-diagonal elements of the 
density matrix to the main diagonal, as it is shown in Eq. 9, where only the main 
diagonal elements are displayed for simplicity.  The experimental procedure for 
calibration of the pulses is given in Sec. II, and the effects of non-perfect selectivity 
are discussed in the concluding section. 
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As can be seen from eq. 9, ay  and fx  are easily determined if the diagonal elements 
are known. Since the diagonal elements of the density matrix can be obtained by the 
method described earlier, the real and imaginary parts of the off-diagonal elements are 
easily obtained. A complete set of equations that allow the determination of all off-
diagonal elements of the deviation density matrix is shown in Eq. 10. 
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The expression )...( ijmnkk YXρ  stands for the diagonal element (kth line and kth column) 

of the deviation density matrix after the application of the respective ( ijmn YX ... ) pulse 
sequence, from right to left. Because the main diagonal was obtained beforehand, the 
whole matrix is known. In summary, the method to obtain the deviation density 
matrix – state tomography – consists of determining its diagonal elements, after 
performing operations on the system, which drag the off-diagonal elements into the 
main diagonal. Double-quantum selective pulses can also be used for determining the 
elements 13ρ , 24ρ  and 14ρ , and this method has the advantage of utilizing a smaller 
number of pulses, as it is shown in Eq. 11. However, all the results described in this 
paper were obtained using single-quantum selective pulses.   
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It is also possible to use multi-frequency pulses, so that many imaginary (or real) parts 
of different elements can be obtained simultaneously. As an example, for spin 3/2, 
one can excite the transitions (0⇔1) and (2⇔3) using a single two-frequency pulse. 
Since these pulses operate on completely different quantum states, parts of the 
elements 12ρ  and 34ρ  can be obtained from the new diagonal elements, 
simultaneously (see Eq. 9). The use of multi-frequency pulses becomes more 
interesting for higher spin systems. The operators of the selective pulses are easily 
obtained for other quadrupole systems with higher values of spin, and they have the 
same form of Eq. 8. In addition, the equations for each matrix element are easily 
found by applying the ideal pulse operators pulses on ρ∆ . As a result, the quantum 
state tomography process described here can be straightforwardly extended to any 
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quadrupole system, provided that the NMR spectrometer allows the application of 
selective pulses with reliable phase control.  
 
V. Experimental Results 
 

The procedure of quantum state tomography described in this paper was applied to a 
spin 3/2 system, using single-quantum selective pulses. The deviation density matrix 
was obtained experimentally for several coherent states. The tomography of the 
equilibrium state was also found, and is presented in Fig. 2. The real and imaginary 
parts of the measured matrix are shown on the left and right hand side of figure, 
respectively. The simulated and experimentally determined deviation density matrices 
for this state are described in the Appendix. 

 
Figure 2: Quantum state tomography the deviation matrix of the equilibrium 
state of 23Na (I = 3/2, two qubits). The real and imaginary parts of the density 
matrix are shown on the left and right hand side, respectively (Color online 
only).  
 
Pseudo pure states 
 
The tomography of the deviation density matrices representing the four pseudo pure 
states, which we will label  00ρ∆ , 01ρ∆ , 10ρ∆  and 11ρ∆  were obtained, and they are 
presented in Fig. 3, where only the real part is shown for simplicity, since the 
contribution of the imaginary part is irrelevant to these states (see the numerical 
results in the Appendix). The simulated and experimentally determined deviation 
density matrices for each one of the pseudo pure states are also described in the 
Appendix. 
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Figure 3: The real part of the quantum state tomography for the deviation 
matrices representing the four pseudo pure states, as described in the text (Color 
online only).  
 
 
Unitary Hadamard evolution 
 
The Hadamard is an one qubit quantum gate, and for quadrupole systems it can be 
constructed using two selective pulses, as reported in14. Both pulses have the same 
frequency – the same as the first transition (0⇔1) –, however, the first one is a π/2 
pulse applied along the y direction, and the last one is a π pulse along the -x direction. 
The evolution of this gate was followed, for each individual stage – after the 
application of each selective pulse – when it was applied twice to the initial pseudo 
pure state 00ρ . The real part of the state tomography for the four stages (one for each 
pulse) of the 2H  (Hadamard gate applied twice) sequence are presented in fig. 4, 
where the symbols in the figure stand for: 1ρ∆  (after 01Y ), 2ρ∆  (after 01

2
01 YX ⋅ ), 3ρ∆  

(after 01
2
0101 YXY ⋅⋅ ) and 4ρ∆  (after 01

2
0101

2
01 YXYX ⋅⋅⋅ ). At the first stage of the 

process the populations of the first two levels, 00  and 01 , are equally splitted 
between the two lower levels. At the second stage, the relative phases are 
manipulated. The system is then taken to the pseudo pure state 01ρ , at the third stage. 
The initial state is recovered at the fourth and final stage. An important imaginary 
contribution was detected after the first stage of the Hadamard, which does not appear 
in the simulations with ideal pulses. This shows that the action of the experimental 
selective pulse applied to the system deviates from the ideal (theoretical), which is 
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due to several factors and will be discussed in the conclusions. Nevertheless, this 
imaginary part disappears at the end of the whole process, and the self-reversibility of 
the Hadamard gate is demonstrated. The simulated, and experimentally determined 
density matrix for the four stages of the Hadamard, are also presented in the 
Appendix. 
 
 

 
Figure 4: The real part of the quantum tomography after each stage of the 
Hadamard, as explained in the text (Color online only). 
 
As it can be seen in the Appendix, the experimental results have a fairly good 
agreement with the simulated ones. The small difference observed before and after the 
application of the double Hadamard gate is due a number of different causes, one of 
which is the transverse relaxation. The application of Hadamard takes about 2 ms (~ 
500 µs for each pulse), and the preparation of the pseudo pure state takes about 1 ms. 
Therefore, the full operation of the Hadamard takes ~ 3 ms, which is of the order of T2 
in this system. We investigated the effects of other contributions performing 
numerical simulations, which included the relaxation effects, B0 and RF field 
inhomogeneity, errors in the pseudo-pure state preparation, deviation from perfect RF 
pulse selectivity, and, finally, phase deviation, which includes RF phases and phase 
errors in the states. These simulations indicated that all these effects contribute to the 
error in the phase of the final state, as observed in Fig. 6. As can be observed in Fig. 
4, the Hadamard gate is acting only on the qubit b ( ab ), while the qubit a remains 
practically unchanged during this operation.    
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Quadrupolar Free-evolution  
 

As a third example of quantum state tomography application, the free evolution of the 
density matrix was studied after the application of a single π/2 hard pulse, where the 
carrier frequency was set on the transition (1⇔2). The result is shown in fig. 5, where 
the points are experimental data and dashed lines are computer simulations for this 
particular quadrupole system. As can be seen from fig. 5, the components of the 
elements ρa ( aaa iyx +=ρ ) and ρf oscillate with the quadrupolar frequency, while ρd 
remains unchanged, because, contrarily to the transitions (0⇔1) and (2⇔3), in first  
order the transition (1⇔2) does not depend on the quadrupole interaction.  
 

 
 
 
 
Figure 5: Free evolution of the xa, ya, xd, yd, xf, and yf elements, after a hard π/2 
pulse. The points are experimental results while the lines are numerical 
simulations of the system (Color online only).  
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VI. Discussion and Conclusions 
 

The evolution of an one-qubit state represented by a density matrix ρ can be 
visualized through the motion of its Bloch vector over the Bloch sphere. The density 
matrix for the individual qubits can be obtained from the partial trace10 of the full 
density matrix of the system, which in this case involves two qubits. In order to do so, 
1/4-th of a unity matrix was added to ρε ∆ ( 5

0 10−≈≈ TkH Bµε ), where ∆ρ is the 
tomographed deviation density matrix for each individual qubit, the Bloch vector for 
each one of them was obtained according to eq. 12 10.  

2
)(

)(
sr1 ⋅+

=
t

tρ                                                (12) 

The symbol s  represents a vector, whose components are the Pauli’s matrices, and 
)(tr stands for the unit Bloch vector, at a time t, which can be followed even during a 

logical operation, for each qubit. As a result, the trajectory on the Bloch sphere was 
determined, during the application of a double Hadamard on the qubit b ( ab ) as 
presented in Fig. 6, where the points were obtained from Eq. (12).  The (red) 
continuous line is a numerical simulation, using ideal pulses (see Appendix), and the 
dotted blue line is an interpolation of the experimental points. As it can be seen from 
the figure, the qubit b evolves according to the theoretical predictions, while the qubit 
a remains basically unchanged during the whole process.  

 

 
Figure 6: The trajectory of the Bloch vector, for each individual qubit, during 
the Hadamard evolution. The points are experimental results, the dotted blue 
line is an interpolation of the experimental data and the continuous red line is a 
numerical simulation. Numbers indicate the end of each step (RF pulse), and the 
points between the numbers correspond to matrices tomographed from the 
application of the selective rf pulses in several steps along their gaussian 
envelopes (intermediate angles), acquired for completeness (Color online only).  
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After the application of the first pulse of the Hadamard (π/2 around y, number 1 in 
Fig. 6), one can notice that the state of qubit b does not evolve as predicted by the 
simulations using the ideal pulses and the state after the first pulse of the Hadamard is 
off the x-axis (the possible causes for this effect are discussed below). Therefore, 
when the second pulse of the Hadamard gate is applied, the qubit b undergoes a 
rotation of π around the x direction, as clearly seen in the semi-circle from number 1 
to number 2 in Fig. 6. The initial and final one-qubit states are very close, which 
demonstrates the self-reversibility of the Hadamard gate.   
In the quantum tomography procedure proposed in this paper, we neglected a number 
of effects, which – added together – contribute to the errors in the tomographed 
deviation density matrix and to the difference between the ideal trajectory and the 
experimental data observed in Figure 6 (a relative error of about ~15o/360o = 4%). 
The possible sources of errors are: (1) non-perfect selective pulses, (2) relaxation 
effects, (3) B0 and B1 field inhomogeneities, and (4) relative phase errors associated to 
rf pulses applied along ±x and ±y axes in the rotating frame. Most of them can be 
minimized through a good calibration of the selective rf pulses and the use of high 
homogeneity for B0 and B1 magnetic fields (as described in the experimental section). 
However, residual imperfections will always remain. Because the tomography method 
has to distinguish the imaginary from the real components of each element of the 
deviation density matrix, phase errors are expected to be more important in the case of 
superposition states like the Hadamard gate. Such errors were numerically estimated 
by introducing spurious phase contributions in the ideal pulse matrix, and simulating 
the tomography process. The full Hamiltonian was also considered in these 
simulations, allowing an estimate of the error introduced by the use of ideal rotations. 
The results are as follow.  
First, we consider the selectivity. Because in our experiments was Qωω1  chosen to 
be approximately 0.02, the error due to non-perfect selectivity is less than 1% per 
applied pulse. This small effect is apparent in Fig. 6 as a slight change for the Bloch 
vector associated to qubit a. Another important source of error is the spin-spin 
relaxation (spin-lattice relaxation time is too long, compared to the time scale of the 
experiment14), which combined with the non-selectivity produces a phase error of at 
most 2° per applied pulse. Also, small uncertainties in the quadrature of the 
spectrometer (maximum of 2°, for the equipment used) and B1 field inhomogeneity 
can produce a total phase deviation of at most 4° per applied pulse. Added together, 
these sources account for a total phase deviation per applied pulse of at most 5°. 
Assuming this phase error per pulse, it is possible to estimate the intrinsic uncertainty 
involved in the tomographed data introducing them into the matrices that represent the 
pulses in the simulation. With this, we arrived to a percent error of at most 6% (for the 
main diagonal) up to 9% (for high order coherences). It should be noted that this error 
tends to increase for higher order coherences. This is confirmed by the good 
agreement between the experimental and simulated density matrices, for the 
equilibrium and pseudo states, where fewer pulses with proper phase cycling were 
used. However, these errors accumulate during the execution of a quantum gate such 
as the Hadamard, producing states deviations, such as observed in Figure 6.  
In summary, the quantum state tomography has been successfully implemented for 
the first time (to the best of authors’ knowledge) for a quadrupole system. The 
experimental results are in good agreement with the calculated ones, and this process 
can be easily extended for higher spin values. The quantum state tomography of the 
Hadamard evolution and the trajectory of the Bloch vector on the Bloch sphere 
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demonstrate that one and two qubits logical operations can be implemented on 
quadrupole systems.   
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Ideal selective pulses used to derive the equations that determine the non-diagonal 
density matrix elements. 
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The eij coefficients, which are the absolute values of the π/20 hard reading pulse.  
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Experimental results compared with simulated ones, for the equilibrium state and the 
pseudo pure ones.  
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Experimental results compared with simulated ones, for the four stages of the 
Hadamard sequence.  
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