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These lectures are the review of the main ideas and approaches to the structure of the
Pomeron. They are divided in three natural parts:

(i) the brief review of the Reggeon Calculus, which was the first attempt to build the
effective theory of the strong interaction at high energy. In spite of the fact that this
approach turns out to be inconsistent and in lectures we show why, the Reggeon approach
was and is the main source of the terminology and phenomenology for high energy “soft”
interactions.

(ii) the detail description of the QCD approach to high energy interaction. We try
to combine the rigorous approach in perturbative QCD with more simple, intuitive guess
based on general properties of QCD to clarify our expectations and predictions.

(iii) the outline of my personal opinion what problems will be important in the future.

The main reason for the lectures was just the last part to agitate you to think about
this difficult but because of that interesting problem. The motto of my lectures is “ there
is nothing more exciting than to solve a difficult problem. Pomeron is the one.”

Key-words: Pomeron; Reggeons; Perturbative QCD; Evolution equation; High density
QCD.

†Lectures given at the III Gleb Watagin School, Campinas, July 1994 and at the LAFEX,CBPF, Rio de
Janeiro, September 1994

∗Email: levin@lafex.cbpf.br; levin@fnalv.fnal.gov; levin@ccsg.tau.ac.il



– 1 – CBPF-NF-010/95

Introduction

In these lectures I want to give the brief review of the main ideas and approaches to
the structure of the Pomeron. For young generation even the word “Pomeron” sounds
not familiar. It makes very difficult to explain in the introduction what we are going to
discuss. In some sense it is the reason why we think that we shall start from the short
review of the situation with the strong interaction in the past because the terminology
that we still use came from so called Regge approach which was in the past the common
language for the phenomenology of high energy strong interaction.

This is why instead of the usual introduction in which I have to explain the subject
of the talk I am going to provide you some general outline of the main ideas of the talk.

I’ll start from the review of the Regge approach and I’ll try to give you the basics of
this approach, namely the theoretical background and the main phenomenological ideas
that had been used in this approach. Just from the beginning I would like to stress that
inspite of the pure phenomenological input the Reggeon approach was and is the main
source of the ideas even now for the “soft” high energy interaction. The main reason for
this is the rich input from the understanding of the general properties of the scattering
amplitude based on the analyticity and symmetry of strong interaction. The analysis of
the theoretical problems made at that time ( more than 30 years ago) is still fresh and
the principle problems which have been pointed out are still with us.

After the introduction in the past and present problems with the “soft” interaction I
am going to present what is known about high energy interaction in perturbative QCD
which is the microscopic theory now. We will go back to old problems and I’ll show you
what kind of understanding we have reached in framework of perturbative QCD (pQCD).
This understanding consists of two things: the sructure of the Pomeron in perturbative
QCD ( so called the BFKL Pomeron) and the theory of shadowing correction in the deeply
inelastic processes. The main idea of this part of my lectures is to show you that we are
on the right road but only in the beginning. The principle problems are non perturbative
ones and we have made only the first try to attack them.

The last, third part will be devoted to outline of my personal opinion what problems
will be important in the future. You can easily guess that the main reason for these lectures
was just to agitate you to think about these difficult but really interesting problems.

As far as concerned the style of these lectures, we tried to follow the Landau ten
commandments of theoretical physics, at least, the first three of them:

• Only prediction is a theory, only calculation is a result. Don’t believe in a qualitative
“theory”.
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• Try to solve a problem exactly, if not try to find a small parameter, if not try again.

• A model is the theory which we apply to the kinematic region where we cannot
prove that the theory is wrong. Don’t be afraid to build a model, this is the only way to
be original.

We would like to make several comments on the quotations. In the first part of the
lectures we avoid the references except the most important ones. The reason is twofold:
first is the fact that everybody can find detail description of the Reggeon approach in
any textbook written in 70’s. The second is the idea to give you a full information in the
body of the lectures about all result that we are going to take with us in the future. In
the second part we give sufficiently full list of references.

Concluding this introductory section we want to remind you the motto of these lec-
tures:

There is nothing more exciting than to solve a difficult
problem. Pomeron is the one.
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YESTERDAY:

REGGEON APPROACH

1 The basic ideas.

1.1 Our strategy.

To understand our theoretical background in the past let me remind you that before the
year 1974 the study of the high energy asymptotic was the high priority job, because we
believed that:

Analyticity + Asymptotic = Theory of Everything.

Roughly speaking we needed asymptotic at high energy to specify how many substructions
we have to make in the dispersion relations to calculate the scattering amplitude using
them.

Now situation is quite different, we have good microscopic theory ( QCD) and certainly
we have a lot of problems in QCD which have to be solved. High energy asymptotic is
only one of many. I think it is time to ask yourselves why we spend our time and brain
trying nevertheless to find the high energy asymptotic in QCD. My lectures will be an
answer to this question, but I would like to start recalling you the main theorems for the
high energy behaviour of the scattering amplitude which follow directly from the general
property of analyticity and crossing symmetry and should be fulfilled in any microscopic
theory including QCD.

1.2 The great theorems.

1. Optical Theorem

Our amplitude is normalized so that

dσ

dt
= π|f(s, t)|2 (1)
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Within this normalization the optical theorem says:

σtot = 4πImf(s, 0) (2)

Therefore the optical theorem gives us the relationship between the behaviour of the
imaginary part of the scattering amplitude at zero scattering angle and the total cross
section that can be measured experimentally.

2. The Froissart boundary.

We call the Froissart boundary the following limit of the energy growth of the total
cross section:

σtot ≤ C ln2s (3)

where s is the total energy of our elastic reaction: a(pa) + b(pb) → a + b, namely s =
(pa + pb)

2. Coefficient C has been calculated but we do not need to know its exact value.
What is really important is the fact that C ∝ 1

k2
t
, where kt is the minimal transverse

momentum which can be in our reaction. Since the minimal mass is the mass of pion in
the hadron spectrum the Froissart theorem says that C ∝ 1

m2
π
. The exact calculation

gives C = 60mbn.

3. The Pomeranchuk Theorem.

The Pomeranchuk theorem is the manifestation of the crossing symmetry, which
can be formulated as a following statement: one analytic function of two variables s and
t describes the scattering amplitude of two different reactions a+ b → a+ b at s > 0 and
t < 0 as well as ā+ b → ā+ b at s < 0(u = (pā + pb)

2 > 0 and t < 0.

The Pomeranchuk theorem says that the total cross sections of the above two reactions
should be equal to each other at high energy if the real part of the amplitude is smaller
than the imaginary its part.

•

Problem 1: Prove the Pomeranchuk theorem, using the dispersion relation for the
scattering amplitude at t = 0.

1.3 Unitarity constraint in impact parameters (bt).

The scattering amplitude in bt-space is defined as

a(s, bt) =
1

2π

∫
d2q e−iq·btf(s, t) (4)
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where t = −q2 . In this representation

σtot = 2

∫
d2bt Ima(s, bt) (5)

σel =

∫
d2bt |a(s, bt)|2 (6)

Using the above notations we can write the s- channel unitarity in the general form:

2 Im a(s, bt) = |a(s, bt)|2 + Gin(s, bt) (7)

where a(s, bt) is elastic amplitude whileGin is the contribution of the all inelastic processes.

It should be stressed that the above constraint has a general solution if we assume
that the scattering amplitude is pure imaginary at high energy, namely

a(s, bt) = i(1− e−Ω(s,bt)) (8)

where the opacity Ω(s, b) is a real function and has a very simple physical meaning.
Indeed,

Gin(s, bt) = 1 − e− 2Ω(s,bt) .

Therefore e−2Ω is the probability that the incoming particle has no inelastic interaction.

•

Problem 2: Prove the Froissart theorem, using the general solution of the s - channel
unitarity taking into account that at large values of bt the scattering amplitude is small
and behaves as sNe−µbt , where µ is the mass of the lightest hadron.

1.4 The first puzzle.

The first puzzle can be formulated as a question:What happens with resonances with the
values of their spin bigger than 1 in exchange?” On one hand such resonances have been
observed experimentally, on the other hand the exchange of the resonances with spin j
lead to the scattering amplitudes which are proportional to sj where s is the energy of
two colliding hadrons. Such a behaviour contradicts the Froissart boundary. It means
that we have to find the theoretical solution of this problem.

Let me illustrate the problem considering the exchange of vector particle ( j = 1) (
see Fig.1).
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Introducing Sudakov variable we can expand each vector in the following form:

q = αq p
′
1 + βq p

′
2 + qt (9)

where
p′21 = p′22 = 0

and
p1 = p′1 + β p′2 ; p2 = α2 p

′
1 + p′2 ;

It is easy to find that

β1 =
m2

1

s
; α1 =

m2
2

s

since
p2

1 = m2
1 = 2 β1p

′
1 · p′2 = β1 s

¿From equations
p′21 = M2

1 ; p′22 = M2
2

we can find the values of αq and βq. Indeed,

p′21 = (pq − q)2 = ( (1− αq)p
′
1 + (β1 − βq)p

′
2 )

2 = (1− αq)(β1 − βq)s − q2
t = M2

1

and
p′22 = (1 + βq)(α2 + αq)s − q2

t = M2
2

Therefore

αq =
M2

2 −m2
2

s
; βq =

m2
1 −M2

1

s
(10)

It is easy to get from the above equations that

|q2| = |αqβqs− q2
t | =

(M2
2 −m2

2)(M
2
1 −m2

1)

s
+ q2

t → |s→∞ q2
t (11)

Now we are prepared to write to expression for the diagram of Fig.1:

A(s, t) = g1 g2
(p1 + p′1)µ(p2 + p′2)µ

q2
t +m2

V

= g1 g2
4s

q2
t +m2

V

(12)

where mV is the mass of the vector meson.
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•

Problem 3: Using the above example show that the exchange of the resonance with
spin j gives the scattering amplitude equals

A(s, t = −q2
t ) = g1 g2

(4s)j

q2
t +m2

R

•

Problem 4: Show that the exchange of the resonance with spin j leads to the ampli-
tude in bt which behaves as sj exp(−mRbt) at large values of bt and s.

1.5 Reggeons - solutions to the first puzzle.

The solution to the first puzzle has been found. It turns out that the exchange of all reso-
nances can be described as an exchange of the new object - Reggeon and its contribution
to the scattering amplitude is given by the simple function ( see Fig.2):

AR(s, t) = g1(m1,M1, t) g2(m2,M2, t) · s
α(t) ± (−s)α(t)

sinπα(t)
(13)

α(t) is a function of the momentum transfer which we call the Reggeon trajectory. The
name of the new object as well as the form of the amplitude came from the analysis of the
properties of the scattering amplitude in t channel using angular momentum representa-
tion. However, today it is not important the whole history of the approach. What we
need to understand and take for the future studies are the main properties of the above
function which plays the crucial role in the theory and phenomenology of the high energy
interaction.

2 The main properties of the Reggeon exchange.

2.1 Analyticity.

It is obvious that the Reggeon exchange is the analytic function in s, which has the
imaginary part equals to

± g1 g2 s
α(t)
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in the s - channel and the imaginary part

g1 g2 s
α(t)

in the u - channel ( for ā+b → ā+b reaction ). For different signes in eq.(13) the function
has different properties with respect to crossing symmetry. For plus ( positive signature)
the function is symmetric while for minus ( negative signature ) it is antisymmetric.

2.2 s - channel unitarity

To satisfy the s - channel unitarity we have to assume that trajectory α(t) ≤ 1 in the
scattering kinematic region ( t < 0 ). This is why the exchange of the Reggeons can solve
our first puzzle.

2.3 Resonances.

Let us consider the same function but in the resonance kinematic region at t > 4m2
π. Here

α(t) is a complex function. If t → t0 α(t0) = j = 2k where k = 1, 2, 3, .. the Reggeon
exchange has a form for the positive signature:

AR(s, t) →t→t0 g1 g2 · s2k

α′(t0) (t− t0) + iImα(t0)
(14)

Since in this kinematic region the amplitude AR describes the reaction ā+ a → b̄+ b

s = p2sinθ

where p =
√
t0
2
, the amplitude has a form

AR = g1 g2 · sj

α′(t0)(t− t0) + iImα(t0)
=

g1g2

α′(t0)
· p2jsinjθ

t− t0 + iΓ
(15)

where the resonance width Γ = Imα(t0)
α′(t0)

.

Therefore the Reggeon gives the Breit - Wigner amplitude of the resonance contribu-
tion at t > 4m2

π. It is easy to show that the Reggeon exchange with the negative signature
describes the contribution of a resonances with odd spin j = 2k + 1.
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2.4 Trajectories.

We can rephrase the previous observation in different words saying that the Reggeon
describes the family of resonances that lies on the same trajectory α(t). It gives us a
new approach to the classification of the resonances, which is quite different from usual
SU3 classification. Fig.3 shows the bosonic resonances classified according the Reggeon
trajectories. The surprising experimental fact is that all trajectories are the straight lines

α(t) = α(0) + α′ t (16)

with the same value of the slope α′ 
 1GeV −2.

We would like to draw your attention to the fact that this simple linear form comes
from two experimental facts: 1) the width of resonances are much smaller than their mass
(Γi � MRi

) and 2) the slope of the trajectories which is responsible for the shrinkage
of the diffraction peak turns out to be the same from the experiments in the scattering
kinematic region.

The SU3 means in terms of trajectories that

αρ(0) = αω(0) = αφ(0)

in addition to the same value of the slope. The simple estimates show that the value of
the intercept α(0) 
 0.5 and therefore the exchange of the Reggeons give the cross section
falling down as function of the energy without any violation of the Froissart theorem.

2.5 Definite phase.

The Reggeon amplitude of eq. (13) can be rewritten in the form:

AR = g1g2η±sα(t) (17)

where η is the signature factor

η+ = ctg
πα(t)

2
+ i

η− = tg
πα(t)

2
− i

It means that the exchange of the Reggeon brings very definite phase of the scattering
amplitude. This fact is very important especially for the description of the interaction
with a polarized target.
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2.6 Factorization.

The amplitude of eq. (13) has a simple factorized form in which all dependences on the
particular properties of colliding hadrons are concentrated in the vertex functions g1 and
g2. To make it clear let us rewrite this factorization property in an explicit way:

AR = g1(m1,M1, q
2
t ) g2(m2,M2, q

2
t ) · η± · sα(q2

t ) (18)

For example this form of the Reggeon exchange means that if we try to describe the
electron deep inelastic scattering with the target through the Reggeon exchange, only the
vertex function should depend on the value of the virtuality of photon (Q2) while the
energy dependance does not depends on Q2.

•
Problem 5: Show that the Reggeon exchange has the following form in bt:

AR(s, bt) = g1(0) g2(0)s
α(0) · 1

4π(R2
1 +R2

2n+ α′ ln s
· e−

b2t
4(R2

1
+R2

2
+α′ ln s)

if we assume the simple exponential parameterization for the vertices:

g1(q
2
t ) = g1(0) e

−R2
1 q2

t

g2(q
2
t ) = g2(0) e

−R2
2 q2

t

2.7 Shrinkage of the diffraction peak.

Using the linear trajectory for the Reggeons it is easy to see that the elastic cross section
due to the exchange of the Reggeon can be written in the form:

dσel

dt
= g2

1(q
2
t ) · q2

2(q
2
t ) · s2(α(0)−1) · e−2α′(0) ln s q2

t (19)

The last exponent reflects the phenomena that is called as the shrinkage of the diffraction
peak. Indeed, at very high energy the elastic cross section is concentrated at values of
q2
t <

1
α′ ln s

. It means that the diffraction peak becomes narrower at higher energies.
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3 Analyticity + Reggeons.

Now we can come back to the main idea of the approach and try to construct the amplitude
from the analytic properties and the Reggeon asymptotic at high energy. Veneziano
[1] suggested the amplitude that satisfies the following constraint: it is the sum of all
resonances in s - channel with zero width and simultaneously the same amplitude is the
sum of the exchanges of all possible Reggeons. Taking the simplest case of the scattering
of scalar particle, the Veneziano amplitude looks as follows:

A = g [V (s, t) + V (u, t) + V (s, u) ] (20)

where

V (s, t) =
Γ(1− α(t))Γ(1− α(s))

Γ(1− α(t)− α(s))
(21)

One can see that the Veneziano amplitude has resonances at α(s) = n + 1 where n =
1, 2, 3..., since Γ(z) → 1

z+n
at z → −n. At the same time

A →s→∞ Γ(1− α(t))[(−α(s))α(t) + (−α(u))α(t)]

and therefore reproduces the Reggeon exchange at high energies.

This simple model was the triumph of the whole approach showing us how we can
construct the theory using analyticity and asymptotic. The idea was to use the Veneziano
model as the first approximation or in other word as a new Born term in the theory and
to try to build the new theory starting with the new Born Approximation. The coupling
constant g turns out to be dimensionless and smaller than unity. This fact certainly also
encouraged the theoreticians in 70’s to try this new approach.

4 The second and the third puzzles: the Pomeron?!

The experiment shows that:

1. There is no particles ( resonances) on the Reggeon trajectory with the value of
the intercept which is close to unity ( α(0) → 1). As it has been mentioned the typical
highest value of the intercept is α(0) ∼ 0.5 which generates the cross section of the order

of σtot ∝ sα(0)−1 ∝ s−
1
2 .

2.The total cross section is approximately constant at high energy. It means that we
have to assume in the framework of the Reggeon approach that there is the Reggeon with
the intercept close to 1.
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The above two statement we call the second and the third puzzles that have to be
solved in theory. The strategy of the approach was to assume that the Reggeon with the
intercept close to 1 exists and tried to understand how and why it would be different from
other Reggeons, in particular, why there is no particle on this trajectory. Now, let me
introduce for the first time the word Pomeron. The first definition of the Pomeron:

The Pomeron is the Reggeon with α(0)− 1 ≡ ∆ � 1

The name of Pomeron was introduced after russian physicist Pomeranchuk who did a
lot to understand this miracle object. By the way, the general name of the Reggeon was
given after the italian physicist Regge, who gave a beautiful theoretical arguments why
such objects can exist in the quantum mechanics and the field theory [2].

Let me summarize what we know about the Pomeron from the experiment ( see for
example ref. [3]):

1. ∆ 
 0.08

2.α′(0) 
 0.25GeV −2

Donnachie and Landshoff gave an elegant description of almost all existing experimen-
tal data using the hypothesis of the Pomeron with the above parameters of its trajectory.
However, we have to find the theoretical approach how to describe the Pomeron and why
it is so different from other Reggeons.

5 The Pomeron structure in the parton model.

5.1 The Pomeron in the Veneziano model.

As has been mentioned the Pomeron does not appear in the new Born term of our ap-
proach. Therefore the first natural idea was to make an attempt to calculate the next to
Born approximation in the Veneziano model to see can the Pomeron appear in it. The
basic equation that we want to use is graphically pictured in Fig.5, which is nothing more
than the optical theorem. However we have to know the Born approximation for the
amplitude of production of n particle.

However to understand the main properties and problems which can arise in this
approach let us calculate the contribution in equation of Fig. 5 of the first two particle
state. This contribution is equal to:

σtot = s2(αR(0)−1)

∫
d2q′tΓ

2(1− α(q′2t )) · e−2α′q′2t ln s (22)
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since

Γ(1− α(q′2t )) ∝ (
α(q′2t )
e

)2α(q′2t )

one can see that the essential values of q′ in the integral is rather big, of the order of
q′2t ∼ s. It means that we have to believe in the Veneziano amplitude at the large value
of momentum transfer. Thus the lesson that we have learned from this exercise is the
following:

To understand the Pomeron structure we have to understand better the structure of
the scattering amplitude at large values of the momentum transfer or in other words we
should know the interaction at small distances.

5.2 The parton model.

Feynman [4] and Gribov [5] suggested the simple model for the scattering amplitude at
small distances that manifests itself in the deep inelastic scattering [6],so called the parton
model. Let us assume that in the production amplitude the mean transverse momentum
of the secondary particles does not depend on the energy ( kit = Const(s) ( see Fig.6). If
it is so, the main contribution to the equation of Fig.5 comes from very specific region of
integration. Indeed, the total cross section can be written as follows:

σtot = Σn

∫
|M2

n(xip, kti)|Πi
dxi

xi

d2kti (23)

where xi is the fraction of energy that carried by the i-th particle. Let’s call all secondary
particle partons.

It is clear that the biggest contribution in the above equation comes from the region
of integration with strong ordering in xi for all produced partons,namely

x1 � x2 � ..... � xi � xi+1 � ..... � xn =
m2

s
(24)

Integrating in this kinematic region we can put all xi = 0 in the amplitude Mn. Finally,

σtot = Σn

∫
Πid

2kti|M2
n(kti)|

∫ 1

m2

s

dx1

xi
.....

∫ xi−1

m2

s

dxi

xi
...

∫ xn−1

m2

s

dxn

xn
(25)

= Σn

∫
Πid

2kti|M2
n(kti)| ·

1

n!
lnn s
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This equation shows one very general property of the high energy interactions, namely
the longitudinal coordinates ( xi) and the transverse ones (kti) turns out to be sepa-
rated and should be treated differently. In some sense the above equation reduced the
problem of high energy behaviour of the total cross section to the calculation of the am-
plitude Mn which depend only on transverse coordinates. Assuming, for example, that∫
Πd2kti|M2

n(kti)|2 ∝ 1
m2 g

n we can derive from the eq.(25)

σtot =
1

m2
Σn

gn

n!
lnn s =

1

m2
· sg (26)

which looks just as Pomeron - like behaviour.

•
Problem 6: Show that in gφ3 - theory where φ is the scalar particle with mass m the
total cross section is equal to

σtot =
g4

m24πs
s

g2

4πm2

5.3 Random walk in bt.

The simple parton picture reproduces also the shrinkage of the diffraction peak. Indeed,
due to the uncertainty principle

∆bti kti ∼ 1 (27)

or in different form

∆bti ∼ 1

< kt >
Therefore after each emission the position of the parton will be shifted on the value of
∆bt which is the same in average. After n emission we have the picture given in Fig.7,
namely the total shift in bt is equal to

b2tn =
1

< kt >2
· n (28)

which is typical answer for the random walk in two dimensions ( see Fig.7). The value
of the average number of emission n can be estimated from the expression for the total
cross section, because

σtot =
1

m2
Σn

gn

n!
lnn s =

1

m2
· sg σ0 Σn

< n >n

n!

and the value of < n >
 g ln s. If we substitute this value of < n > in the eq.(0) We get
the radius of interaction

R2 = < b2tn >
g

< kt >2
· ln s = α′ ln s
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6 Reggeon Calculus.

6.1 The main idea of the approach.

The Reggeon Calculus was the first attempt to build the effective theory at high energy
with the goal to define the asymptotic behaviour of the scattering amplitude. The brick
from which we wanted to do this was the Pomeron. However, it turns out that the simple
hypothesis that the Pomeron gives you the asymptotic behaviour of the amplitude is not
correct. We have to take into account the interaction of the Pomerons. To illustrate this
fact let us consider so called the triple Pomeron interaction which related to the process
of the diffraction dissociation ( see Fig.8 ).

The cross section of the diffraction dissociation ( single diffraction SD) can be written
in the form:

M2dσSD

dM2
=

σ0

2πR2
1(

s
M2 )

· ( s

M2
)2∆ · γ · (M

2

s0

)∆ (29)

where σ0 is the total cross section at s = s0 due to exchange of one Pomeron and R2
1 =

2BSD, where BSD denotes the slope of the SD cross section. It should be stressed that at
very high energy when α′

P � R2
0, R

2
1 → 4α′

P ln(s/M2)

Integrating over M2 the SD cross section one can see that the total cross section of
SD

σSD ∝ (
s

s0

)2∆ � σtot ∝ (
s

s0

)∆ .

It means that we have to consider the interaction of the Pomerons to get the correct
asymptotic at high energy.

•

Problem 7: Show that energy s′ in Fig.8 is proportional to s
M2 .

•
Problem 8: Show that the total cross section of SD is larger that one Pomeron exchange
even at ∆ = 0.
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6.2 Reggeon Diagram Technique.

It turns out that the simplest way to deal with the Pomeron interaction is to use the
Mellin transform of the amplitude [7]

A(ω, t) =

∫ ∞

0

s−1−ωd s ImA(s, t) (30)

•

Problem 9: Show that the Mellin transform of the single Pomeron exchange gives

AP =
1

ω − ∆ − α′
P q

2
t

where t = −q2
t .

•

Using the above Pomeron propagator it is easy to write any diagram for Pomeron
interaction. For example, for the triple Pomeron interaction the diagram of Fig.9 can be
written in the form:

A3P = g
1

ω −∆− α′
P q

2
t

γ
1

ω − 2∆− α′
P [ (q − k)2t + k2

t ]
N (31)

6.3 The effective Lagrangian.

The above examples show that the new effective theory can be build as the theory of the
interaction of the effective degrees of freedom (Pomerons) in (1 + 2) dimensions. However,
it is obvious that we cannot built the closed theory without specification what kind of
interaction we want to take into account. On this pure phenomenological stage we have
no selection rules and at first sight have to include any possible interactions. The idea was
to start from triple Pomeron interaction, to solve the problem and to check back whether
the more complicated interactions would be essential.

For triple Pomeron interaction the effective Lagrangian looks very attractive:

L = − 1

2
[φ+∂φ

∂t
+

∂φ+

∂t
φ ] + ∆φ+ φ − 1

2
γ [φ+ + φ ]φ+φ (32)
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where t = lns and the propagator of the Pomeron is defined as the Green function of the
Lagrangian without interaction (γ = 0 ). We will discuss a bit later the sign minus in
front of the last term.

The attempts to solve the effective theory were very interesting and we learned a lot,
but we will not discuss them because we will show later that the whole approach is deadly
sick.

6.4 The AGK cutting rules.

The AGK cutting rules [8] establish the generalization of the optical theorem on the case
of the multi Pomeron interaction and in the simplest example of two Pomeron exchange
they are pictured in Fig.11. The meaning of the AGK cutting rules is very simple. Each
Pomeron interaction contribution to the total cross section really corresponds to the cross
section of the different processes. In the case of the two Pomeron exchange these processes
are (i) the diffraction dissociation ( σ(0) ) , (ii) the production of the secondary hadrons
with the same multiplicity as for one Pomeron exchange ( σ(1) ) and (iii) the production
of the secondary hadrons with multiplicity in two times larger than for one Pomeron
exchange ( σ(2) ).

The AGK cutting rules claim:

σ(0) ÷ σ(1) ÷ σ(2) = 1 ÷ −4 ÷ 2 (33)

Two important consequences follow from the AGK cutting rules:

1. The total cross section of the diffraction dissociation (DD) is equal to the contri-

bution of two Pomeron exchange to the total cross section ( σ
(2P )
tot ) with opposite sign:

σ(DD) = −σ(2P )

2. The two Pomeron exchange does not contribute to the total inclusive cross section
in central kinematical region. Indeed only two processes σ(1) and σ(2) are the sources of
the produced particle in the central region. It means that the total inclusive cross section
due to two Pomeron exchange is equal to

σinc = σ(1) + 2 σ(2) = 0

Factor 2 comes from the fact that the particle can be produced from two different parton
showers (see Fig.11).
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Now let me give you a brief proof of the AGK cutting rules for the case of hadron
- deuteron interaction. For simplicity let us assume that Gin(bt) = κ = Const(bt) for
bt < RN and Gin = 0 for bt > RN , so the inelastic cross section for hadron - nucleon
interaction is equal to

σinel
N = κS

where S is the area of the nucleon ( S = πR2
N ). To calculate the elastic cross section we

need to use the unitarity constraint in bt ( see eq.(7)) and the answer is

σel
N = (

κ

2
)2S

Note that the flux of incoming particles after the first interaction becomes (1−κ) we can
calculate the total inelastic interaction with the deutron, namely

σinel
D = κS + κ(1− κ)S = 2 σinel

N − κ2S

Using unitarity we have to calculate the elastic cross section for the interaction with
deuteron which is equal to

σel
D = (

2κ

2
)2S

Therefore the total cross section for hadron - deutron interaction can be presented in the
form:

σtot
D = 2 σtot

N − ∆σ

where

∆σ = ∆σinel + ∆σel = − κ2

2
S = − (σinel

N )2

2πR2

Everybody can recognize the usual Glauber formula for hadron - deutron interaction.

As has been mentioned we have two sources of the inelastic cross section which are
pictured in Fig. 13 for the case of the deutron. The cross section of the inelastic process
with double multiplicity is easy to calculate, because it is equal to the probability of two
inelastic interaction:

∆σ
(2)
D = κ2 · S

To calculate;ate σ
(1)
D we have to remember that

∆σinel = σ(2) + σ(1) = −κS

Therefore σ(1) = −2κS. Remembering that ∆σ(0) = σel
D − 2σel

N we get
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n 0 < n >N 2< n >N

∆σtot
κ2

2
S −2κ2S κ2S

Therefore we get the AGK cutting rules for the hadron - deuteron interaction, since
σtot
D = 2σtot

N corresponds to one Pomeron exchange and the correction to this simple for-
mula just originated from the two Pomeron exchange in our Reggeon approach. However
the above discussion, I hope, shows you that the AGK cutting rules have more general
background than the Reggeon approach. For example, they hold in QCD providing the
so called factorization theorem.

Let me give here the general formula for the AGK cutting rules [8]. If we have the
contribution to the total cross section with the exchange of ν Pomerons ( σν

tot), the cross
sections of the process with the multiplicity of produced particles equal µ < n > which
are generated by the same diagram (see Fig.13) are equal∗:

σ(µ)

σν
tot

|µ	=0 = (−1)ν−µ · ν!

µ! (ν − µ)!
· 2ν (34)

while for µ = 0 the ratio is equal

σ(0)

σν
tot

= (−1)ν · [ 2ν−1 − 1 ] (35)

For the first 5 exchange you can find these factors in the following table.

ν \ µ 0 1 2 3 4 5
1 0 1 0 0 0 0
2 1 - 4 2 0 0 0
3 - 3 12 - 12 4 0 0
4 7 - 32 48 - 32 8 0
5 - 15 80 - 160 160 - 80 16

6.5 Different processes in the Reggeon Approach.

The AGK cutting rules together with Mueller theorem [9] establish the relationship be-
tween the contribution of many Pomeron exchanges and different exclusive and inclusive
processes in the Reggeon Approach. Here we want to write down several examples of
different processes that can be treated on the same footing in the reggeon approach.

∗< n > is the average multiplicity in one Pomeron exchange
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6.5.1 Total cross section.

As has been mentioned in one Pomeron exchange approximation the total cross section
is given by the following expression ( see Fig. 15 †):

σtot = 4πg1(0) g2(0)(
s

s0

)∆ σ0(
s

s0

)∆ (36)

We would like to remind you that multi Pomeron exchange is very essential in the total
cross section but we postpone the discussion of their contribution to the second part of
our lectures.

6.5.2 Elastic cross section.

•
Problem 10: Show that for one Pomeron exchange the total elastic cross section is equal
to

σel =
σtot

16πBel

where
Bel = 2R2

01 + 2R2
02 + 2α′

P ln s/s0

in the exponential parameterization for the vertices g(t) ( see Problem 5).

6.5.3 Single diffraction dissociation

The cross section of the single diffraction (see Fig.15) has the following form:

M2dσSD

dM2
=

σ0

2πR2
1(

s
M2 )

· ( s

M2
)2∆ · [G3P (0) · (M

2

s0
)∆ + GPPR(0)(

M2

s0
)αR(0)−1 ] (37)

•

Problem 11: Show that in exponential parameterization for vertices (see Problem 5)

R2(
s

M2
) = 2R2

01 + r2
0 + 4α′

P ln(s/M2)

†In Fig. 15 we use a little bit different notation, namely β(t) instead of g (t ) and g ( t) for G3P (t).
We did this because we had nice prepared pictures in such notations. Hope that this fact will not lead
to misunderstanding.
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where r2
0 is the radius of the triple Pomeron vertex which experimentally is very small

(r2
0 ≤ 1GeV −2).

•
One can see that we include in the expression for the cross section of the single diffrac-

tion also the contribution of the secondary Reggeon trajectory which describes the be-
haviour of the cross section at rather small values of produced mass (M2).

6.5.4 Double diffraction dissociation.

•
Problem 12: Show that the cross section of the double diffraction dissociation

( DD ) process (see Fig.15) is equal to:

M2
1M

2
2d

2σDD

dM2
1dM

2
2

=
σ0

2πR2
0(

ss0
M2

1M
2
2
)
·G2

3P (0) · (
ss0

M2
1M

2
2

)2∆ · (M
2
1

s0
)∆ · (M

2
2

s0
)∆ (38)

in the region of large values of produced masses ( M1 and M2 ).

•
Problem 13: Show that R2

0 in the above equation is equal

R2
0 =

1

2
r2
0 + 4α′

P ln(ss0/M
2
1M

2
2 )

in exponential parameterization of the vertices ( see Problem 5 ).

•
Comparing the cross section for double and single diffraction as well as for elastic cross

section one can get the following factorization relation:

M2
1M

2
2d

2σDD

dM2
1dM

2
2

=

M2
1dσSD

dM2
1

M2
2dσSD

dM2
2

σel
·
R2

1(
s

M2
1
)R2

2(
s

M2
2
)

R2
0(

ss0
M2

1M
2
2
)R2

el(s)
(39)

where
R2

el = 2R2
01 + 2R2

02 + 4α′
p ln(s/s0)

The structure of the event which corresponds to double diffraction is pictured in Fig.15
in lego - plot. In the region of rapidity ∆y we have no produced particles.
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6.5.5 Central Diffraction.

In this process we produced the bunch of secondary particle in the central rapidity region,
while there are no secondary particles in other regions in rapidity.

The first diagram that describes this process gives the answer:

M2 dσ

dM2
=

1

2α′σPP (M
2)g4

0(
s

M2
)2∆e

1
2
(R2

0+α′ln s
M2 )q2 1

R2
0 + α′ln s

M2

·ln[R
2
0 + 2α′ln s

M2

R2
0

] (40)

The above examples demonstrate how we can calculate the exclusive processes using
several phenomenological inputs in the Reggeon Approach, however all these processes
are crucially affected by multi Pomeron contributions and this subject we are going to
discuss later.

6.5.6 Inclusive cross section.

As has been discussed the inclusive production does not depend on multi Pomeron ex-
changes. Using Mueller technique (see Fig.16) which is a generalization of the optical
theorem for more complicated than total cross sections cases the inclusive cross section
can be written in a very simple form:

dσ

dyc
= a · σtot (41)

where a is the new vertex for the emission of the particle c. The inclusive reaction that
is under consideration is

a + b → c(y) + anything

6.5.7 Two particle rapidity correlation.

The Reggeon approach we can use for the estimates of the two particle rapidity correlation
function, which is defined as:

R =

d2σ(y1,y2)
σtotdy1dy2

dσ(y1)
dy1

dσ(y2)
dy2

− 1 (42)
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where d2σ
dy1dy2

is the double inclusive cross section of the reaction:

a + b → 1(y1) + 2(y2) + anything

•

Problem 14: Show using the AGK cutting rules that the correlation function R is
equal:

R(∆y = |y1 − y2|) =
a2
PR

a2
PP

· e(1−αR(0)) ∆y + 2
σ

(2P )
tot

σ
(P )
tot

(43)

All notations are clear from Fig.16.
•

It should be stressed that the Reggeon approach gives the estimates for the correlation
length ( Lcor) and the the strength of the long range correlations ( note, that the second
term does not depends on rapitidies of produced hadrons). Namely, we can rewrite the
above formula in the form:

R = SR · e− ∆y
Lcor + LR

and from our Reggeon formula we have Lcor 
 2. To evaluate the second term we have
to develop some model for including the multi Pomeron exchanges in the calculation of
the total cross section. We will do this in the second part of the lectures.

6.6 Hopes.

The main idea of the Reggeon Calculus was to build the effective theory for the strong
interaction at high energy starting from the effective Lagrangian and the AGK cutting
rules. The last one played a very crucial role giving us the possibility to look insight of
the inelastic interaction using only general ideas on the structure of the Pomeron.

Of course one defect of the approach has been seen from the beginning, namely the
absence of a theoretical idea how to select the interaction between Pomerons. However
we could hope that the future theory will provide us such selection rules and we will be
able to adjust the developed formalism.
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7 The death of the Reggeon Approach.

In 1974 - 1975 in ref. [10] was shown that all our hopes were in vain. T.T. Wu and
McCoy and S.Matinian and A. Sedrokian proved that in the general class of the theories
(all theoretical model that existed at that time) our hope that the Pomeron and Pomeron
interaction can describe the high energy asymptotic is not correct.

Let me illustrate this point using the parton model. In this model the Pomeron is the
sum of “ladder” diagrams while the two Pomeron exchange corresponds to the diagram
of Fig.17 where the partons are produced and absorbed by the same “ladders”. These
diagrams have the probabilistic interpretation and look very natural in the parton model.
However it turns out that the diagrams where the secondary partons are produced by one
“ladder” and are absorbed by the second one give bigger contribution. These diagrams
have not been included neither in one Pomeron exchange nor in two Pomeron exchange.

It means that our hope to reduce the whole theory to Pomeron interaction can not be
right or at least we have to build more complicated picture for the Pomeron structure,
which is impossible to do without detailed microscopic theory.

It means also that the AGK cutting rules we cannot apply for the process of the
Pomeron interaction. For example, if we want to calculate the inclusive production of the
hadron in the single diffraction process we cannot restrict ourselves by calculation of only
two diagrams of Fig.18, but we should add also the third diagram.

8 Lessons for future.

Inspite of the fact that we failed to construct the effective theory for high energy inter-
action starting from the new effective degree of freedom -Pomeron we certainly learned a
lot about properties of high energy interaction. In this section I want to summarize those
lessons that we have learned and which could be useful for future.

1. The longitudinal and transverse degrees of freedoms look differently at high energy
and can be treated separately and in different ways.

2.The effective theory at high energy can be reduced to two dimensional theory and
we need to find the energy spectrum of this two dimensional theory to specify the high
energy asymptotic.

3.The major problem of any affective theory at high energy is to find correct degree
of freedom or in other words the correct effective particle which is responsible for high
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energy asymptotic. The concrete realization, namely Reggeon Calculus failed, because the
Pomeron, effective particle of that time, turns out to be not the correct one to construct
theory at high energy ( see the previous section).

4. The only way to invent correct effective particle is to develop the consistent approach
starting from microscopic theory but not from phenomenology.

At that time we had no microscopic theory and in the best tradition of high energy
physics the experts left the field. Now situation is quite different, we have good microscopic
theory ( QCD) and certainly we have a lot of problems in QCD which have to be solved.
High energy asymptotic is only one of many. I think it is time to ask yourselves why we
spend our time and brain trying nevertheless to find the high energy asymptotic in DIS.
Let me give the first answer to this question, namely it seems extremely interesting to go
back to old problems to see how far away was our guess from the systematic approach.
It is rather private but strong motivation for many experts including me. Later we will
discuss this problem in more details.

We want to finish our review of the past in high energy physics with a statement,
that inspite of all theoretical inconsistency, all intristic contradictions of the Reggeon
Calculus, this old fashioned approach is still the main source of our terminology in high
energy theory and still the only phenomenological approach that we have in hand even
now when we discuss so called “soft” processes. It is why the knowledge of this approach
is still the alpha and omega of high energy strong interaction theory. We hope that we
gave you just right amount of information to move to more theoretical approach based
on QCD.
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TODAY:

POMERON WITHOUT MAGIC
IN PERTURBATIVE QCD

9 Basics of perturbative QCD (pQCD)

9.1 The basics of pQCD for high energy scattering.

In this subsection we are going to discuss the main ideas of perturbative QCD, which is our
microscopic theory of the strong interaction. The goal of our approach is to understand
what is the Pomeron in QCD, but we start from the several things that everybody knows
about QCD.

1. If the typical distances (r) in our process are small we have a natural small param-
eter in QCD, namely the strong coupling constant

αS(r) =
4π

b ln 1
r2Λ2

=
αS(µ

2)

1 + αS(µ2)b
4π

ln 1
r2µ2

� 1

where b = 11− 2
3
nf , nf is the number of quarks, Λ is the QCD confinement scale and µ

is the renormalisation scale.

It means that we can start to calculate the amplitude of our process using the expansion
with respect to small αS.

2. The Born approximation of pQCD gives the cross section which is constant at high
energy

σt → |s→∞ Const

We will discuss this property in details in the next section.

3. The more complicated diagrams lead to increase of the total cross section with
energy as we will discuss later

σt → |s→∞ s∆

where ∆ = CαS.
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All the above properties show us that we have a good chance to get in QCD the high
energy asymptotic which looks like the one Pomeron exchange ( the word Pomeron I use
here in the traditional sense as the Reggeon with intercept close to 1 ) and we are able
to examine how good or bad is our traditional Reggeon - like approach. However, we are
going to start with the brief review what we have learned about pQCD to give you an
impression what kind of theory we have to attack the Pomeron structure.

9.2 The map of QCD.

Describing the basic features of QCD, we will start to answer in this subsection the
following questions: (i) What we have learned about QCD; (ii) What problems are still
unsolved in QCD?; (iii) Can we relate the kinematical region in which we have to face
these unsolved problems to collision processes?

Fig.19 displays the ‘map of QCD’. Shown are three separate regions, distinguished
by the size of the variables Q2 and x, which will be defined momentarily. Each region
corresponds to quite different physics and enjoys a different level of understanding. Before
we discuss these three regions in more detail let us introduce the necessary notational
conventions and definitions.

Deeply Inelastic Scattering ( DIS ).

In Fig.19 r is the distance that can be resolved by the scattering process under consid-
eration. From the uncertainty principle this distance is of the order of 1

Q
where Q is the

typical large transverse momentum in our experiment. E.g. in deeply inelastic electron
scattering Q is the transverse momentum of the recoiled electron. We recall that deeply
inelastic scattering is the reaction:

e + p → e′ + anything.

Thus, this reaction acts as a powerful microscope which is able to resolve the constituents
of a hadron (quarks, antiquarks and gluons, collectively called partons) with a transverse
size of the order of 1

Q
. The second kinematical variable that we can introduce for such

constituents is the fraction of energy (x) that a parton carries with respect to the parent
hadron.

It should be stressed that the energy in DIS is equal to s = Q2

x
. It means that we

are interested in low x DIS if we are going to discuss the high energy asymptotic. If
N(x,Q2)dx is the number of gluons in a small x-interval centered around the value x at
scale Q2. We will show later that the number of gluons increases in the region of small x.
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All physics in this kinematical region is strongly connected to this fact. It is the reason
we concentrate on the discussion of the gluon density here.

The gluon structure function xG(x,Q2) tells us what the gluon density at a definite
value of ln 1

x
is,

xG(x,Q2) = |dN(x,Q2)

d ln 1
x

| .

Let us for convenience introduce the transverse density of gluons ρ,

ρ(x,Q2) =
xG(x,Q2)

π R2
(44)

where R is the radius of the hadron.

We plot this on the vertical axis in Fig.19. In this figure we can see three different
regions:

1. The region of small parton density at small distances (low density (pQCD) region).

This is the region where we can apply the powerful methods of perturbative QCD since
the value of running coupling constant αs(1/r

2) is small (αs(1/r
2) � 1). During two

decades remarkable theoretical progress has been achieved here (GLAP evolution equation
[11], gluon bremshtrahlung for jet decay [12] , factorization theorem (J.Collins,D.Soper
and G.Sterman (1983) [13]) and the main property of “hard” processes has been experi-
mentally confirmed at LEP and at the Tevatron.

2. The region of large distances (npQCD region).

Here we have to deal with the confinement problems of QCD, since αs(1/r
2) � 1. In

this kinematical region we need to use nonperturbative methods such as lattice calculation
[14] or QCG Sum Rules [15]. The progress here is remarkable but all developed methods
cannot yet be applied to scattering processes.

3 The region of small distances but high parton density (hdQCD region).

Here we have a unique situation in which the coupling constant αs is still small but
the density is so large that we cannot use the usual methods of perturbation theory.

In essence the theoretical problem here is also a nonperturbative one but the origin of
the nonperturbative effects here is quite different from that in the previous region. Here
we face the situation where we have to develop new methods that let deal with a dense
relativistic system of gluons in a nonequilibrium state. Unfortunately we are only at the
beginning of this road.
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Fortunately, we can control theoretically this dense system of partons in some transi-
tion region on the border of the pQCD and hdQCD regions and here we can study this
remarkable system of partons in great detail. Thus the right strategy is to approach this
interesting kinematic region from the low density pQCD region.

In my opinion the interest to high energy scattering was revived only because moving
from pQCD region to hdQCD region we can open new window to study a nonperturbative
nature of QCD.

9.3 What fundamental problems could be solved?

This is why we want to list here the fundamental problems that we hope to solve pene-
trating high density QCD region. We hope:

1. to specify the kinematical region in which we can trust pQCD (GLAP evolution
equation, gluon bremstrahlung, factorization theorem ...);

2. to find new collective phenomena for nonabelian theories such as QCD ;

3. to find the analytic solution of hd QCD which is nonperturbative but looks simpler
than np QCD since αs � 1 here;

4. to develop methods with which build an effective theory for hd QCD.

We need the effective theory because we can use the Lagrangian of such a theory for
exact calculation on lattice, for example, or even we can try to solve problem analytically.

9.4 How to penetrate the high density QCD region.

Access to this interesting kinematical region is actually easily achieved in our scattering
processes. We know at least three ways to prepare a large density system of partons.

1. The first is given by nature, which supplies us with large and heavy nuclei. In ion-
ion collisions we can already reach a very high density of partons at not so high energies,
because the partons from different nucleons in a nucleus are freed.

2. The second relates to hard processes in hadron-hadron collisions or in deep inelastic
scattering. These also give us access to a high density of partons because we expect a sub-
stantial increase in the parton density in the region of small Bjorken x. The experimental
data from HERA show the significant increase of the deep inelastic structure function:

F2(Q
2, xB) ∝ (

1

xB
)0.33 at Q2 ∼ 10GeV 2.
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3. The third is to measure the event with sufficiently large multiplicity of produced
particles, larger than the multiplicity in the typical inelastic (bias) event.

Thus we can formulate the ideal experiment for search of high density partonic system:

“ The deeply inelastic scattering with nucleus at low x with special selection of events
with large multiplicity of produced particles. ”

9.5 Method of pQCD( two diabols that we are fighting with).

Accordingly to our strategy we start with perturbative QCD in that region of Fig.19
where the density and coupling QCD constant (αs) are small. Each observable (i.e gluon
structure function) could be written in pQCD as following series:

xG(x,Q2) = Σn=0 Cn(αs)
n · (Ln + an−1L

n−1...a0) , . (45)

We have two big problems with this perturbative series which are two our biggest enemies:

1. The natural small parameter αs is compensated by large log (L). The value of L
depends on the process and kinematic region. For example in deeply inelastic scattering
(DIS):

Λ = logQ2 at Q2 � Q2
0 but x ∼ 1

Λ = log(1/x) at Q2 ∼ Q2
0 and x → 0

Λ = logQ2 · log(1/x) at Q2 � Q2
0 and x → 0

Λ = log(1− x) at Q2 ∼ Q2
0 and x → 1

Of course it is not the full list of scales. The only that I would like to emphasize that L
depends on the kinematic region. Thus to calculate xG(x,Q2) one cannot calculate only
the Born Approximation but has to calculate the huge number of Feynman diagrams.

2.
CN → n! at n � 1

It means that we are dealing with asymptotic series and we do not know the general
rules what to do with such series. There is only one rule, namely to find the analytic
function which has the same perturbative series. Sometimes but very rarely we can find
such analytic function. In this case this is the exact solution of our problem. Mainly we
develop some general approach based on Leading Log Approximation (LLA). The idea is
simple. Let us find the analytic function that sums the series:

xG(x,Q2)LLA = Σn=0Cn (αs · L)n . (46)
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Ussualy we can write the equation for function xG(x,Q2)LLA. The most famous one,
the GLAP evolution equation [11], sums eq.(2) if L= logQ2. The BFKL [16] equation
gives the answer for eq.(2) in the case when Λ=log(1/x). Using the solution of the LLA
equation we built the ratio:

R(x,Q2)
xG(x,Q2)

xG(x,Q2)LLA
= Σn=0r

n = Σn=0cn · (Ln−1 + an−1L
n−2 + ...a0) . (47)

This ratio is also asymptotic series but what we are doing we calculate this series term
by term. Our hope is that the value of the next term will be smaller then the previous
one ( rn

rn−1
� 1) for sufficiently large n. However we know that at some value of n = N

rN

rN−1
∼ 1. The only that we can say about such situation in general that our calculation

has intristic theoretical accuracy and the result of calculation should be presented in the
form

R(x,Q2) = Σn=N−1
n=0 rn ± rN . (48)

How big is the value of N depends mostly on how well we chose the LLA and how well
we established the value of scale L in the process of interest.

9.6 Present Theoretical Status = Regeneration of Reggeon
Calculus.

What we are doing now approaching the high density QCD domain is really the regener-
ation of the old idea of Reggeon Calculus, namely we reduce the complicated problem of
quark and gluon interaction in the dense parton system to the interaction of our “building
bricks”, so called Pomerons ( see Fig. 20, where the structure of our approach is shown).
It looks like in old, good time of Reggeon Dominance but we have two new and very
important ingredients:

1. The QCD Pomeron is not an invention but naturally appears in perturbative QCD
in the leading log(1/x) approximation (LL (x)A) to the scattering amplitude at high
energy ( the Balitski - Fadin -Kuraev - Lipatov (BFKL ) equation [16] ). It means that in
a restricted kinematical region the BFKL Pomeron describes the high energy interaction
within a certain guaranteed theoretical accuracy. This fact makes it unavoidable that one
should build an effective theory starting with the BFKL Pomeron.

2. The vertices of the Pomeron interactions are not phenomenological parameters but
can be calculated in perturbative QCD. It turns out that only two of them are essential
in the vicinity of the border between pQCD and hdQCD regions in Fig.19, namely triple
Pomeron vertex (γ) and rescattering of two Pomerons (λ) (see Fig.20).
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We are going to discuss in detail the structure of the BFKL Pomeron as well as the
theory of the shadowing corrections. The process which we consider is the deeply inelastic
scattering in which all high energy phenomena occur at small distances where we can trust
the pQCD calculation.

10 Pomeron in pQCD (the BFKL Pomeron)

The BFKL equation was derived in so called Leading Log (1/x) Approximation, in which
we would like to keep the contribution of the order of (αSlog(1/x))

n and neglect all other
contributions, even of the order of αS log(Q2/Q2

0). So the set of parameters in LL(1/x)A
is obvious:

αS log
1

x
∼ 1 ;

αS log
Q2

Q2
0

< 1 ; (49)

αS � 1 ;

Let us consider the simplest process: the quark - quark scattering at high energy at zero
momentum transfer . All problems of infrared divergency in such a process is irrelevant
since they are canceled in the scattering of two colorless hadrons . We will show this fact
using the example of the first diagram (the Born Approximation (BA)).

10.1 The Born Approximation

In the Born Approximation the only diagram of Fig. 21(a) contributes to the imaginary
part of the scattering amplitude (A). It is easy to understand that the result of calculation
of this diagram gives ‡:

2 Im{ABA(s, t = 0)} =

∫
d2kt
(2π)2

| M(2 → 2; αS | s, t = −k2
t ) |2 = s

C2
2α

2
S

N2 − 1

∫
d2kt
k4
t

,

(50)
where M(2 → 2; αS | s, t = −k2

t ) denotes the amplitude in the lowest order of αS for
quark - quark scattering at transfer momentum t = −k2

t through one gluon exchange (see
Fig.21(a)), N is the number of colours and C2 = N2−1

2N
. One can recognize the Low -

Nussinov mechanism [17] of high energy interaction in this simple example.

‡Let me recall you that we are keeping the coupling constant fixed.
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Let us consider the BA in more detail for the scattering of two mesons ( a and b ),
assuming that each of them consists of two heavy quarks. Such a system has sufficiently
small size, namely

r ∝ 1

MQαS

and can be treated in pQCD.

Let me remind you why the size is small. The total energy of two quarks in Coulomb
potential is equal:

E =
p2

MQ
− αS

r

If we remember the uncertainty principle

∆p∆r 
 1 or p 
 1

r

we get for the system with E → 0 that size which we have mentioned before.

Repeating the calculations we get the same answer as for quark - quark scattering,
namely

σBA = α2
S

2

9
· 4 · nanb

∫
d2kt

(k − q
2
)2t (k + q

2
)2t

· Φa(k, q) Φb(k, q) (51)

where na(nb) is the number of quarks in the meson a(b), the factor 2
9
is the result of

averaging over colours of the initial quarks and Φ(k, q) is the amplitude of the emission
of two gluons by a meson.

•
Problem 15: Show that the emission amplitude Φ can be expressed in terms of meson
formfactors if we can treat the heavy quarks as nonrelativistic particles (see Fig.22(c)) :

G(q2)a =

∫
dpΨa(p)Ψ

∗
a(p− q);

Φa(k, q) =

∫
dpΨa(p)Ψ

∗
a(p−q) −

∫
dpΨa(p+

q

2
+k)Ψ∗

a(p+
q

2
−k) = Ga(q

2)−Ga(4k
2).

•
Finally, we have

σBA = α2
S

2

9
· 4 · nanb

∫
d2kt
k4
t

· [Ga(0)−Ga(4k
2) ] [Gb(0)−Gb(4k

2) ] (52)



– 34 – CBPF-NF-010/95

Now let us ask the question what kinematic region of integration over kt gives the biggest
contribution to the total cross section if two mesons have different sizes, let say ra � rb.
We can study three regions of integration:

1. λ > ra, where λ is the wave length of the gluon ( λ = 1
kt

).

In this case ktra < 1 as well as kt rb < 1 and

Ga(0)−Ga(4k
2) → 4

6
r2
ak

2
t

Gb(0)−Gb(4k
2) → 4

6
r2
bk

2
t

The integral over kt gives you the answer

σBA 
 r2
b

2.ra > λ > rb

In this case ktra > 1 as well as kt rb < 1 and

Ga(0)−Ga(4k
2) → 1

Gb(0)−Gb(4k
2) → 4

6
r2
bk

2
t

The integral over kt gives you the answer

σBA = α2
S

2π

9
· 4 · nanb · 2

3
· r2

b ln
r2
a

r2
b

(53)

3. rb > λ

It means that ktra > 1 as well as kt rb > 1 and

Ga(0)−Ga(4k
2) → 1

Gb(0)−Gb(4k
2) → 1

The integral over kt gives you the same answer as in the first kinematic region, namely:

σBA 
 r2
b

This example is very instructive, because our standard process - DIS which we can treat
using pQCD and in DIS the typical size of our probe - virtual photon is the smallest
one in the process and is of the order of 1

Q
. It means that the BA gives for the DIS the

total cross section which is proportional 1
Q2 ln(Q

2R2) where R is the size of the target. It
should be stressed as has been mentioned that the total cross section does not depend on
energy in BA.
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10.2 The next order of αS approximation.

In the next order we have to consider a larger number of the diagrams, but we can write
down the answer in the following general form:

2 Im{ANBA(s, t = 0)} = (54)∫
(2π)4δ(4)(p1 + p2 − p′

1 − p′
2 − q)| M(2 → 3; g3) |2 Πi=3

i=1

d3p′i
(2π)32E ′

i

+

∫
(2π)4δ(4)(p1 + p1 − p′

1 − p′
2) · 2 Re{M(2 → 2;α2

S) ·M∗(2 → 2;αS)}Πi=2
i=1

d3p′i
(2π)32E ′

i

,

where g is coupling constant of QCD ( αS = g2

4π
); M(2 → 3; g3) is the amplitude for

the production of the extra gluon in the Born Approximation, and is given by the set of
Feynman diagram in Fig.22 while M(2 → 2, α2

S) is the amplitude of the elastic scattering
in the next to leading Born Approximation ( see Fig. 23) at the momentum transfer kt.

Two terms in eq. (54) have different physical meaning: the first one describes the
emission of the additional gluon in the final state of our reaction, while the second term
is the virtual correction to the Born Approximation due to the emission of the additional
gluon. It corresponds to the same two particle final state, and describes the fact that due
to emission the probability to detect this final state becomes smaller ( we will see later
that the sign of the second term is negative).

In the both terms of eq. (54) we can integrate over =p3
′ as well as over the longitudinal

component of =p′
1 (p′1L). Finally, we rewrite the phase space in the following way:

∫
(2π)4δ(4)(p1 + p2 − p′

1 − p′
2 − q Πi=3

i=1

d3p′i
(2π)32E ′

i

=
1

4π
· 1
s
·
∫ 1

xmin= m2

s

dx′3
x′3

∫
d2p′1td

2p′3t
(2π)4

;

∫
(2π)4δ(4)(p1 + p1 − p′

1 − p′
2) · Πi=2

i=1

d3p′i
(2π)32E ′

i

=
1

s
·
∫

d2p′1t
(2π)2

; (55)

where x is the fraction of the longitudinal momentum carried by particle. the value of xmin

depends on the reaction. For example in the deeply inelastic scattering xmin = xB = |Q2|
s
.

In the case of the quark scattering xmin =
m2

t

s
wheremt is the transverse mass of produced

quark.

From eq. (55) one can see the origin of the log(1/xmin) contribution: it stems from
the phase space integration, if M(2 → 3) does not go to zero at x3 → 0. To sum
the diagrams of Fig. 22 in this limit we can use two tricks. The first one is for each t-
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channel gluon one can rewrite the numerator of the gluon propagator at high energy in
the following way:

gµν =
p1µp2ν + p2µp1ν

p1 · p2
+ O(

m2

s
) (56)

The second trick is based on the gauge invariance of the QCD. We look on the subset of
the diagrams of Fig. 22 pictured in Fig. 24 as the amplitude of the interaction of gluon
k with the quark p2 ( see Fig.24 ). Since all particles in amplitude Mν except gluon k are
on the mass shell, the gauge invariance leads to the relationship:

kνMν = 0 . (57)

Using Sudakov variables [18] we can expand vector k as

kν = αk p1ν + βk p2µ + ktµ

and rewrite eq. (57) in the form:

( αk p1ν + βk p2µ + ktµ ) Mν = 0 . (58)

We note that all particle inside Mν have a large component of their momentum on p2. It
means that we can neglect the projection of vector Mν on p1, or in other words

Mν = M (1)p1ν + M (2)p2ν + M (t)
ν

and M (1) � M (2). Thus we can conclude from eq. (58) that

p1νMν = − ktνMν

αk

. (59)

Using both tricks of eq. (56) and eq. (59) one can easily see that only diagram of Fig.
24(1) contributes in LL(log(1/x)A. Indeed, let us consider for example the diagram of
Fig. 24(2), the dominator of the quark propagator (p2 + k)2 is equal to

(p2 + k)2 = αks + k2
t = − p′23t

x3

+ k2
t ∼ − p′23t

x3

.

Since due to eq. (59) the polarization of gluon k is transverse we cannot compensate the
smallness this diagram at x3 → 0. Using the same tricks with the upper parts of the
diagrams of Fig. 22 we arrive at the conclusion that that the set of the diagrams of Fig.
22 degenerates into one diagram of Fig. 25 with specific vertex for gluon emission:

Γσ = i g fabc · 2 ktµ k
′
tν

αkβk′s
γµσν , (60)
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where γµσν is given by the usual Feynman rules for QCD.

Substituting eq. (60) into the first term of eq. (54) we get the contribution of the
emission of one additional gluon to the next to Born Approximation in the form:

Im{ANBA
emission} = s

α2
S C

2
2

N2 − 1

∫ y

0

dy′
∫

d2kt
π k4

· NαS

π
·Kemission(kt, k

′
t) ·

d2k′t
π k′4

, (61)

where y′ = log(1/x3), y = log(1/xmin and the kernel K(kt, k
′
t) is equal to

Kemission(kt, k
′
t) =

k2
t k

′2
t

( kt − k′t )2
(62)

.

To calculate the virtual correction in the next to Born Approximation (M( 2 → 2 ;α2
S )

) we have to estimate the contribution of the set of diagrams of Fig. 23. The log (1/x)
contribution is hidden in the real part of the amplitude M( 2 → 2 ;α2

S ), and easiest way
to extract this log is to use the dispersion relation:

M( 2 → 2 ; α2
S ) =

1

π
· {

∫
Im{M( 2 → 2 ; α2

S )}s
s′ − s

d s′ +
Im{M( 2 → 2 ; α2

S )}u
u′ − u

d u′ } .

(63)
We calculate Im{M( 2 → 2 ; α2

S )}s and Im{M( 2 → 2 ; α2
S )}u using unitarity ( see

eq. (50)):
Im{M( 2 → 2 ; α2

S | t = −k2
t )}s = (64)∫

d2k′t
(2π)2

| Re{M(2 → 2; αS | s, t = −k′2t ) M(2 → 2; αS | s, t = −(kt − k′t)
2 )} .

The difference between eq. (100) and eq. (50) is that the Born amplitude for one gluon
exchange enters these two equations at different values of momentum transferred t. The
explicit calculations give:

Im{M( 2 → 2 ; α2
S | t = −k2

t )}s = s · Cs πΣ(k2
t ); (65)

Im{M( 2 → 2 ; α2
S | t = −k2

t )}u = s · Cu πΣ(k2
t );

Σ(k2
t ) =

4αS

π2

∫
d2k′t

( kt − k′t )2 k′2t
;

Using the dispersion relation of eq. (63) one can reconstruct the real part of the amplitude
and the answer is

Re{M( 2 → 2 ; α2
S | t = −k2

t )} = s (Cu − Cs ) · Σ(k2
t ) · logs (66)
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The colour coefficients have a very famous relation between them ( see Fig. 26 ) which
gives, for the difference of the colour coefficients in eq. (66) the same colour structure as
for the diagram of Fig. 23 ( 3 ). Thus Re{M( 2 → 2 ; α2

S | t = −k2
t )} has the same

colour structure as one gluon exchange in the Born Approximation. This fact makes it
possible to rewrite the second term in eq. (54) as the correction to the gluon trajectory,
e.g. instead of gluon with propagator 1

k2 · s we can introduce the new propagator

1

k2
· sαG(k2) (67)

αG(k2) = 1 − αSN

π2
·
∫

k2
t d

2k′t
( kt − k′t )2 k′2t

= 1 − αSN

2π2
·
∫

k2
t d

2k′t
[ ( kt − k′t )2 + k′2t ]k′2t

The answer for the second term in eq. (54) can be written in the form

Im{ANBA
virtual} = s

α2
SC

2
2

N2 − 1

∫ (
αG(k2) − 1

) · 2 · d2kt
k4
t

. (68)

We can get the full answer for the amplitude in the next to the Born Approximation (α3
S

by summing eq. (61) and eq. (68) and it can be written in the form:

Im{ANBA(s, t = 0)} = s
α2

S C
2
2

N2 − 1

∫ y

0

dy′
∫

d2kt
k2
t

· αSN

π2
·K(kt, k

′
t) ·

d2k′t
k′2t

(69)

where y = log(1/xmin and

K(kt, k
′
t) ·

1

k′2t
=

1

( kt − k′t )2
· 1

k′2t
− k2

t

( kt − k′t )2 [ ( kt − k′t )2 + k′2t ]
· 1

k2
t

. (70)

Using eqs. (69)–(70) we can introduce function φ(k2
t ) and rewrite the total cross section

for quark - quark scattering in the form:

σqq =
αSC2

N2 − 1
·
∫

φ(y, k2
t ) ·

dk2
t

k2
t

. (71)

For φ eq. (69) gives the equation:

φ(2)(y, k2
t ) =

αSN

π2
·
∫ y

0

dy′
∫

d2k′tK(kt, k
′
t) φ

(1)(y′, k′2t ) . (72)

where

K(kt, k
′
t)φ(k

2
t ) =

1

( kt − k′t )2
· φ(k′2t ) − k2

t

( kt − k′t )2 [ ( kt − k′t )2 + k′2t ]
· φ(k2

t ) . (73)

and

φ(1) =
αSC2

k2
t

. (74)
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10.3 The main property of the BFKL equation.

From the simplest calculation in α3
S order one can guess the BFKL equation [16] which

looks as follows:

dφ( y = log(1/x), k2
t )

dy
=

αSN

π2
·
∫

K( kt, k
′
t )φ( y, k

′2
t ) d2k′t , (75)

where kernel K(kt, k
′
t) is defined by eq. (73). This equation sums the (αSlog(1/x))

n contri-
butions and has ”ladder” - like structure ( see Fig. 27 ). However, such ”ladder” diagrams
are only an effective representation of the whole huge set of the Feynman diagrams, as
explained in the simplest example of the previous subsection. The first part of the kernel
K(kt, k

′
t) describes the emission of new gluon, but with the vertex which differs from the

vertex in the Feynman diagram, while the second one is related to the reggeization of all
t-channel gluons in the ”ladder”.

The solution of the BFKL equation has been given in ref. [16] and we we would like
to recall some main properties of this solution.

10.3.1 Eigenfunctions of the BFKL equation.

The eigenfunction of the kernel K(kt, k
′
t) is φf = (k2

t )
f−1. Indeed after sufficiently long

algebra we can see that

1

π

∫
d2k′tK(kt, k

′
t) φf(k

′2
t ) = χ(f) φf(k

2
t ) (76)

where
χ(f) = 2Ψ(1) − Ψ(f) − Ψ(1− f) (77)

and

Ψ(f) =
d ln Γ(f)

d f
,

Γ(f) is the Euler gamma function.

10.3.2 The general solution of the BFKL equation.

From eq. (76) we can easily find the general solution of the BFKL equation using double
Mellin transform:

φ(y, k2
t ) =

∫
dω

2π i
eω yφ(ω, k2

t ) =

∫
dωdf

(2π i)2
eω yφf(k

2
t )C(ω, f) (78)
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where the contours of integration over ω and f are situated to the right of all singularities
of φ(f) and C(ω, f). For C(ω, f) the equation reads

ω C(ω, f) =
αSN

π
χ(f)C(ω, f) . (79)

Finally, the general solution is

φ(y, k2
t ) =

1

2π i

∫
df e

αSN

π
χ(f)y + (f−1) rφ̃(f) (80)

where φ̃(f) should be calculated from the initial condition at y = y0 and r = ln
k2

t

q2
0
( q2

0

is the value of virtuality from which we are able to apply perturbative QCD ) .

10.3.3 Anomalous dimension from the BFKL equation.

We can solve eq. (79) in a different way and find f = γ(ω). γ(ω) is the anomalous
dimension in LL(log (1/x)A § and for γ(ω) we have the following series [19]

γ(ω) =
αSN

π
· 1
ω

+
2α4

SN
4ζ(3)

π4
· 1

ω4
+ O(

α5
S

ω5
) (81)

•
Problem 16: Get eq.(81) from eq.(79), expanding it with respect to f = γ(ω).

•
The first term in eq. (81) is the anomalous dimension of the GLAP equation [11] in leading
order of αS at ω → 0, which gives the solution for the structure function at x → 0 and
corresponds to so called double log approximation of perturbative QCD ( DLA).The DLA
sums the contributions of the order (αS log(1/x) log(Q

2/q2
0))

n in the perturbative series
of eq.(45).

However, we would like to stress that eq. (81) is valid only at fixed αS while the
anomalous dimension in the GLAP equation can be calculated for running αS. It means
that we have to introduce the running αS in the BFKL equation to achieve a matching
with the GLAP equation in the region where ω � 1 and αS

ω
< 1.

The second remark is the fact that we can trust the series of eq. (81) only for the value
of ω � ωL , where

ωL =
αS N

π
· χ( 1

2
) =

4N ln2αS

π
. (82)

§From eq. (78) one can notice that moment variable N defined such that N = ω + 1.
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In vicinity ω → ωL we have the following expression for γ(ω):

γ(ω) =
1

2
+

√
ω − ωL

αSN
π

14ζ(3)
. (83)

•
Problem 17: Get eq.(83) front eq. (79), using the property of Ψ(f).

•
Substituting eq. (83) in eq. (78) we have

φ(y, k2
t ) =

∫
dω

2π i
eω yφ(ω, k2

t ) =

∫
dω

2π i
eω y + ( γ(ω)− 1 ) rφ̃(ω) = (84)

∫
dω

2π i
e
(ω−ωL ) y + (− 1

2
+

√
ω − ωL

αSN
π 14ζ(3)

) r

φ̃(ω) .

Evaluating the above integral using saddle point approximation we obtain

ωS = ωL +
1

αSN
π

14ζ(3)
· r2

4 y2
(85)

which gives the answer:

φ(y, k2
t ) =

1√
k2
t q

2
0

· φ̃(ωS) ·
√

2 π (ωS − ωL )

y
· e

ωL y−
ln2 k2

t
q2
0

αSN
π 28ζ(3) y . (86)

We can trust this solution in the kinematic region where ( ln
k2

t

q2
0
)2 ≤ αSN

π
28ζ(3) y. The

solution of eq. (86) illustrates one very important property of the BFKL equation, namely
k2
t can be not only large, but with the same probability it can also be very small. It means

that if we started with sufficiently big value of virtuality q2
0 at large value of y = ln(1/x)

due to evolution in y the value of k2
t could be small ( kt ∼ Λ, where Λ is QCD scale ).

Therefore, the BFKL equation is basically not perturbative and the worse thing, is that
we have not yet learned what kind of assumption about the confinement has been made
in the BFKL equation.

Our strategy for the further presentation is to keep k2
t > q2

0 and to study what kind of
nonperturbative effect we can expect on including the running αS in the BFKL equation,
as well as changing the value of ωL in the series of eq. (81).
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10.3.4 The bootstrap property of the BFKL equation.

We have discussed the BFKL equation for the total cross section, however this equation
can also be proved for the amplitude at transfer momentum q2 �= 0, and not only for
colorless state of two gluons in t-channel. The general form of the BFKL equation in ω -
representation looks as follows [16] ( see eq. (78):

(ω − ωG(k2
t ) − ωG((q− kt)

2) )φ(ω, q, kt) =
αS

2π
λR

∫
d2k′t
π

K(q, kt, k
′
t)φ(ω, q, k

′
t) , (87)

where the kernel K(q, kt, k
′
t) describes only gluon emission and

K(q, kt, k
′
t) =

k2
t

(kt − k′t)2 k′2t
+

(q − kt)
2

(kt − k′t)2 (q − k′t)2
− q2

t

(qt − k′t)2 k′2t
, (88)

λR is colour factor where λ1 = 2λ8 = N for singlet and (N2 − 1) representations of colour
SU(N) group and ωG(k2

t ) = αG(k2
t ) − 1 ( see eq. (67) ).

The bootstrap equation means that the solution of the BFKL equation for octet colour
state of two gluons ( for colour SU(3) ), should give the reggeizied gluon with the trajectory
αG(k2

t ) ( or ωG(k2
t ) ) given by eq. (67). The fact that the gluon becomes a Regge pole

have been shown by us in the example of the next to the Born Approximation, and has
been used to get the BFKL equation in the singlet state. It means that the solution of
the BFKL equation in the octet state should have the form of a Regge pole :

φ(ω, q, kt) =
Const

ω − ωG(q2)
(89)

Assuming eq. (89), one arrives to the following bootstrap equation:

ωG(q2) − ωG(k2
t ) − ωG((q − kt)

2) =
αS

2π
λ8

∫
d2k′t
π

K(q, kt, k
′
t) , (90)

It is easy to check that the trajectory of eq. (67) satisfies this equation. It is interesting
to mention that we can use eq. (90) to reconstruct the form of the kernel K(q, kt, k

′
t), if

we know the expression for the trajectory ( see ref.[20] ).

10.4 Corect degrees of freedom at low x.

In the previous subsections we gave the traditional derivation of the BFKL equation, which
is rather difficult and demands a good experience in calculation of Feynman diagrams. It
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is very important to understand better the physical meaning and the formal grounds of
the BFKL equation. I firmly believe that during this year A. Mueller [21] ( see also related
papers [22] ) has achieved the considerable progress in both understanding and formal
derivation of the BFKL equation and its generalization. Mueller’s main idea is to construct
the small x infinite momentum partonic wavefunction of a hadron in QCD while BFKL
calculated the amplitude for n - gluon production in so called multireggeon kinematic
region. The wavefunction gives us much richer information on the hadron interaction, has
very transparent physical meaning and makes the bridge between our parton approach
to “hard” processes and new phenomena that we anticipate in the region of high density
QCD.

1.

The technical trick that has been used is also very instructive, namely it turns out that
the wavefunction looks much simpler in the mixed representation in which each parton is
labeled by its fraction of the total hadron momentum xi and the transverse coordinate rti.
The transverse coordinate is especially useful since in the low xi region the ith gluon can
be considered as being emitted from the system of i − 1 partons with spatial transverse
coordinates of these “sources” being frozen during the emission of i− th gluon. Thus we
can consider these of i− 1 partons as a system of (i− 1) qq̄ dipoles since each gluon can
be viewed as quark - antiquark pair if number of colours Nc is big enough. So the only
thing that one needs to write down is the emission of the i − th gluon by such a system
of dipoles. This problem has been solved in ref.[21]. For example for emission of gluon
(x2, rtG = r2) from one dipole which is the quark (xq = 1−x1, rtq = r0 = 0) and antiquark
(xq̄ = x1, rtq̄ = r1) is equal to

ψ(1)(x1, x2; r1, r2) = −igT a

π
ψ(0)(x1; r1){r2λ

r2
2

− r21λ

r2
21

} · ελ2 . (91)

2.

Mueller made one very important step in our understanding of our parton system,
namely he found what sum rule plays the role of the momentum sum rules in the GLAP
approach for low xi partons. This sum rules is the normalization of the partonic wave-
function: ∫ n∏ dxi

xi

n∏
d2rti|Ψ(x1, ...xn; rt1, ...rtn)|2 = 1 . (92)

Using this equation one can easily take into account so called virtual corrections, which
in this case are mostly known as gluon reggeization or non -Sudakov form factor. The
importance of this step can be compared only with the transition from Gribov - Lipatov
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form of usual evolution equation with Sudakov form factor in the kernel to well known
Lipatov - Altarelli - Parisi elegant form based on direct use of the momentum sum rules
in QCD.

3.

The physical application of this new approach has not been considered but Mueller
noted at his Durham talk [23] that his approach will be able to resolve the old problem
with the BFLK equation. Indeed, the physical meaning of the growth of the structure
function at xB → 0 is the increase of the number of “wee” partons ( N ) that can interact
with the target ( N ∝ x−ω0

B )( see, for example, review [24]). However the multiplicity of

gluons calculated as the ratio
∫

Ed3σ
dA3pjet

/σt turns out to be small ( of the order of αs ln
1
xB

). It means that partons are in a very coherent state in a typical inelastic event. However
the behaviour of the parton cascade at large multiplicity should be quite different from
Poisson distribution since at large multiplicity all N parton can be freed in the interaction.

.

The main progress was related to the fact that they discovered the correct degrees
of freedom for the region of small x in QCD. They showed that if we discuss the deeply
inelastic processes not in terms of quark and gluons as we did before but introducing
new degrees of freedom, namely the color dipole of the definite size (d), we still can use
the simple probabilistic interpretation in the region of low x. It means that the physical
meaning of the deep inelastic structure function is not the number of quark or gluons but
the number of the color dipoles with the sizes larger than 1/Q (d > 1

Q
). It is worthwhile

mentioning that at x ∼ 1 we still can use our old interpretation as probability to find
parton but as well as a new one.

•
Problem 18: Read Mueller’s paper[21] and try to understand how simple looks the
BFKL equation in new degrees of freedom.

•

The main progress in the Mueller approach was related to the fact that he discovered
the correct degrees of freedom for the region of small x in QCD. He showed that if we
discuss the deeply inelastic processes not in terms of quark and gluons as we did before
but introducing new degrees of freedom, namely the colour dipole of the definite size (d),
we still can use the simple probabilistic interpretation in the region of low x. It means
that the physical meaning of the deep inelastic structure function is not the number of
quark or gluons but the number of the colour dipoles with the sizes larger than 1/Q
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(d > 1
Q
). It is worthwhile mentioning that at x ∼ 1 we still can use our old interpretation

as probability to find parton but as well as a new one.

This idea shed a light on all technicalities of the BFKL equation which was the mani-
festation of the artistic skill in the calculation of Feynman diagrams and reduced the high
art to normal physics understandable for a normal post-doc. I anticipate a big progress
in the development of all kind problems related to high energy QCD based on Mueller
approach.

11 New physical phenomena at small xB:

Let us outline the new phenomena which we anticipate to occur in the region of small
xB in perturbative QCD for the case of deeply inelastic scattering. Three of them are
particularly important and determine the physical picture of the parton evolution, or
cascade as we shall call it, in the region of small xB , namely:

1. The increase of the parton density [16] at xB → 0.

2. The growth of the mean transverse momentum of a parton inside the parton cascade
at low xB [16] [25].

3. The saturation of the parton density [25].

Before discussing each of these phenomena in turn, let us try to understand these new
phenomena at small xB by recalling some facts regarding perturbation theory and deeply
inelastic scattering. According to the factorization theorem, the deep-inelastic structure
function is a product of a parton density and a short distance coefficient function, which
is calculable in perturbation theory. Both factors depend on the factorization scale, which
we choose equal to Q2. Concentrating on the gluon density, in the kinematical region we
are considering the former can be represented as

xG(x,Q2) = ΣnCn(Q
2
0)(αsL)

n + O(αs(αsL)
n) , (93)

where L is the large logarithm in our problem. The coefficients Cn(Q
2
0) contain nonper-

turbative information and depend on the initial scale Q2
0 of the cascade, see Fig.28,

To see what kind of large logarithm could occur, one can examine the probability of
emission Pi of the i-th parton in the cascade. Near x = 0 it can be written as

Pi =
Ncαs

π
· dxi

xi

· dq
2
it

q2
it
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1. In the region of large virtualities of the photon in deep inelastic scattering (but not
at very small values of xB) L is equal to lnQ2.

2. At Q2 fixed (Q2 
 Q2
0 � m2

proton) but at small value of xB we have a different
large logarithm in eq.(2), namely L = ln 1

xB
.

3. When both lnQ2 and ln 1
xB

are large (Q2 � Q2
0 xB → 0) the large logarithm has a

more complicated form, namely L = lnQ2 ln 1
xB

. In this case one can apply the so-called
double logarithmic approximation (DLA) of pQCD. The objective now is to resum these
large logarithms in eq.(9), so that we can estimate the behavior of the parton densities
in the corresponding kinematical regimes. This resummation is performed via evolution
equations, which differ depending on the type of large logarithm under consideration.

11.1 Increase of the gluon (quark) density at xB → 0.

We now investigate the new phenomena at small xB, but begin by discussing the evolution
equations that sum particular classes of large logarithms in the parton densities.

Gribov - Lipatov - Altarelli - Parisi (GLAP) evolution equation.

The GLAP equation sums those contributions in the parton cascade which compensate
the smallness of the QCD coupling constant αs by the large logarithm lnQ2. It reads

d

d lnQ2
φ(x,Q2) = αs(Q

2)

∫ 1

x

dz

z
P (z)φ(

x

z
,Q2) (94)

where P (z) is the Altarelli-Parisi evolution kernel, calculable in perturbation theory, and
φ(x,Q2) is a generic parton density (matrix).

Clearly, from the expression for Pi, we need strong ordering (Q2 � ... � q2
it � ..... �

1
R2

p
= Q2

0) in transverse momenta of emitted partons since only under such a condition does

one get a lnQ2 contribution for each integration over qit in the parton cascade in Fig.28.
This strong ordering means that the GLAP evolution equation allows us to calculate the
probability to find a parton of transverse size rt ≈ 1

Q
inside the initial parton (quark or

gluon) in the hadron at fixed xB (see Fig.29). In the case where both Q2 and 1/xB are
very large (the DLA approximation), the AP kernel simplifies to P (z) = Ncαs/πz, and
the solution to the GLAP equation for the gluon density reads then

xG(x,Q2) ∼ xG(ω0, Q
2
0) exp(

√
4Ncαs

π
ln
Q2

Q2
0

ln
1

x
)

√√√√ ω3
0

3αs ln
Q2

Q2
0

,



– 47 – CBPF-NF-010/95

where ω0 = (Ncαs

π
ln Q2

Q2
0
/ ln 1

x
)1/2, and Q0 is the initial scale of the parton cascade.

•

Problem 19: Find the exact solution of the GLAP equation at low x ( see eq, (94)),
using P (z)|z→0 → NcαS

πz
.

•

Note that the solution of the GLAP equation decreases as Q2 increases. This agrees
with the intuitive notion that, because of asymptotic freedom, the hadron should be
almost empty at small distances.

Balitski- Fadin -Kuraev - Lipatov (BFKL) evolution.

The situation changes crucially if we consider the behavior of the parton density φ
in another extreme regime: at fixed Q2 but small xB. Here we have the large logarithm
L = ln 1

xB
. The picture of the parton cascade, Fig.30, shows that the number of partons

increases drastically in the region of small xB, since each parton in the basic branching
process in Fig.28 is allowed, due to the abundance of available energy, to decay in its own
chain of daughter partons. Let us estimate the total multiplicity of gluons NG associated
with this complicated process.

We are able to estimate the number of cells in this chain diagram, which corresponds
to the typical number of parton (gluon) emissions in one subprocess in our parton cascade
(nG). The characteristic value of ∆yi,i+1, the rapidity difference between two adjacent
rungs of the ladder, is equal to ∆yi,i+1 ∝ 1/αs , from the expression for gluon emission
Pi. Thus

nG =
ln 1

xB

∆yi,i+1
∝ αs · ln 1

xB
. (95)

The total number of NG partons that could interact with the target can then be calculated
as follows (see Fig.30):

NG ∝ enG = ecαs ln 1/xB = (
1

xB

)cαs , (96)

where the constant c should be calculated using the exact BFKL equation [16]. In first
approximation cαs = 0.5.
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11.2 A new scale for the deeply inelastic process at xB → 0.

Thus in the region of small xB the density of partons increases. A careful study of the
behavior of the parton cascade shows that also the mean transverse momentum of the
parton increases. The reason is as follows. In the case where we neglect the running
coupling constant of QCD our theory is dimensionless so each emission leads to a value of
the transverse momenta of the daughter gluons which is of the same order as the transverse
momentum of the parent gluon. This could be seen just from the explicit expression of
Pi. We introduce the ratio | ln q2

i,t/q
2
i+1,t| which characterizes the emission. It is roughly

constant.

After nG emissions

< | ln(q2
n,t/Q

2
0)| > ∝ √

nG ≈
√
αs ln

1

xB
, (97)

since the parton cascade corresponds to a random walk in the variable ln(q2
n,t/Q

2
0) [16][26]

(see Fig.30). Although we will not explicitly present the BFKL equation here, we will give
the solution to this equation with the initial condition xBG(xB = x0) = δ(ln(Q2/Q2

0)).
This is instructive because it shows explicitly all the properties mentioned in the above:

G(y − y0, r − r0) =

√
Q2

Q2
0

· 1√
π∆ω(y − y0)

· exp{ω0(y − y0)− (r − r0)
2

8∆ω0(y − y0)
}

where

ω0 =
αs(Q

2
0)Nc

π
4 ln 2, ∆ =

14ζ(3)

4 ln 2
, y − y0 = ln

x0

xB

, r − r0 = ln
Q2

Q2
0

•
Problem 20: Calculate the mean value of ln(Q2/Q2

0) using the solution of the BFKL
equation.

•

11.3 Saturation of the gluon density.

The increase of the parton density leads to a new problem in deeply inelastic scattering,
namely the violation of s-channel unitarity. This is the requirement that the total cross
section for virtual photon absorption be smaller than the size of a hadron.

σ(γ∗N) � πR2
h (98)
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At small xB the gluon density dominates and we can write

σ(γ∗N) = const
αem

Q2
xG(x,Q2) (99)

where const αem/Q
2 approximates the cross section σ(γ∗g). We have shown previously

that the value of the gluon density increases very rapidly as x → 0. Using the DLA result
(see eq.(11)), we can rewrite the unitarity constraint in the following way, dropping the
const:

αs(Q
2)

Q2
· ( 1

xB
)cαs(Q2) ≤ πR2

N . (100)

Here we replaced αem by αs since the probe can also be a virtual gluon, not just a virtual
photon.

¿From this expression alone one can conclude that unitarity will be violated [25]
at

x < xcr where log
1

xcr

=
1

c
· 1

αs(Q2)
ln(

πR2
NQ

2

αs(Q2)
) (101)

Therefore unitarity is violated even for (very) large values of Q2 when x < xcr. Clearly
the miraculous confinement force cannot prevent this from happening. Thus we have to
look for the origin and solution of this problem within pQCD.

Let us try to understand what happens in the region of small xB by examining the
parton distribution in the transverse plane (see Fig.29) ¶. Our probe (photon) feels those
partons whose size is of the order of 1

Q
. To begin, at x ∼ 1 we have only several partons

that are distributed in the hadronic disc. If we choose Q2 such that

r2
p ≈ 1

Q2
� R2

h. (102)

then the distance between partons in the transverse plane is much larger than their size
and we can neglect the interaction between partons. The only process which is essential
here is the emission of partons that is taken into account in the usual evolution equation.
As x decreases the number of partons increases and at some value of x = xcr partons
start to densely populate the whole hadron disc. For x < xcr the partons overlap spatially
and begin to interact throughout the disc. For such small x-values the processes of
recombination and annihilation of partons should be as essential as their emission. Both
these processes are however not incorporated into either the GLAP or BFKL evolution
equations.

¶Recall that a high energy hadron in the parton model can be represented as a Lorentz contracted
disc.
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What happens in the kinematical region x < xcr is anybody’s guess but there is
enough experience with some models [27] to suggest the so-called saturation of the
parton density [25]. This means that the parton density φ, which we discussed before,
is constant in this domain.

12 Shadowing correction and nonlinear evolution
equation.

12.1 Qualitative Derivation of Nonlinear Gribov-Levin-Ryskin
Evolution Equation

In section 11.3 we remarked that at small x (high energies), the density of gluons becomes
so large that the unitarity constraint is violated, even at large values of Q2. We argued
that the physical processes of interaction and recombination of partons, which are usually
omitted in perturbative calculations, become important in the parton cascade at a large
value of the parton density. To take interaction and recombination into account we must
identify a new small parameter that lets us estimate the accuracy of our calculations.
This small parameter is [25]

W =
αs

Q2
ρ(x,Q2) . (103)

The first factor is the cross section for absorption of a gluon by a parton in the hadron;
the transverse density ρ is defined in eq.( 44). Effectively, W is the probability of a parton
recombination during the cascade. We can rewrite the unitarity constraint eq.(100) in the
form

W ≤ 1 . (104)

Thus, W is the natural small parameter in our problem. Amplitudes that take gluon
recombination into account can be expressed as a perturbation series in this parameter
[25]. We can resum this series, and the result [25] can be understood easily by considering
the structure of the QCD cascade in a fast hadron. Two processes occur inside the cascade

emission ( 1 → 2 ); probability ∝ αs ρ ; (105)

annihilation ( 2 → 1 ); probability ∝ α2
s r

2 ρ2 ∝ α2
s

1

Q2
ρ2 ,

where r is the size of a parton produced in the annihilation process. For deep inelastic
scattering r2 ∝ 1/Q2.
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At x ∼ 1 only the production of new partons (emission) is essential because ρ � 1,
but at x → 0 the value of ρ becomes so large that the annihilation of partons becomes
important. This simple parton picture allows us to write an equation for the density of
partons that properly accounts for all these processes. The number of partons in a phase
space cell (∆y = ∆ ln(1/x),∆ lnQ2) increases through emission and decreases through
annihilation. Thus the balance equation reads

∂2ρ

∂ ln 1
x
∂ lnQ2

=
αsNc

π
ρ − α2

s γ̃

Q2
ρ2 , (106)

or in terms of the gluon structure function xG(x,Q2)

∂2xG(x,Q2)

∂ ln 1
x
∂ lnQ2

=
αsNc

π
xG(x,Q2) − α2

s γ̃

πQ2 R2
(xG(x,Q2))2 . (107)

This is the so-called Gribov-Levin-Ryskin (GLR) equation [25]. The parameter γ̃ can in
fact be calculated order by order in W perturbation theory. Mueller & Qiu [28] found it
to be

γ̃ =
81

16
for Nc = 3.

12.2 The Scale of the Shadowing Corrections

The second term in Equation 107 describes shadowing corrections (SC). Its size crucially
depends on the value of R2. The physical meaning of R2 is clear: R is the correlation
length between two gluons in a typical hadronic situation (at x ∼ 1). In our derivation
of the GLR equation we assumed that there are no correlations between gluons except
those imposed by their confinement in a disc of radius R.

If R = Rh the value of the SC is negligibly small.

If R � Rh, the SC could be large (see Refs. [29], [30] and [31]). Recently Braun et
al [32] performed the first theoretical estimates of the value of R within the framework of
QCD sum rules. They found

R = 0.3− 0.35 fm ∼ 1

3
Rh .

an encouraging result for experimental study of SC at present energies. For the gluon
structure function the solution of the GLR equation is shown in Fig.32 and the value



– 52 – CBPF-NF-010/95

of xG(x,Q2) from which saturation starts depends on the value of R2 . For R = Rp

saturation starts from

xG(x,Q2) > 150 at Q2 = 10GeV −2

while for R = 1
3
Rp

xG(x,Q2) > 15 at Q2 = 10GeV −2 .

It should be stressed that the GLR equation predicts the value of the maximal packing
factor ( PF) which is

PF = < |r2
constituent| > ·ρ (108)

PF does not depend on the value of the radius R and for parton with < |r2
constituent| > =

1
Q2 the GLR equation gives:

(PF )max = 0.21 for Nc = 3

12.3 New Scale of Transverse Momentum (the Critical Line)

12.3.1 The main property of a solution of the GLR equation

First, let us rewrite the GLR equation (see eq.( 107)) in terms of new variables: F =
xG(x,Q2); y = 8Nc/b · ln(1/x) and ξ = ln ln(Q2/Λ2), as

∂2F

∂y∂ξ
=

F

2
· { 1 − γ′exp[−ξ − eξ ]F} , (109)

where γ′ = 2πγ̃/bR2Λ2. The terms eξ ( −ξ) in the exponential correspond 1/Q2 (αs).
Note that the term proportional to γ′ corresponds to the recombination probability W ,
defined below Equation (26). By inspecting eq.(109) we can guess the main property of the
solution. At the start of the evolution, when the value of the structure function is small,
we can neglect the nonlinear term. The derivative with respect to y is here positive, so
the structure function increases monotonically with y, or ln(1/x). This growth continues
up to the value

Fmax =
1

γ′ · exp[ξ + eξ ],

where the derivative vanishes. If F > Fmax the derivative from the GLR equation becomes
negative and Fmax is thus the limiting value of the gluon density and the solution of the
GLR equation as x → 0.
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Therefore, at each value of Q2 there is a critical value of x ≡ xcr when F = Fmax or,
conversely, at each value of x there is a critical value of Q2 = q2

0(x) when F = Fmax. This
value Q2 = q2

0(x) introduces a new transverse momentum scale in the parton cascade.
The behavior of the gluon density changes crucially at Q2 = O(q2

0(x)). Indeed,

F = FGLAP (x, lnQ2) for Q2 > q2
0(x),

where FGLAP means that F is a solution of the linear GLAP equation and a smooth
function of lnQ2. Alternatively

F ∝ Q2

q2
0(x)

for Q2 < q2
0(x)Fmax .

We postpone the discussion of the physical meaning of this new scale and instead deter-
mine first the x dependence of q2

0(x).

12.3.2 Trajectories

A semiclassical analysis offers new insights into solutions of the GLR equation. It is easiest
to find the solution to the linear equation by passing to a moment (ω) representation and
introducing the anomalous dimension γ. In moment representation the solution is as
follows:

F (x,Q2) =

∫
dω

2πi
M0(ω,Q

2)eωy + γ(ω)ξ , (110)

where M0(ω,Q
2) is the initial distribution at Q2 = Q2

0 and the anomalous dimension
γ(ω) = 1/2ω. At large y (small x) we can evaluate the integral in the saddle point
approximation. The position of the saddle point is determined by:

y = − d lnM0(ω)

dω
− dγ(ω)

dω
· ξ . (111)

This equation describes a family of curves y = y(ξ) that can be considered as semiclas-
sical trajectories of parton evolution because ω is a constant of a motion in the linear
evolution equation. The semiclassical values of F along the trajectory give an approxi-
mate estimate of the structure function at fixed Q2 and x. Although this method yields
no new understanding for the linear equation, it can be generalized to the nonlinear case.
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12.3.3 Semiclassical Solution to the GLR Equation

In semiclassical approximation we parametrize the solution to the GLR equation by writ-
ing

F = eS, assuming Sy Sξ � Syξ ,

where Sy = ∂S/∂y , Sξ = ∂S/∂ξ and Syξ = ∂2S/∂y∂ξ. The solution to the linear
equation is S =

√
2yξ, for which one can check that the above inequality holds to good

accuracy.

Thus in the semiclassical case the GLR equation can be reduced to the form:

Sy Sξ =
1

2
(1 − γ′ exp{S − eξ − ξ }) . (112)

Eq.( 112) can be solved using the method of characteristics, or trajectories ([25] [33]
[34]). By introducing an intrinsic time coordinate t along the trajectory and denoting the
derivatives with respect to this time variable by ẏ etc we can rewrite the GLR equation
as the following system of ordinary equations:

ẏ = Sξ

ξ̇ = Sy

Ṡ = 2Sy Sξ

Ṡy = − γ′ Sy exp{S − eξ − ξ }
Ṡξ = − γ′ [Sξ − 1 − eξ ] exp{S − eξ − ξ } . (113)

In the linear case (γ′ = 0) this system of equations has a simple solution:

Sy = ω = Const ; Sξ =
1

2ω
= Const ,

which coincides with eq.(111). We introduce ω here such that it corresponds to ω in eq.
(111). From eq.(113 ) we find

y − y(t = 0) =
1

2ω
t , ξ − ξ(t = 0) = ωt , S =

1

2
t

Thus we obtain

S =
√

2(y − y(t = 0))(ξ − ξ(t = 0)) , y − y(t = 0) =
1

2ω2
(ξ − ξ(t = 0))

The second of these equations corresponds to Equation 33 with γ = 1/ω, the correct
anomalous dimension in the GLAP equation for x → 0. Along each trajectory of the
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linear equation, the rescattering probability W = γ′ exp{S − eξ − ξ } increases at the
beginning when Ṡ ≈ 1, reaches a maximum value when Sξ = (1 + eξ ) and then decreases
at larger ξ. However, the trajectories of the GLR equation become quite different from
the linear ones. Indeed, in the region where W becomes of order one, the derivatives Sy

and Sξ are not small and trajectories are not straight lines. A number of papers ([25] [33]
[34]) have shown that critical line separates the region of almost-linear trajectories (small
values of W ≤ 0(αs)) and strongly nonlinear solutions (see Fig.33).

It is easy to check explicitly that for large ξ,

ycr =
e2ξ

4
; S = eξ − ln γ′ ; Sy = e−ξ ; Sξ ≈ eξ

2
(114)

is the solution of eq.(113) and of the GLR equation as well. To the right of the critical

line (x > xcr) the equation ycr =
e2ξ

4
may be recast as

ln
1

xcr
=

b

32Nc
ln2(Q2/Λ2). (115)

The nonlinear corrections are so small that we can neglect them and use the trajectory
of the standard GLAP equation. However, when x becomes smaller than xcr, W → 1
and we have to use the nonlinear trajectory. Remarkably, this trajectory cannot cross the
critical trajectory (see Fig.33). Using this property, one can suggest the following way to
solve the GLR equation. To the right of the critical line it suffices to find the solution of
the linear (GLAP) equation with the new boundary condition F = eS with S = eξ−lnγ′

on the critical line (see eq.(114)). To the left of the critical line we have a separate system
of trajectories. The solutions to the left do not depend on the solutions to the right of
the critical line. Here we enter the very interesting kinematic region of hdQCD. Even the
GLR equation is not the right tool to solve problems in this region because in addition
to the recombination of two partons, simultaneous interactions of three, four and more
partons are also important in this region.

12.4 The Physical Meaning of the New Scale for the Typical
Transverse Momentum in the Parton Cascade

The equation for the critical line (eq.(115)) introduces a new scale for the value of the
typical transverse momentum in the parton cascade, namely

q2
t = q2

0(x) |x→ 0 → Λ2 e
√

32Nc
b

ln 1
x . (116)
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This new scale plays the role of an infrared cutoff in inclusive production. This new
infrared cutoff has a dynamical origin: parton-parton recombination in the parton cascade.
It is not related to confinement.

The quantity q0(x) is also the Landau-Pomeranchuk momentum [36] in the parton
medium. Indeed, in the saturation region qt < q0(x) the mean free path λ does not
depend on x. In this region λ = 1/σT where σ is the cross-section of parton-parton
interaction (σ ∝ αs1/q

2
t ) and T = xG(x, qt) is the number of partons with transverse

momentum qt at fixed x. If qt < q0(x) T ∝ q2
t φ0 and σT = Const(qt). Thus λ is equal

to the formation length of a parton with x = x0, which can be derived from the relation
q0(x0) = qt. If qt > q0(x) then σT ∝ xG(x, qt)/q

2
t � 1/mx so λ is big. Therefore, q0(x)

is precisely the LP momentum, and the factor C that interpolates between coherent and
incoherent emission of gluon with transverse momentum qt and fraction of energy xj can
be rewritten as follows:

C =
1

1 + x0(qt)
x

· q0(xj)

qt

. (117)

12.5 Correlations

We assumed that the only correlations between gluons in the cascade arise from the fact
that the gluons are distributed in a disc of radius R. The probability to find two partons
with the same value of ln(1/x) and lnQ2 is

P2 ∝ ρ2 . (118)

However this assumption is only correct if the number of colors is large (Nc → ∞) [35].
If Nc is not large, Bartels and Levin et al claim [35] claim that

P2

ρ2
→ exp (

√
4Ncαs

π
ln

1

x
ln
Q2

Q2
0

1

(N2
c − 1)2

) . (119)

Bartels & Ryskin [37] found that this correlation reduces the correlation radius R by a
factor of 1.3 - 1.4 in the HERA kinematic region.

It is also very instructive to write down the evolution equation that takes into account
the correlation of eq.( 119). This is a system of two equations, instead of the single
equation of eq. ( 107), namely

∂2ρ

∂ ln 1
x
∂ lnQ2

=
αsNc

π
ρ − α2

s γ̃

Q2
P2 , (120)

∂2P2

∂ ln 1
x
∂ lnQ2

=
4αsNc

π
(1 +

1

(N2
c − 1)

)P2 − 2α2
s γ̃

Q2
P2ρ . (121)
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Here we assume that the probability to find three partons in the same cell of the parton
phase space is P3 = P2 ·ρ. Without this assumption the last term in Equation (121) reads
as 2α2

sγ/Q
2 · P3. The general equation for Pn is (see Ref.[31] for details)

∂2Pn

∂ ln 1
x
∂ lnQ2

= ωγnPn − nα2
sγ

Q2
Pn+1 (122)

This equation indicates the need for the solution of two theoretical problems.

(i) We should find a general equation for γn, which has the formal meaning of the
anomalous dimension of a high twist (2n) operator (Refs.[31],[38], [35]).

(ii) We need a closed form of the equation which incorporates all Pn for the deep-
inelastic structure function, and its solution.

The first problem was solved by A.G. Shuvaev and us in Ref.[38]. The complicated
problem of gluon-gluon interaction was reduced to that of interaction of colorless “gluon
ladders” (Pomerons). It was shown in Ref.[35] that this idea works for the case of the
anomalous dimension of the twist four operator, in other words, for the case of P2. The
fact that we can consider the rescattering of n Pomerons to find γn (or Pn) signifies that
we are dealing with a quantum problem: the calculation of the ground state energy for an
n-particle bosonic system where the interaction is attractive and given by a four-Pomeron
contact term, with a coupling proportional to λ = 4αs/(N

2
c −1). This observation simpli-

fies the problem and enabled us to reduce it to solving the nonlinear Schrödinger equation
for n Pomerons in the t-channel. It should be stressed that this effective theory is a two-
dimensional one, the two dimensions being spanned by ln(1/x) and lnQ2: the Schrödinger
equation can be written for n particles on a line. It is well-known that this problem can
be solved exactly (e.g. by Bethe Ansatz) and the answer was found to be

γn =
Ncαsn

2

ωπ
[1 +

1

3

1

(N2
c − 1)2

(n2 − 1)] (123)

Although Pomerons are bosonic, maximally two Pomerons occupy a single-particle level
in this groundstate configuration, thus behaving like fermions. This is due to the two-
dimensional nature of this problem. The second problem has also been (partly) solved by
us (unpublished but see Ref.[31] for results). We introduce the generating function

P (x,Q2, η) =
∞∑

n=1

Pne
nη (124)

with P1 = ρ. Using eq.(122) we obtain

∂2P

∂ ln 1
x
∂ lnQ2

=
Ncαs

π
(Pηη +

1

3

1

(N2
c − 1)2

(Pηηηη − Pηη)

−α2
sγe

− ln(Q2)e−η(Pη − P ), (125)
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where Pη = ∂P/∂η, Pηη = ∂2P/∂η2 etc. The deep-inelastic structure function is the
solution of this equation at η = − ln(Q2), viz.

xG(x,Q2) = πR2P (x,Q2, η = − ln(Q2). (126)

Eq.(125) is a new evolution equation which allows one to take into account both initial and
dynamical correlations between gluons in the parton cascade. The key problem in solving
it is nonperturbative in nature, namely to determine an initial condition at x = x0. The
dependence of P (x0, Q2, η) on η describes the correlations between gluons in the hadron
near x ∼ 1. The simplest case is to neglect this initial correlation and use the eikonal
approach for P (x0, Q2, η), namely

P (x0, Q2, η) =

∞∑
n=1

enη
(−1)n+1

n!
P1(x

0, Q2)n = 1− exp(−eηP1(x
0, Q2)) (127)

The solution of this equation has not yet been found (see Ref.[31] for more details).

13 A look at the first small x HERA data.

13.1 25 nb−1 of Experimental Data

Let us list conclusions from the first experimental results at small x from the H1 and
ZEUS collaborations at HERA ([39]):

1. The increase of the value of the deep inelastic structure function F2 at x → 10−4

shows that the gluon density is large:

xG(x,Q2) → 40− 50 at xB = 10−4 and Q2 = 20GeV 2 .

The value for xG(x,Q2) ∼ 50 was determined from the MRSD−′ [40] parameterization
that roughly describes the new data.

2. The ZEUS collaboration measured the diffraction dissociation (DD) ‖ cross section
and found

σDD
γ∗p

σγ∗p
=

5.2 nb

80 nb
= 6× 10−2 atx = 10−4 and Q2 > 10GeV 2 .

‖DD is the process in which a number of hadrons are produced in association with a recoil proton,
whose energy fraction is close to one.
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where σγ∗p is the total cross-section for virtual-photon absorption. We will say more about
the diffractive component shortly.

3. The structure function F2 can be described by the GLAP evolution equation as-
suming that at the initial virtuality Q2

0 ∼ 5GeV 2 the gluon structure function increases
rapidly at x → 0 as xG(x,Q2

0) ∝ x−λ and λ ≥ 0.3. Note that at sufficiently large Q2
0 λ

approaches ω0, which occurs in the solution of the BFKL equation (see section 11.2).

4. Both collaborations measured the total photoproduction cross section σt for very
small virtualities of the incoming photon and also for real photons. This cross section
exhibits a common property of soft processes, namely σt → s∆ where ∆ ∼ 0.08.

13.2 The Value of the Shadowing Corrections from HERA
Data

Let us first try to understand the large number of gluons (between 40 and 50 at x = 10−4)).
An interesting way to do this is to compare the proton at x = 10−4 and Q2 = 15GeV 2

with an iron nucleus, which has a similar number of nucleon constituents. If we calculate
the packing fraction by assuming the size of the constituents to be Rh = 0.86 fm for
the nucleons and rG = 1/Q for the gluons, we find that the two packing factors are very
similar if one assumes the size of the gluon disc to be Rh/3 (see section 4.2). Thus, in this
sense, we see that a proton x = 10−4 and Q2 = 15GeV 2 is very similar to an iron nucleus.

We now estimate the size of shadowing correction ∆F2 for the deep inelastic structure
function. Let us write it as

F2(x,Q
2) = FGLAP

2 (x,Q2) − ∆F2(x,Q
2) , (128)

where FGLAP
2 is the solution of the usual (GLAP) evolution equation. A straightforward

estimate gives

∆F2

F2
∝ αs < r2

G > ρ → 0.1 for Q2 = 15GeV 2 and x = 10−4 . (129)

However, the ZEUS data on diffraction dissociation let us better estimate the value of
SC. Indeed, Levin & Wuesthoff [41] showed that

|∆F2| = FDD
2 , (130)

where FDD
2 relates to σDD

γ∗p in the same way that F2 relates to σγ∗p. In other words
|∆σγ∗p/σγ∗p| = σDD

γ∗p /σγ∗p. ¿From the ZEUS data we can then conclude that |∆F2|/F2 >
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6 · 10−2 . Note that in this case we can begin not only to discuss whether there are SC,
but even whether we could predict this SC value in our theory.

The details of the evolution equation for FDD
2 were discussed in Ref. [41], in which

Levin & Wuesthoff suggested measuring the sum F2 + FDD
2 in which all contributions of

SC cancel. One can use the GLAP equation for this sum, even at small x.

13.3 Saturation of the Parton Density or Different Physics for
“Soft” and “Hard” Processes?

The HERA data allow us to raise the question that is the title of this subsection. Indeed,
we can distinguish two regions in Q2 that have quite different energy behavior of the
photoproduction cross section. The experimental facts that pertain to these regions are
as follows:

1. Q2 � 1GeV 2. (a) The total cross section is essentially constant here (or in-
creases slightly with energy); (b) σDD/σt ≈ 10%. Thus in this kinematic region the
photoproduction process seems to be a typical soft process like a hadron-hadron collision.

2. Q2 > 5GeV 2. (a) The total cross section increases rapidly with energy (x)
σγ∗p ∝ x−λ; (b) σDD

γ∗p /σγ∗p ∼ 10%. This is the typical deeply inelastic scattering process.
Both experimental facts arise from the contribution of a so-called hard Pomeron, which
is a solution to the BFKL equation [16] and leads to σγ∗p ∝ x−ω0 with ω0 > 0.4 while
the smallness of the ratio σDD

γ∗p /σγ∗p has a natural explanation in the small values of SC.

What happens for intermediate value of photon virtualities 1GeV 2 < Q2 < 5GeV 2?
There are two different scenarios for this kinematic region:

1. Landshoff picture At Q2 < 1GeV 2 all experimental data for photoproduction
as well as for other soft processes can be described by the exchange of the soft Pomeron,
which is a standard Regge pole, with intercept αP = 1 + ε (ε ∼ 0.08 � ω0) (see Ref.[3]).
The small value of the ratio σDD/σt can then be interpreted as an indication that the
SC are small and can be treated perturbatively. In particular Donnachie and Landshoff
considered only two Pomeron exchanges. In this scenario the region of deeply inelastic
scattering has different underlying physics described instead by a hard Pomeron. The dis-
tinction between the hard and soft regions seems quite arbitrary at present. However, this
approach is very simple and provides an elegant description of all available experimental
data on soft processes.

2. Saturation of the parton density The second scenario is intimately related to
the hypothesis that the parton density saturates. In this scenario the hard Pomeron is
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responsible for the behavior of the total cross-section in both kinematic regions, but the
small value of the ratio σDD/σt is interpreted differently for large and small virtualities:
For large virtualities it supports a small value of SC, but at small ones we interpret it as
an indication that the SC become very large and lead to a black-disc constituent quark.
The greatest advantages of this scenario are the unified description of both the diffractive
and inclusive processes, and that its solid theoretical background, namely properties of
the hard Pomeron and the shadowing correction in perturbative QCD. It is worthwhile to
mention that strong SC correction gives rise sumalteneously the saturation of the parton
density, smooth behavior of the total cross section at high energy, a natural explanation
of the transition from steep energy behavior of the “hard” Pomeron to smooth energy
dependance of the “soft” total cross section and small value of the diffraction dissociation
cross section in both kinematic regions (see ref. [43] for more information ). However the
data have not yet been described within this hypothesis.

These two scenarios result in different behavior in the region of intermediate virtualities
of photon. In the second scenario we expect some transition region with smooth behavior
of σt vs Q2. A first attempt to extract this behavior from available experimental data
shows that such a transition region does not contradict such scenario [42], but it is still
too early to draw a definite conclusion.

14 How to measure the high density event.

Let me list here the main ideas how to measure the new physics that we anticipate at
high density system of partons:

1. The probability of double parton interaction should be large (of the order of the
maximum value of the packing factor ) about 20%.

The double parton interaction can be seen not only as cross section for production
of two pair of hard jets with the same value of rapidity,but also as a cross section of
the inclusive production of hadrons in the window of rapidity y + ∆y, y − ∆y where y
is the rapidity of a hard jet with transverse momentum pt and ∆y = ln pt

p0
, where p0

is the transverse momentum of produced hadron. It could be also seen as a long range
correlation in rapidity between produced hard jet and produced hadron which is not
specially hard.

2. In the high density event we should see the Landau - Pomeranchuk suppression
of the emission of gluons with transverse momentum smaller that the typical momentum
q0(xB) which can be found from the equation:

xG(q2
0(x), x)

q2
0(x)πR

2
= (PF )max . (131)
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Such a suppression can be seen as the deviation from the factorization theorem for jets
with pt ≤ q0(x).

3. . Decorrelation effect for jets with transverse momentum pt of the order of q0. The
value of transverse momentum for such a jet is compensated not by one jet in the opposite
direction but by a number of jets with average transverse momentum about q0.

4. Polarization of produced hadrons allows us to measure the typical transverse mo-
mentum in the process since in the region of pQCD polarization should be equal to zero.

5. It is seen directly from eq.(9) that the saturation reaches in the system with small
size at larger transverse momentum (smaller value of the gluon structure function). So
this is why we have to create experimentally such compact system. We have three ideas
how to confine the gluons in the disc of the small size:

A. to find a carrier of partons with small size. Even hadron could be such a carrier if
the hypothesis of constituent quarks with small radius will be confirmed experimentally.
However better to use the virtual photon or Pomeron. The last is not well theoretically
defined object and what is Pomeron is one of the questions that the future experiment
should answer. However even available experimental information confirm the idea that
Pomeron’s size is much smaller that hadron one and of the order of RP ≈ √

α′
P ∼

0.5GeV −1 ∼ 0.1Fm. Thus hard diffraction with Pomeron can give a good possibility to
localize the parton system in small disc and to see high density phenomena in the most
clear way.

B. to find the experiment (microscope) that can resolve the small part of the hadron
and investigate it in detail. This idea is realized in so called Mueller - Navalet process
[44] or “hot spot” hunting [45] (see Fig.34).

This process allows us to measure the small ∝ 1
pt2

part of the hadron and using the
two jets with sufficiently large transverse momentum as a trigger e can study the system
with large parton density in many details.

C. Bjorken [46] pointed out that the large rapidity gap ( LRG) processes can give
us new way to look inside the high density parton system. Indeed, due to intimate
relation between inelastic processes and elastic one coming from new reggeon-like approach
the process with the LRG such as two high transverse momentum jet production with
rapidities y1 and y2 but without any hadron with rapidities y1 > yh > y2 can be described
as the exchange of “hard” Pomeron (see Fig.35). The properties of the “ hard” Pomeron
exchange is well known theoretically (see ref. [16] ) and can be checked experimentally.

6. One of the way to measure the high parton density is to select the event with large
multiplicity of produced hadrons. More discussion on this subject you can find in the
report of Fermilab Working Group on QCD [47]
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TOMORROW:

EFFECTIVE THEORY at HIGH
ENERGY

from NONPERTURBATIVE QCD

15 Summary.

Let us summarize where we stand in the theoretical development at high energy physics
and what of the fundamental problems listed in section 9.3 have been solved.

As we have discussed in section 9.5 we struggle with two major problems in pQCD:
(a) Our perturbative series have a natural small parameter αS, but its smallness is often
compensated by large logs, which are different in different processes. In the case of the
processes at high energies ( small x) the real parameter of the perturbation series is
αS ln(1/x) which is not small. (b) The perturbation series is asymptotic because the
coefficient Cn in eq.(45) behaves as n! at large n.

The first problem is mainly technical and has been solved by the BFKL equation.
However this equation carries with two problems, namely, the next order corrections have
yet not been found and the solution of the BFKL equation is influenced by confinement
region. Moreover, such confinement corrections have not been localized in something like
the matrix element of some operator.

The second problem is much more complicated one and it can be solved only if we
understand better the nonperturbative origin (renormalons, instantons,etc) of behaviour
of coefficients Cn. We are only in the beginning of the systematic study of the nonper-
turbative effects in high energy problem ( see ref. [48]).

The origin of the shadowing corrections is also nonperturbative one, but it is new kind
of nonperturbative phenomena which closely related to the high density of the partonic
system. At the moment we can control them theoretically only in the transition region
between pQCD and hdQCD in Fig.19.

Coming back to the list of our hopes in section 9.5 we can conclude that we have
understood better the kinematic region in which we can trust pQCD.
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16 Nearest Future = Theory in the transition re-
gion.

I firmly believe that in the nearest future :

1.

a theory for the transition region between pQCD and hdQCD ( see Fig.19) based on
the BFKL Pomeron and Pomeron interactions will be completed.

2.

we will understand better the manifestation of the BFKL Pomeron and SC (shadowing
corrections) and coming experiments from HERA and Tevatron will help us to understand
better in which kinematic region we can restrict ourselves by new Reggeon Calculus based
on the BFKL Pomeron.

3.

we will find the values of all nonperturbative parameters that we need (like R in the
GLR equation) with help of the nonperturbative QCD methods such as lattice calculation
or QCD sum rules.

The Mueller approach as well as the deep understanding of the correct degrees of
freedom allows us to start to built the effective theory for high energy interaction. It is
interesting to emphasize that this effective theory will be a theory of interaction of the
dimensional objects ( colour dipoles). Therefore, at high energy we have such a system of
partons (particle) in which we can study the theory of interaction of the dimension degrees
of freedom. It seems very attractive, because we can check our theoretical imagination
with experimental data, while the string gang who is doing basically the same trying to
understand how can we build the relativistic theory for dimension degrees of freedom still
have to rely only on theory without any experimental support.

17 Toward the effective theory.

I hope that I have convinced you that the main direction of our movement is toward the
effective theory based on nonperturbative QCD approach, because the principle problems
of high density partonic system cannot be solved without understanding of npQCD. We
hope that in the future we will find:
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1. a selfconsistent effective theory for a high density system in QCD;

2.the analytic solution of hdQCD,using the smallness of the coupling QCD constant
in this kinematic region;

3. a new collective phenomena in hdQCD.

At the present we can see two harbingers of this shining future:

17.1 Effective Lagrangian for high energy QCD.

The first attempt to develop nonperturbative approach to low xB problems was to write
down the effective Lagrangian for the region of small xB. Intrinsically we assume that
such a Lagrangian should be simpler that the QCD one and allows one to apply some
direct numerical procedure (lattice calculation for example) to calculate the scattering
amplitude with this Lagrangian. It should be stressed the attempts to calculate the
amplitude with full QCD Lagrangian have failed by now. At the moment we have two
effective theories on the market: one was proposed by Lipatov [49] which looks not much
simpler that full QCD but it certainly incorporates all results of perturbative calculations,
and the second was suggested by Verlinde and Verlinde [50], which is much simpler and
is suited for lattice -like calculation but it has not been checked how well this effective
theory describes the perturbative results. Moreover there is some indication [51] that this
theory cannot describe the virtual correction in the BFKL Pomeron.

17.2 Thermodynamics of high density QCD.

I firmly believe that we need to write down the correct kinetic equation for high density
QCD. Such an approach has certainly at least one big advantage: the smooth matching
with the GLR equation. Unfortunately we have not yet understood how to write such
an equation in our nonequilibrium situation. However we have understood better the
physical meaning of the new typical momentum in our parton cascade (〈|pt|〉 in section
11.2 ). It turns out that this momentum is the Landau - Pomeranchuk momentum for
our parton medium [24]. Thus the gluon emission with transverse momentum less that
〈|pt|〉 is small due to destructive interference between emission before and after collision
of the parton with other partons in the medium. The experience with the calculation of
the anomalous dimension of high twist gluonic operators also give us understanding why
for bosonic degrees of freedom such as a gluon there could be saturation of gluon density.
Indeed, our cascade is rather a one dimensional one and for such a system the direction
of motion plays the role of spin for fermions.
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18 Conclusions.

We can perhaps summarize our discussion with the following statements.

1. The new kinematic region of high density QCD is wide open for theoretical and
experimental investigation.

2. Perturbative QCD methods have been developed to explore the transition region
between the region routinely analyzed by perturbative calculations for hard processes and
the hdQCD region.

3. Between the kinematic region of soft processes (key words: unitarity, analyticity,
Reggeons, Reggeon Calculus, hadronization models, etc) and the kinematical region of
hard processes (key words: quarks, gluons, parton distributions, asymptotic freedom,
pQCD, evolution equations, etc) is the region of semi-hard processes, where the cross
sections can be as large as the geometrical size of the hadron but with a typical transverse
momentum large enough that methods of pQCD can be applied.

4. New probes have been developed for this high-density QCD region. Although we
still lack some theoretical understanding and cannot provide reliable estimates for these
probes, we firmly believe that they provide a deeper insight into QCD and could lead to
new experimental discoveries.

Phase Transition.

We can represent the predictions of the previous section as a phase transition between
different forms of hadronic (partonic) matter. Our prediction can then be summarized as
the possibility of a phase transition from a quark - gluon ideal gas to a gluon liquid (see
Fig. 36).

Indeed, in the pQCD region (see Fig.19) we can regard a partonic system as an ideal gas
of quarks and gluons because we can neglect their interactions (only emission is essential
here).

When the density of partons increases we approach the region where we must consider
the interactions between partons in a simple approximation and in a situation where this
interaction is not too big. This then is a Van der Waals gas of quarks and gluons. Here
we have a theory based on a nonlinear evolution equation that is the analogue of the Van
der Waals equation for a parton system.

For even larger values of the density, the smallness of the coupling constant results
a small correlation between partons. We call this system of partons a gluon liquid. We
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recall that the density is high primarily because of emission of gluons and quarks inside
this system, which still can be treated in a perturbative way.

The border between the gluon liquid and the Van der Waals gas is the critical line we
discussed in Section 12.3. The trajectory of the GLAP evolution equation that touches
the critical line separates the Van der Waals gas from the ideal gas. The asymptotic of
these borders are also calculable.

In conclusion we want also to recommend you the list of the reviews on the subject
[52] which, we hope, you will be able to understand after these lectures.
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Figure Caption:

Fig.1: The exchange of the resonance with spin j.

Fig.2: The exchange of the Reggeon.

Fig.3: The Reggeon trajectories.

Fig.4: Resonance - Reggeon Duality.

Fig.5: The Pomeron structure in the Veneziano model.

Fig.6: The structure of the parton cascade.

Fig.7: The random walk of parton in transverse plane.

Fig.8: The single diffraction dissociation process in the Pomeron approach

Fig.9: The triple Pomeron diagram.

Fig.10: An example of enchanced Pomeron diagrams.

Fig.11 The AGK cutting rules for two Pomeron exchange.

Fig.12: Hadron -dueteron interaction.

Fig.13: The process with multiplicity 2 < nN > (a) and < nN > (b).

Fig.14: The ν Pomeron exchange diagram with µ cut Pomeron.

Fig.15: Pomeron diagrams for the total,elastic and diffraction dissociation cross sections.

Fig.16: Pomeron diagrams for inclusive cross section (a) and rapidity correlations (b).

Fig.17: One and two parton shower processes.
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Fig.18: Single diffraction dissociation in Reggeon approach.

Fig.19: The map of QCD.ρ is the parton (gluon ) density
and r is the distances resolved in an experiment.

Fig.20: The “Pomeron” Calculus in QCD.

Fig.21: The Born Approximation (BA) of pQCD.

Fig.22: The next to BA of pQCD for quark-quark scattering:
emission of one extra gluon.

Fig.23: The next to BA of pQCD for quark-quark scattering:
α2

S correction to elastic amplitude.

Fig.24: The next to BA of pQCD for quark -quark scattering:
gauge invariance trick.

Fig.25: The next to BA of pQCD for quark -quark scattering:
the resulting answer for one extra gluon emission.

Fig.26: The relation between colour coefficients.

Fig.27: The BFKL equation.

Fig.28: The basic branching process in DIS.

Fig.29: The parton distribution in the transverse plane.

Fig.30: Structure of the parton cascades at low x and
the coherence in “ladder” diagrams.
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Fig.31: The random walk picture in ln k2
t .

Fig.32: The behaviour of xG(x,Q2) versus Q2 at fixed x.

Fig.33: Trajectory of the nonlinear GLR equation.

Fig.34: The Mueller - Navalet process.

Fig.35: Large Rapidity Gap process.

Fig.36: The phase diagram for hadron - hadron collisions for zero rapidity
in cm frame. W is the absorption probability defined in eq. (103).
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