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Abstract

A matter self-interacting model with N = 1-supersymmetry in 3D is discussed in con-
nection with the appearance of a central charge in the algebra of the supersymmetry
generators. The result is extended to include gauge fields with a Chern-Simons term.
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Ordinary and supersymmetric Abelian gauge models in three-dimensional space-times
have recently been fairly-well investigated [1]. Besides their relevance in connection with
the possibility of getting non-perturbative results more easily, the ultraviolet finiteness
of Yang-Mills (and gravity) Chern-Simons models is a remarkable feature of field the-
ories defined in D = (1 + 2) [2]. Also, 3D gauge theories seem to be the right way to
tackle exciting topics of Condensed Matter Physics such as high-T, superconductivity and
fractional quantum Hall effect [3].

Our purpose in this paper is to assess a typical three-dimensional gauge model with
N = 1 supersymmetry from the point-of-view of the algebra of supersymmetry generators.
We actually wish to present here a few remarks on the connection between topologically
non-trivial solutions, the Chern-Simons term, and the presence of a central charge operator
in the supersymmetry algebra.

The super-Poincaré algebra in (24 1) dimensions is generated by a real two component
spinorial charge (}., where the operatorial relations are denoted by

{QG}QB}=2P65 e [Qa-jPab]=0, (1)

where P,; is the translation generator. We shall represent vectors in twofold way: for
Lorentz indices we will use greek letters and for bi-spinorial indices we will use latin
letters, bearing in mind the mapping Va5 = V.(7#)as [4]. The super-Poincaré algebra (1)
for an extended supersymmetry for more than one flavour, is generalized to [5]

{Q:. 1 f.} = 25'.qu5 + Aijeubs
[Q:: ’ Pflb] = 0,
[Q; , A k] = 0, (2)

with i,5,k = 1,...,N, € the Levi-Civita tensor and A*F = —A’f the central charge,
which is an internal symmetry Lie group generator. To recognize if a quantum field
theory is consistent with supersymmetry we need to obtain the supersymmetry generators
(supercharges) for the specific model we are working with. What we will emphasize in
this paper is that though the algebra (2) is always valid at a classical level, it is avery
formal relation. The local features of a system are presented by the current algebra, that
depends, as we will see, on the details of the model [6]. With this point of view, we
will analyse in detail how the various terms (consistent with the internal and external
symmetries, which can appear in a (2 + 1) dimension supersymmetric model) contribute
to the equal time current algebra. The next step, which will be pursued in a next work,
is to verify the commutation and anticommutation relations about the other components
of the current, where we we will find the so called Schwinger terms after quantisation.
These are the basic issues in the quantization program, in terms of the Green’s functions.
It describes the anomalies present in many particle processes.

We will use the following representation for the matrices v, having 7#* = (—;+,+)
signature of the metric tensor

wr=(s1) =3 &) =-(57) ©
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Using the charge conjugation matrix C,;! that works like a netric tensor in the spinorial

space. It may be written as '
0 —i
c=(17'), (®

where we have Oy = ~Cpa = C% e CpC% = 6 6‘5}. Then the Clifford algebra for
the -y matrices, that will be important for the computation of the current algebra is

() (v)as = n** ,
(P)2( = 178% — i€V, (1°), ,
()e' ()% = —n*¥,
() (7" )y = =0*"Caa — £ €**(Yp)ad,
()" (P W (19)a* = —ierre,

(1)a(7 ). (1°)°4 = 1€72Caa + 0°*(1*)aa = 1°*(7)aa — 1**(¥*)ta - (5)
This paper i3 outlined as follows: in Section 1, a self-interacting scalar model is pre-
sented and the SUSY algebra is written down with the explicit form for the centarl charge
operator; the introduction of the gauge sector is discussed in Section 2. Finally in Section

3, one discusses the supersymmetric version of a Chern-Simons term and the connection
it bears with the central charge is investigated. Some general conclusions follow.

1 Self-Interacting Scalar Model

The representation of the scalar superfield expanded in # Taylor series, where 8 is a two
conponent Majorana grassmanian variable is given by

8(z,0) = A(z) + 0°¥a(z) — O F(a); (6)

where A(zx) is a physical scalar field, 1,(z) is a fermion field and F(z) is an auxiliar field.
The supersymmetric covariant derivative is obtained knowing that it commutes with the
supersymmetry generator Q,. It is given by

D, = 8, + i3, (7.2)
[Ds, Dy] = 2Py, (7.b)

Now it’s possible to write an action, that is a scalar with respect to the symmetries
(supersymmetry, Lorentz). This is

_ 1 2 1 2, Age
Seecatar = fd"zd’a{—z(Da@) +2m¢ + 8(I> , (8)
where this expression is invariant by the following transformation in its component fields:
A = —¢ 'fbn )
g = —€(CuF + i0aA),
§F = —id’v,. (9)

1We will use the notation of the reference [4]
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As we want to work with an "on shell” model, and using the definition of the Berezin
integral (f d260 = D?|), we get the component action:
Seaaclur = fdaz { % [%(acb A)(aabA) + 'Ibaiaab ’sbB] + m'ybz + %Ad,? A2 +
- I1m?A? — ImaAt - Lnas }, (10)

and we can verify that this action is invariant under the ”on shell” transformation on the
component fields

A = —€,
Sa = —é [c,,, (—%mA— %AA"') +i6¢5A], (11)

As we know the supersymmetry is a symmetry of the action and not of the Lagrangean.

Thus we have, in fact, two terms for the current: one originated by action variation and

other originated by the Noether theorem. We will obtain the current in components and

then introduce the equations of motion of the fields on it, to obtain the "on shell” currents.
Using the projection notation, we get

58 = f PrdOSL = & / Fz |- 046D L)) | = € / Pz [-0s(A)],  (12)

Making a straightforward computation in the ”off shell” action, the SUSY current results

A% = %5 {iA&“:/;d 4+ mAY® 4 %Aw"} : (13)

Now using the equations of motion for the expression (10) and then substituing the
transformation (11), we get

aL
(3(%5 ‘I’) 60

In this way, using vectorial notation we obtain the Noether current:

A

Z A3 l b _1_ b
2A) FIPO A Sl A], (14)

=¢ [—1§“c¢° (mA+
o=y A 2

\ :
JY = =i (7)ae (mA+ EAa) = %spvp'abb('fﬁ)bca”A +
1 1 ]
+5be A+ 5 A e ~ %5"”1‘13»'!’“(79)», (15)

The supercharge is defined

Q. = jd’IJoc
_ fd’a:{—i!b“(’}’o)ae (mA+ %A"') $ i g A+ AP+

3V (B A+ G ABY () (16)
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- As we will use the canonical graded commutation relation for computation of the current
algebra, we take the canonical conjugated momenta of the fields for this specific model.
They are
8L i Y () i
My, = — = — £ = — b (")
Ya a¢c 2 3301,{)“ 2¢(1)b ¥
_ 8L 10(0%A)0.4) 1 '
I, = ry il 56, A —23°A, (17)
The canonical relations are seen to be
{"abd(x) 3 '!)°(y)} = 21 ('To)ac‘sg(z - y) ) '
[Az), 8% Aly)] = 26z - y), (18)
A lengthy calculation yields the following expression for the charge anti-commutator:

{Qc:Qb} =]d2$)<
_25{%[ 21 ¢‘(TD)¢560¢‘5 + (8°A)(3°A) + 2:9° (‘Ti)obai‘!ﬁb +(3'A)(6'A)+
— ¢i(m+ 3247 + ((m?A7 + Imaat + 1049 ] } (0w +

(1 . )
—2i{Z 2i9° (). 9 + (90 4) (27 4) } (). (19)
If we compare this expression with the 0 4 component of the "improved” energy-momen-
tum tensor

p 188 2 &5
S LR T T

where S in this expression indicates the action (10), we may rewrite (19) as

(@, @) = 2P (0 + 2065 [ P2 @A) (e (mAZH), (D)

Observe that the mass and selfinteraction A ¢* terms contribute to a central charge of the
supercharge algebra, in its two component Majorana representation. In fact, when we
take the chiral components of the charges we get

{@f,Q*} = 2£(P°+P‘)~2jd2: (mA+-)iA3)32A,

(20)

2

{@=,Q"} = 2i(P°— P') -2 /d’z (mA + %Aa) hA,
(Q*,Q} = —2iP? -2 fd“z (mA + %A"') BA, (22)

where we note that the central term contributes also in the ++ and—— anticommutation
relation, unlike the bidimensional case, where it appears only in the +— relation. This
case is more complex that one studied by Witten and Olive in their paper [7], because
that in three dimension the 4% matrix mix the chiral components. The last terms in r.h.s.
of equation present a bidimensional solitonic solution, whose analisis is in course.

Bearing in mind the last issue, we will only use the relevant terms for the Majorana
central supercharge for the gauge field model.
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2 On the Abelian Gauge Model

We construct a minimal coupled supersymmetric model by complexifying the scalar fields

in the expression (8). Then we will have a phase symmetry {(gauge), and when its param-

eter becomes local the gauge symmetry becomes local too, provided that the derivatives

are covariantized. As we have, in fact two derivatives, that represent the translations in

the two sectors (bosonic and fermionic), we will have to covariantize these two derivatives:
1) The Majorana one is written as

Vo=D, Fil,, (23)

where I'; is a gauge superconnection with a super helicity A = lv and the signs — e +
means if the derivatives is acting in the (scalar) superfields ® ou @ respectively, ® being
the comolex conjugated of ®. I'; is represented by # Taylor expansion series

Fc = Xa + Bb(cch + i%b) + 62 (2Aa - iaabx5) ] (24)

where A, is the (gaugino) spinorial field, V,; is the usual gauge field, B a auxiliar scalar field
and y, another auxiliar spinorial one, by supersymmetry. We will eliminate the auxiliar
fields using the suitable gauge fixing, so called Wess-Zumino gauge, that explicitly breaks
the supersymmetry, but stress the physical content of the multiplet I';. We show the gauge
field and its supersymmetric transformation, that will be usefull for later computation.
These are

[, =10V, —26%),, (25)

and

6Va = t€g Ay,
dA, = %fc cla 1/(.:)5- (26)

2) The covariantized vectorial derivative is written as
Ve = Day + irabs (27)

where [y is the vectorial gauge superconnection. As we know, in order to have irreducible
representations of the symmetry we need constraints in our model. In the supersymmetric
case we have the so called convenctional constraint, that acts in such away that the
supersymmetric algebra of the Majorana derivatives {V,, V3} = 2i V4 + Fyp will have
F, = 0. Then we easily compute that

Tap = —%D(a Ty, - (28)
implying that in the Wess—Zumino gauge we have
Tub = Voo + 10 hy = 5020 Vi’ (29)
By the graded Bianchi Identity we redefine the gauge field as

W, = %D”DJ‘;,, (30)
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with the constraint D*W, = 0 (D*DyD, = 0), implying as in the usual Lorentz gauge
that exists only one independent component of the field W,. Using the projector method
we write '

1
Wal =X, DuWi| = 58V + 0aVa?) = fu, (31)

with f,s the usual gauge field strenght. Another relations that will be very important and
that may straightforwardly be obtained are (conf. ([4])):

VoV2 =iV iV, £ iW, e (V)2 =0 F:iW*V,, (32)

where O means the covariant by I'y; d’Alembertian. Now we are in position to obtain
terms which respect the symmetries to built a scalar action.

2.1 Scalar Superaction with a Background Gauge Field

We work, for simplicity with a background gauge field, but all the assumptions can be
extended to a dynamical one. Qur action is obtained by complexifying and minimally
coupling with the gauge field the action (8), resulting in

1 a &
Sercater = =5 f &z 0 {(V* B)(V.8)} (33)
Redefining the component field (we can always do this), by the projector
Sl=A , &=4,
VQ‘I’I = ¢a y v 5' &a ’
V|=F , Ve|=F. (34)

Thus in the "on shell” component fields, in the Wess-Zumino gauge, it turns

=%/d"x{$“iﬂj¢b+¢“wa"%+A|:|A'+ADA}, (35)

with the "on shell” supersymmetric transformation:

6* = iD¥A |, by = —c“iDy A,
bA = -y, , ObA= -9, (36)
Analogously to scalar case we can obtain
A® = —i§* V"L| . (37
we get

A% = %a; {AD® g + ADP B} . (38)

And by using the equations of motion, we have

L _of Yoy R b T e .
(aaaa@)6¢,=w_e{ 2[¢D6A+1!)DcA+¢c(D A) + (D A)]}. (39)
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Then the Noether current in the vectorial notation is

C o o
P = S [0 (1)ac B A+ (1)ac B Al — 5 (0% A + 9.0 A) +

- %(ﬁa" Y. + A8 P) + %E”” (A8, ¥ + A8, ¥")(Yo)acs (40)
resulting the supercharge
Q = [dz).=
= [Pop{- P A+ B A) + T ()ue B A+ () B AL
— (A8 + AB B + ie%F (ABi¥* + ABP)(%)ac) )
The canonical conjugated momenta that will be necessary for supercharge algebra are
My, = =), T, = ()’
I, = (D°A) , Iz = (D°4), (42)
giving the canonical commutation and anticommutation rela.tioﬁs

{98, 9} = i()“&@—y) , {9} = i) (= -y),
[A, DOA] = 62(3 -y, [4, DGA] = 62(3’ -y)- (43)

Making a long computation using the v matrices Clifford algebra we reach the result
{Qu, @} = -2i P()as — i [ 2 {AA@VICu} (44)

where the P# is the (0 ) component of the improved energy-momentun tensor 7#*. The
second term in r.h.s. of the above expression is a central Majorana (super)charge. Observe
that this term depends on the magnetic field, as it was a infinite line of magnetic flux in
a four dimensional space.

3 The Supersymmetric Chern—Simons Term

For this model we will add a supersymmetric Chern-Simons (CS) term and we will verify
how it modifies the supercharge algebra. For this purpose, we begin with the gauge
invariant CS term definition

M a
Sos =7 f Pz d0 v W, , (45)

where M is the mass parameter, which is generated by this proper term, and ¢ is the
gauge field coupling constant. This expression in components, using the Wess—Zumino
gauge becomes

Sos = ;“% f Pz [i V(8. V) + 43, (46)
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where the first term in r,h.s. is the known CS term. Now including the term (45) in the
action (35), and then calculating it "on shell”, i e, taking into account the equations of
motion for the F , F fields (which it are not affected by the CS term) and of the A% field
for which the equation of motion allow us to choose

{ 8.5 A% = 0,

)«‘:%%z,b"ﬁ—&"A). (47)

Then the on shell” Lagrangean is

Lin = 00000+ S0 () 0 — L0 A)0.A) + SO AV, +

—-V“A(a A) + ﬂemv av,, (48)

with the "on shell” supersymmetnc transformation:

§¢° = i D®A |, S = —i DA,
§A = —€*ih, , §A = —-6“&-.,
5an = ié(akb). (49)

In the same sense that we already do, we have
(Acs)?® = —6“ W44 - $PAV', (50)
and for equations of motion,

( 9Los ) 5§
a aﬂ-b Q b=y,4,Va

and, finally the vectorial Noether current is

= {i- Ve (¥*A — iA) — 8.V (Yud - zl_:.;A)]} . (51)

(Jscs)e = %V“ (#ch‘i - @A) : (52)

with the component supercharge

(@scs)e = /d“x(chg) = fd’-t{ ‘qbcA Pe )} . (53)

Summing in the supercharge (41), and using the same canonical representation as the last
case, we get the supercharge algebra that involves only the CS supercharge as

{Qa 1QB}CS = 2':P#(Vo)(‘7ﬂ)nb- (54)

What we observe is that the V° potencial field is completely eliminated from the algebra,
implying that the Chern-Simons "corrected” T°# component of energy-momentum tensor,
defined as "new” P* becomes independent on the potencial gauge field. It is possible to
say that the the conjugated momenta of the A an A fields are in fact "corrected” by the
CS term to become I, @ 8°A and T« 8°A . This indicates that the CS term play a
role similar to a partial gauge fixing, eliminating one degree o freedom of the gauge field,
refering to the algebra.
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4 Conclusions

The basic motivation of this paper was to analyse the 3-dimensional counterpart of a
well-known result by Olive and Witten {7], namely, the appearance of a central charge in
the supersymmetric algebra as originated from non-trivial topological field configurations.
Here, in thepresence and in the absence of gauge fields, we could conclude that vortex-
like field configurations are reponsible for a central charge in the supersymmetry algebra,
even in the case of a N = 1-supersymmetry. It is worthwhile to mention the results
obtained by Lee, Lee and Weinberg [9] where a central charge comes out in context of an
N = 2 extended supersymmetric model. We would like to pint out that the calculations of
Section 3 recall that the Chern-Simons term for the gauge field does not give contribution
to the central charge appearing in the algebra. The latter arises exclusively from the
matter sector and its existence to the vortex-configurations of the scalar fields. Clearly,
the réle of the gauge fields is to render finite the vortex energy [8].

Next, we would like to analyse the presence of central charges in the models recently
proposed by Dorey and Mavromatos [10] to study P, T conserving superconducting gauge
models whwnever the latter are supermmetrised. One could perhaps understand whether
or not centralcharge may be related to some physical aspects of superconductivity.
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