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ABSTRACT

Within the framework of an effective field theory we discuss
the phase diagram (ferromagnetic phase stability 1imit) and magne
tization of a quenched bond-mixed spin--% Ising model in aniso-
tropic simple cubic lattice for both competing and non competing
interactions. Although analytically simple, the present formalism
is superior to the standard Mean Field Approximation regarding at
least two important features, namely it is capable of providing:
(i) vanishing critical temperatures for one-dimensional systems;
(ii) expected non uniform convergences in the highly diluted and
highly anisotropic 1imits. The generality of the model under consi
deration enables the exhibition of a certain amount of physically
interesting crossovers (dimensionality changes, (dilute) -
(non dilute) behavior, or even mixed situations) at both the pha-
se diagram and magnetization levels. Whenever comparison is pos-
sible a satisfactory qualitative (and to a certain extent quanti-
tative) agreement is observed with results available in the lite-

rature.



I - INTRODUCTION

During the last decade a considerable theoretical and experi-
mental effort has been dedicated to the study of quenched random
magnetic crystalline systems. Two basic problems are usually dis

cussed, namely the site-random and the bond-random ones; the for-

mer has been illustrated through several substances, 1like anZn]_pFE]]

[2,3] [4] [5] [6]
RbZanMg]_pFZ]. . Feng.I_pCQ,Z . RbZCOng1_pF4 » KzanFe]_qu_ Y

[7] [9]
FepCo]_pCQZ. 2H20 . FepCo]_p anTe

b

[8]
Cezod , Cdy

among others; although experimentally more complicate, a bond-ran-
dom-1ike problem has been exhibited at least in one case, namely

[10]
the Co(SpSe]_p)z >
essentially through superexchange via the S or Se atoms (thus si-

in which the Co atoms interact between them

mulating coupling constants J and J'). Most substances present iso
tropic or anisotropic Heisenberg-like interactions; however if a
strong uniaxial spin anisotropy (due, for instance, to the crysta-
Tline influence) is present, the Ising model can be a convenient re
presentation with the further advantage of being theoretically more
tractable. Concerning random versions of this model several frame-

works have been used such as Monte Car10[11’12]

[13,14]

, high-temperature

expansions variational method []5], perturbati-

ve methodsE]6'22] (effective-medium, coherent potential, random pha

se approximations), duality and/or replica trick arguments[23'29],

[30] [31-40]

exact arguments ,renormalization group approaches among

others (see also Ref. [41]).

Recently Honmura and Kmmwoshi[42]

presented, for the Ising
model, a new type of effective field theory which, without intro-

ducing mathematical complexities, substantially improves on the



standard Mean Field Approximation (MFA). This framework (see Ref.[43]
for a pedagogical version); based in the introduction of a differen-
tial operator into the exact spin correlation function identity ob-

[44], provides in particular a vanishing critical tem-

tained by Callen
perature for one dimensional systems as well as non trivial non uni-
form convergences in complex phase diagrams; it is well known that
the MFA fails in recovering this type of results. This procedure sha
res with the MFA a great versatility and has already been applied

[45-47] [48]

to several situations such as pure » Site-random , bond-ran

dom[49'52] Ising bulk problems as well as surface ones[53’54].

A11 three Refs.[50], [51] and [52] refer to the quenched bond-mi
xed spin-% isotropic Ising model (the nearest-neighbour coupling
constant associated with each bond is assumed to take values J or J'
with arbitrary concentrations; a = J'/J); in Ref. [50] the vanishing
temperature square lattice problem for o = -1 (competing interactions)
is discussed; the extension to all temperatures and all values of o
(i.e. non competing as well as competing interactions) is performed in
Ref.[51]; finally in Refi[52] we present a preliminary report concer-
ning the finite temperature simple cubic lattice problem for non com
peting interactions (o > 0),.

In the present paper we follow along the lines of the three pre-

ceding references and consider, for all temperatures, the anisotropic

simple cubic Tattice problem for non competing as well as competing
interactions. Two (mutually non exclusive ) main sources of crystalline ani
sotropy may exist, namely anisotropic coupling constants or anisotro-
pic bond occupancy probabilities; we are herein particularly concer-
ned by the former (the latter will be the subject of a forthcoming pu

blication). We calculate the spontaneous magnetization as =~ a func-



tion of temperature and bond concentration for a large class of ca
ses and specifically exhibit the most interesting situations (in
particular those related to lTinear chain «-square lattice <« cubic
Tattice crossovers). By imposing the condition of vanishing magne-
tization we obtain the critical surfaces associated with the ferro
magnetic phase stability limit (within the present theory the ferro
paramagnetic Phase transitions are obtained to be of the second order
one in agreement with common expectations; the discussion of even-
tual ferromagnetic < spin-glass phase transitions at relatively low
temperatures are beyond the scope of the present work). A1l the pha
se diagrams appearing in Refs.[50-52] are herein recovered as parti
cular cases.

In Section II we introduce the general model we are interested
in as well as the theoretical framework within which we discuss it
in Section III we treat a great amount of important particular cases;

the overall conclusions are presented in Section IV.

I1- MODEL AND FORMALISM

Let us consider a system whose Hamiltonian is given by
= -3 . 0.0, ., g, = &
W= o5 o i 040 (0, o5 =+ 1) (1)
where <i,j> runs over all the nearest-neighboring couples of sites
of a simple cubic lattice; J.. is a random variable associated

1]

with three different distribution laws along the three crystalline
directions (denoted by 1, 2 and 3), namely

Pr(Jij) = (1-pr)a(aij-a;) + pra(aij-ar) (r = 1,2,3) (2)
where we assume 0 < P, S 1 (¥r), 0 ¢ J] < dy < Jy > 0 and J; <
¥r). Note that by imposing these conditions we are not physically
restricting the model (we recall in particular that in the simple
cubic lattice, all other choices of the signs of {Jr} correspond to
models which are isomorphic to the ferromagnetic one we are conside

ring here).



Before going on let us introduce the following convenient notation:

1,2,3)

o

, Jr/J3 (r

(3)
1,2)

1l
[t}

Yq = Jgq/93 (a

where we can verify that 0 < Y1 S Yy S 1, u1S Yy» @9 <YYo and aq < 1.

The starting point for the statistics of our Ising spin sys

[441

tem is the following Callen identity (see also Ref.[55]1):

<o,> = <tanh B8 §Jij°j> (4)
where B = 1/kBT, <...> indicates the canonical thermal average
for a given configuration of the {Jij} and j runs over the nearest

neighbours of the site i. Following Honmura and Kaneyoshi[42]

we
introduce the differential operator D = 3/3x into relation (4) and

obtain

<o.> = <exp(BD§Jijoj)> tanhx|, .

= II L)+ O i .
< J,[ cosh(BDJ1J) + 0 s1nh(BDJ1j)] > tanh x|, _g (5)

When applied to our model this relation may be, through te-
dious but straightforward algebra, rewritten in the following com-

pact form

6
<0. = . i .. I .
;> {ﬁ[f03> s1nh(BJ1JD)k¢j cosh(BJikD)

1 .
— > : s s .
Y3 kg 5k <050 9y> 5111h(BJijD)s1r1h(eJikD) sinh(BJ;, D)

II )
23 k.2 cosh(BJ1mD)



-]
5T |2

e . < 0:0,0,0 0>
k=j 22j,k mzj Kk, n=j,k,8&,m J

L m ™ n’
sinh(BJijD) sinh(BJikD) sinh(BJiQD) sinh(BJimD) sinh(BJinD)

. ta 6
pgj,k,z,m,n COSh(BJwD)]} nh x|y g (6)

where the subscripts run from 1 to 6 in order to refer to the 6
nearest-neighboring sites of the i-th one, and where we have used
the property f(D) tanh x|x=0 = 0 valid for any even function f(D).
Note that the exact equation (6) yields a set of relations bet-
ween the magnetization of the i-th site and associated multi-spin
correlation functions once the bond configuration {Jij} is comple
tely specified.

The central scope of this work is to estimate, from Eq.(6)
and for arbitrary values of the temperature and the bond concen-
tration, the spontaneous magnetization of the system, and to ex-
tract from this knowledge the critical frontier which separates the
ferromagnetic phase from any other (to be more precise we intend
to determine the Timit of stability of the long range ferromagne-
tic order). It is clear that if we try to exactly treat all the spin-
spin correlations present in Eq. (6) and to properly perform the
configurational averages which are still to be done, the problem
becomes mathematically untractable (see also Ref.[55]). We shall
therefore proceed as follows: we take on both sides of Eq. (6) the
configurational average (denoted by <...>J), then completely  de-

couple the multi-spin correlation functions



-6 -

and use the fact that our model is a quenched one and
therefore the distribution laws associated withdifferent bonds are

independent among them. It is clear that within these approxima-

Lions (where spin-spin correlations are neglected) the strict
criticality of the system is lost (in particular the critical ex-
ponents are going to be the classical ones, and the real dimen-
sionality of the system is only partially taken into account
through the coordination number z);nevertheless the present frame-
work is, as already mentioned, quite superior to the standard MFA:

[45-54] and,

this point has already been verified in several models
for the present one, will be exhibited further on. The magnetiza-

tion satisfies

<<o.>>5 = m = 2Am + 2Bm3® + 2Cm?® (7)
with
- 2 2 2 2 2 A2

A = [s]c]c2c3 + S,C,CaCy + 53c3c]cz]tanhx i (8)
B = [s]c](52c2 + s%cé) + 52C2(52Ca + sicg) + s3c3(sac2+§2ca)

+ 4sys, 830 ¢051  tanhx|, 4 (9)
C = [S]C.lszzsg + 32C252352-I + 53C352-|322] tanh XlX:O (]0)
where

S, = <vsinh(6J1.J.D)>J = (1-p,.) sinh(BJ D) +p., sinh(gJ D) (r=1,2,3)
(11)
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and

. = < cos‘h‘(B.J1.J.D)>J = (1-Pr) cosh(BJl;.D) + P COSh(BJrD) (r=1,2,3)
(12)

where we have explicitely used the distribution laws (2). Eq. (7)
admits two solutions, namely m = 0 (non ferromagnetic phase) and

a non trivial one (associated with the ferromagnetic phase) given by

1/2
. [-B-/ BZ-ZC(ZA-’I)] (13)
2

The critical surface characterizing the ferromagnetic phase

stability limit is determined by m = 0, hence

2A =1 (14)

We can verify in all physically meaningfull cases that Bg0

and C>0 and that A > 1/2 (A < 1/2) in the ferromagnetic (nonfer-
romagnetic) phase; these facts are related to the second order pha
se transition behavior of the magnetization we have observed (se-
veral illustrations are presented further on). We can also verify

that the square lattice case (Ji = J] = 0) leads to C = 0 and

A

(52c2c§+ s3c3c§) tanh x]X .0 (15)

low)
I

2 2
(s,c,85 + 53055,) tanh x|, _ 4 (16)

and that the linear chain case (Ji = J] = Jé = J2 = 0) leads to
B =C =0 and



A = sjcy tanhx|  _ g (17)

This last situation deserves a few comments. By replacing Eq.

(17) into Eq. (14) we obtain

(1-p3ftanh28dy  + 2p3(1-p3) tamp(J3+d3) + pitarh2gdy = 1
(18)

We remark that: a) in the case J3>0 (we recall that J3<d;>0 by
convention) the unique solution is Tc = 0 and it exists for all
values of p; b) in the case J3<0 the unique solution is(p,T& =(1,0).
Both predictions of this theory are exact as it is well known.

As anticipated this is a substancial improvement on MFA which
can be herein recovered (see for example Ref[54]).

by introducing in Eq. (18) tanhx = x which, if J) > 0 leads to

3
MFA '
and, if Jé < 0, leads to
0 if p < Pe
MFA
keTHEA | , . (20)
B'c 2[-(1-p3) [I3] + p3dz] if p > p,

where p_ = [J3|/(|J5] + J3). A1l these results exhibit the well
known failure of MFA-type theories for one-dimensional short-ran
ge-forces systems.

The model introduced in Egs. (1) and (2) 1is very general
and the magnetization is a function m(t,p],pz,p3; Qq505,035Y75Yp)

where t = kBT/J3; the stability 1imit we are interested in corres



ponds to a 8-dimensional hypersurface in a 9-dimensional parame-
ter space. It is therefore clear that we must restrict ourselves
to the (sequential) discussion of many particular cases. In the

present paper we will be concerned with the model which is iso-

tropic in the bond occupancy probabilities (i.e. Py = B = P3 =p).

In a forthcoming paper we shall present another set of important

particular cases corresponding to general values of {pr}.

ITI - PARTICULAR CASES: RESULTS AND DISCUSSION

Herein we intend to present and discuss the results (phase
diagrams and magnetization) corresponding to several interesting

models (within the restriction Py = Pp= P3 = p as antecipated).

III.1 - Pure anisotropic models

These models correspond to the particular situation p = 1,
3 (i.e. Va1,a2,a3) or equivalently a, = Yy @p = Y, and
ag = 1 ¥p. The associated phase diagram in the (y],yz,t)—space

is presented in Fig. 1

The critical temperature associated with z=2(which corres-
ponds to a linear chain, i.e. d = 1) is obtained by imposing Yy =
Yo = 0: it vanishes in agreement with rigorous arguments (we re-
call that the MFA leads to t§f§;2)= 2). The critical temperatu-
re associated with z= 4 (which within the present description cor-
responds to the square lattice, i.e. d=2) is obtained by imposing

vy = 0and v, = 1; it satisfies the equation tanh &2 tanh f— =2

c C

hence tc(z = 4) = 3.0898, which is to be compared with the exact
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result tgxact = 2.2692,.. (MFA Teads to tgFA(z=4)=4). The present
value for tC coincides with those obtained in Refs.[42, 51, 58-60].
Finally the simple cubic lattice (z = 6; d = 3) herein corresponds

to vy = v, = 13 its critical point satisfies (inagreement with Ref.
6 , 4 h 2 _ 16

[49]) tanh Tt 4 tanh — t 5 tan =3
c c c

which leads to t.(z = 6) = 5.0733 (to be compared with tzer1es

* 4.51120%71 and with thA(z =6) = 6). We remark in both z = 4 and

z = 6 cases that the present framework tendsto overestimate (however qui

te Tess than the MFA) the critical temperatures: this fact comes
from the neglectance of multi-spin correlations. We shall come back

gpto this pointiin Subsection'IEEL‘Z. 3.

Let us now discuss Tc(y];yz) in the neighborhoods of the points
z =2, 2z =24 and z = 6 (see Figs. 1.a and 1.b). Along the Tline Yy = 0
we obtain

(21)

no) —

and, in the limit Yo 0 (hence tC - 0),

4/t
Vg - 2t et (22)

The exact critical 1ine associated with Yy = 0 is well known[56]
and given by tanh t;] = exp(-2y2/tc), which leads to the result in

dicated in Eq. (21) (which is therefore exact and responsible for

the good agreement between dashed and full lines in Fig. 1.b)’ as

well as to v, ~ t_ e"2/tc

in the limit Yo > 0. The discrepancy we
observe between this asymptotic behavior and the one appearing in
Eq. (22) is such that, as before and for the same reason, the co-

rresponding critical temperature is overestimated.
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Along the Tine Y1 = Yp we obtain

dT . ( )
TC(1’]) dY] Y1 = 1 3

and, in the 1imit Yy > 0 (hence t. > 0),

o e tte (24)

Y] ~ t
~The value 2/3 can be compared with 1, obtained for both MFA
and series (from Ref. T[61]).

Finally along the line yp = 1 we obtain

dT 1
_1___5_(1L__) n 0.7968 (25)
T.(0,1) dy, Yy =0
and
] dTC(Y],1) 1 (26)

The value 0.7968 can be compared with % (MFA), 1(Bethe Peierls
approximationEZJ) and the much larger value (% 4) given by series cal
61,621

culations Finally the value 1/3 can be compared with the MFA

value (also 1/3), the Bethe-Peierls approximation one (= 0.203 from
[62]) and the series ones (= 0.345 from [6]] and = 0.366 from [67]).
Concerning the distinct physical regions schematically indi-

cated in Fig. 1.c let us clarify a few points. Region I is a single
point (and corresponds to the strictly one-dimensional model), re-
gions II (quasi one-dimensional models) and III (fully two-dimensional
models) are linear, regions IV, V and VI are very small in surfa-
ce (IV and VI correspond to quasi one-dimensionality and V to qua

si two-dimensionality) and the (big) region VII corresponds to



full three-dimensionality. In region II (region VI) the general be
havior is typically one-dimensional excepting for quite low tempe-
ratures where the two-dimensionality (three-dimensionality) is ex-
pected to emerge; in region III (region VII) no such d = 1 < d =2
(d =1 <« d = 3) crossover exists. Analogously in region V the be-
havior is typically two-dimensional excepting for quite Tow tempe-
ratures where the three-dimensionality will emerge; no such
d =2+ d=3 crosserr exists in region VII. Region IV is parti
cularly interesting: one dimensional behavior is expected for in -
termediate temperatures (comparable with J3), two-dimensional be -
havior is expected for quite low temperatures whereas three-dimen
sionality will emerge at much lower temperatures. Later on these
facts will be specifically illustrated, in particular by conside-
ring diluted systems.

In Fig. 2 we present several examples of the thermal behavior
of the magnetization. We can follow therein the progression from

the z 2 case (wherem =1 for T = 0, and m = 0 otherwise) to

the z

1

6 case (isotropic simple cubic Tattice pure ferromagnet)
passing through the z = 4 case (isotropic square lattice pure fer

romagnet). The z = 6 case has also been discussed in Ref.[49].

ITI1.2 - Random-bond 1isotropic models

This family of random-bond models correspond to the particular
situation where all axes are equivalent in what concerns the cou-

pling constants.
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IIT1.2.1- Linear Chain (z=2):

Herein we consider J] = Jo = Ji =‘Jé = 0 and Jé < J3&xzdé/d3s1),
The associated phase diagram has already been discussed in Section

I1: we recall that a > 0 implies TC =0, ¥p € [0,1], and that

o < 0 implies that the critical frontier is reduced to the sin-
gle point (P,TC) = (1,0). The magnetization is given, in the case
o > 0, by

1 if T =0, Y p e [0,1]
(27)

0 otherwise
and, in the case a < 0, by

1 if T =0 and p =1
m = (28)

0 otherwise

A1l these results are well known to be exact.

I111.2.2- Square lattice (z=4):

Herein we consider J] = J] = 0 and J2 = Jé = Jé < J2 =J3
= JOUxE Jé/JO).Theassociated phase diagram is presented in Ref.[51].
In the present Section we discuss the magnetization as a function

of temperature and Jo—bond concentration. The magnetization is

given by m = [(1—2A)/23]1/2
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The condition (14) determines the critical surface in the (p,
t,a) - space (see Fig. 3). The critical line associated with the

bond-diluted model (a = 0) is given by

a(1-p)3p tanh = + 6(1-p)%p? tanh =
c o
£3(1-p)pS(tanh = + tanh ) + L p*(tann 2 + 2 tanh 2) =1
t t 2 t t
C o o o
(29)
which  provides a bond-percolation critical probability

Po = pc(u=0) ~ 0.4284. This value coincides with that obtained
in Ref. [55] and is to be compared with pexaCt = 1/2[63:l and

c
with pcMFA

= 0. Within the present framework the square lattice
ordered (ferromagnetic) phase is overstabilized (and consequent

ly Pe is underestimated): as already mentioned this is related

to the neglectance of multi-spin correlations. Eq. (29) also
yields
1 dTC(p)
TTT)- E-p—-—— _ v 1.345 (30)
o p=1
and
-2/t (p)
de C
( —pc) av ‘ v 1.156 (31)
P=p
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The first result is to be compared with the exact valuel 131
1.329... and the second one with the exact va]ue[23] 1.386...
Let us stress that it is rather remarkable the fact a simple effec-
tive field theory is capable of providing the exact asymptotic

forms for the critical 1ine simultaneously in both limits T = 0

and p -~ 1.
The critical Tines associated with 0 < o < 1 present (see Fig.
3), as expected[38], a non uniform convergence in the limit o » 0,
Let us now discuss the phase diagramsassociated with o < 0. At

T =0 we obtain, respectively for o« = -1/3, -1, -3 the following
results: P (0=-1/3) » 0.6346, p (o=-1) = 5/6 and p_(a=-3) 2 0.3308.

The value R:(a = -1) = 5/6 corresponds to a concentration of
antiferromagnetic bonds equal to 1/6 = 0.1667; this value compares
well with 0.15 -0.20 (Monte Carlol317), 0.166 (replica methodt®%)),

0.167 (Bethe method[®°7), whereas other methods[66-68]

provide a
lower value (= 0.1). For negative values of o other than -1/3,-1
and -3, the present treatment provides a curious situation at T=0
as it leadsto p_(0 > a > -1/3) = 0.600, p(-1/3 > a > -1) = 0.659,
pC(-l > a > -3) = 0.909 and pC(-3 > a)x 0.945. It is clear that
these results are physically unacceptable as there is no reason for
such a complex sequence of non uniform convergences through which
large classes of critical lines share, at T ='0; single points. Con

sequently we consider this fact as a mathematical artifact of the present

approximation. Within this context o = -1/3, -1, -3 constitute ex-

ceptional points. Let us conclude our discussion of the square
lattice phase diagram by saying that, excepting for the low
temperature region associated with almost all negative values
of a, the present prediction (Fig. 3) can be given a reaso-
nable degree of qualitative (and to a certain extent quantita

tive)_confidence.
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In what concerns our results for the magnetization m,we indi
cate in Fig. 4 the evolution of m(t,p) as a function of a; in Figs.

5 and 6 we present illustrative sections of the same surface.

III. 2-3 - Simple cubic Tattice (z=6):

Herein we consider J] = Jé = Jé = Jé < J1 = J2 = J3 = JO
(o = Jé/JO). The associated phase diagram for a > 0 (non competing
case) is presented in Ref. LSZ]. In the present section we extend
this diagram to a < 0 (competing case) and discuss the magnetiza-
tion as function of temperature and Jo-bond concentration as well
as the phase diargram inthe (p,t,a) - space (see Fig. 7). The crjtica]

line associated with the bond-diluted model (a = 0) is given by

6 6 4 2
p-[tanh & + 4 tanh £ + 5 tanh-fl‘
+10p5(1-p)[tanh % + 3 tanh % + 2 tanh % ]
4 2 4 2
+ 40p (1-p)“~[tanh T+ 2 tanh-fj
+ 8Op3(1—pfﬁmnh % + tanh %]
+ 80p2(1-p)4tanh %-+ 32p(1-p)5tanh % = %? (32)
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The equation leads, in the 1imit t>0, to the bond-percolation critical prob-

ability P.=p_(a=0) & 0.2929 which is to be compared with p €71 x q.247(6%
MFA

ngA = 1/3U0] (CPA = Coherent Potential Approximation) and Pe

= 0.

We verify that, contrarily to what happens for the square lattice,

series

c (assumed almost exact), and therefore

P.(a=0) is higher than p

the present framework now understabilizes the ferromagnetic phase.

This is the first time in this work we are facing a counterexample
of the general tendency (of the present approximation) to overesti
mate the stability of the ferromagnetic phase. What happens is that
the neglectance of multi-spin correlations introduces a tendency
towards ferromagnetic owvwerstabilization which is however strongly

modulated by topological considerations, and can even be reversed.

The situation is illustrated in Fig. 8 where several z=4 and z=6
cases are presented. By remembering that a Bethe-tree corresponds
to an infinite effective lTattice-dimensionality we remark that:(i)
the present approximation has an overall tendency to overestimate
(underestimate) the ferromagnetic stability for sufficiently low
(high) dimensionalities; (ii) the overestimation tendency increases
with temperature (or equivalently the wunderestimation tendency decrea
ses with temperature), and consequently eventual "crossings" (see

3 examples in Fig. 8) are a priori expected to occur in such a way
that T_(z) > Tgxact and p_(z) < p&XACt. (3ii) excepting the MFA, the

c
dispersion of the results associated with a given coordination num

ber z tends to be smaller at low temperatures (i.e. the incompleteness
of z as topological information tends to be less crude at low tem-
peratures). It is possible to partially overcome this type of difficul

[45,46]

ties by incorporating into the present formalism multi-spin correlation effect

(this is however out of the scope of this work).

Eq.(32) also yields
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dT_(p)
1 c
~ 1.200 (33)
and
—2/tc(p)
_p ) de ~ 1.596 (34.)
(T-p.) T ) = 1. .

The first of these results is to be compared with the approxi-
mate values 1.060 (from [21]), 0.881 and 0.900 (from [39]); the se
cond one is to be compared with the approximate values 1.770 (from
[21]), 2.176 and 1.811 (from [39]). As before we remark that the
present simple effective field theory provides the (possibly) ex-

act asymptotic forms for the critical line simultaneously in both

Timits T > 0 and p - 1. Furthermore the critical lines associated
with 0 < a < 1 present (see Fig. 7) the expected non uniform conver
gence in the limit a -+ 0.

Let us now discuss the phase diagrams associated with a < 0.
At T = 0 we obtain the following results: pc(a=-]/5) ~ 0.4818,
p.(a=-1/3) » 0.5531, p.(a=-1/2) » 0.6084, p_(a=-1) = 23/30,
pc(a=-2) X 0.8663? p.(a=-3) ~ 0.9061 and pc(a=—5) v 0.9342,

For negative values of o other than -1/5, -1/3, -1/2, -1, -2,

-3, -5 the present treatment provides, in the 1imit T -~ 0, the sa

me curious situation obtained in the z = 4 case, namely that large

classes of critical lines share (at T = 0) single points. As
before we consider this result as mathematical artifact

of the present approximation. Let us conclude our discussion of the
simple cubic lattice phase diagram by saying that, excepting for
the low temperature region associated with almost all negative values

of o, the present result (Fig. 7) can be given a reasonable degree
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of qualitative (and to a certain extent quantitative) confidence.

Our results for the z = 6 magnetization m(t,p) evoluate, as
a function of a, similarly to the z = 4 case (see Fig. 4); in Figs.
9 and 10 we present illustrative sections of the z = 6 surfaces

m(t,p) for different values of a.

ITI.3 - Bond-diluted anisotropic models

Herein we consider J; = J; = J3 =0 (hence oy = a, = a3 = 0)

and 0 < J1 < JZ < J3 (hence 0 < Y, oS Y2 < 1). The magnetization is
given by Eq. (13). Eq. (14) provides the phase diagram in the (p,t,y],yz)-spacev
Selected critical lines are presented in Fig. f], where in particular we can
remark the d =1 <«> d=2,d=1+<«+> d=3andd =2 «>d =3
crossovers.

The evolution of the magnetization m(t,p) as function. of
(y], y2) is represented in Fig. 12, and illustrative fixed concen-

tration sections of this family of surfaces are represented in Fig.

13.

ITI. 4 - Random-bond anisotropic models

Herein we consider (quite briefly) our last particular case,

I

namely J;/J9y = J5/35= J3/95 (hence o ap = 03 T a 1) and

0 < J] < J2 < J3

situations appear for 0 < a << 1, however the numerical and appro-

> 0 (hence 0 < Y1 < ¥p < 1). The most interesting
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priate graphical sca]es are such that; instead of presenting quan-
titative results, we shall restrict ourselves to the qualitative
description of the phase diagram: its main properties are illustra
ted in Fig. 14 (out of scale). Furthermore the evolution of the mag
netization m(t,p) with a qualitatively indicated in Fig. 15 (out of

scale) for the model 0 < Yy % Yy << ]

IV - CONCLUSION

We have discussed the phase diagram (stability Timit of the
ferromagnetic phase) and the magnetization of a quite general ran
dom system, namely the quenched bond-mixed first-neighbbring spin-
% Ising model (with both competing and non competing interactions)
on anisotropic simple cubic lattice. To perform these calculations
we have adapted to the present situation an effective field frame-
work (based on the use of a convenient differential operator) intro
duced by Honmura and Kaneyoshi in 1978. This formalism is, from the
analytical standpoint, almost as simple as the standard Mean Field
Approximation (and, because of neglectance of multi-spin correlations
shares with it the fact that the critical exponents are all Landau-
type, and the related fact that the topology of the system is only
partially taken into account, esentially through the coordination
number); nevertheless we verify that its results are quite superior
in at Teast two important senses, as it is capablie of providing: (1)
vanishing critical temperature for one-dimensional systems; (ii)
expected non uniform convergences in the highly diluted and highly
anisotropic limits. We have illustrated both properties through ma-

ny examples in which interesting crossovers (d 1 «+d=2,d-=1

<+ d=3,d=2++d=3;d=]<——>d=2<—+d '3,

]



(dilute) - (non dilute) as well as mixed situations) occur; ins-
tead of recalling here the main results associated with the varie
ty of physically important particular cases considered herein, we
rather refer the reader to Figs. 1,3,4,7,11,12,14 and 15 where the
most relevant situations are exhibited.

The calculation of several particular values and various asym
ptotic behaviors (essentially in the low temperature, quasi pure
and high anisotropies 1imits) and, whenever is possible, their com
parison with those available in literature (and obtained through
other techniques) supports the belief that the results provided by
the present framework can be given qualitative (and to a certain ex
tent quantitative) confidence.

In a forthcoming paper we intend to discuss effects which ha-
ve not been analyzed herein, namely those due to anisotropy in the
bond occupancy probabilities.

It is with pleasure that we acknowledge interesting remarks

from I.P. Fittipaldi.
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CAPTION FOR FIGURES

Fig. 1 - Critical reduced temperature of the pure (p = 1) ferromag

]l
oy
~—
—
o))
~—
-+
i

net in anisotropic simple cubic lattice (z
kBTC/J3 as a function of Y1 = J]/J3 and Yy = J2/J3‘
(b) T./T_(z = 4) along convenient lines, namely vy, = 0 and

1(z=2)

Yo € [0,1]1 (exhibition of the crossover between d
and d = 2(z=4)), v, = 1 and vy €[0,1] (exhibition of the

crossover between d = 2(z = 4) and d = 3(z = 6))and fina

ly Y1 = Yy €[0,1] (exhibition of the crossover between

d = 1(z =2) and d = 3(z = 6)); for square lattice the
exact resultl®®] tanh Ja/kgT. = exp(-2J,/kgT ) (dashed 11
ne) as well as the MFA one (1) are indicated as well;
for simple cubic lattice the series (0)[57] and MFA (#)
are also indicated. (c) We have indicated (out of scale)
in the (y], yz) - space the physically interesting (and
non equivalent) situations namely: I - associated with

Yy = Yo = 0 (d = 1); II- associated with Yy =0 and

0 < Yo << 1 (crossover d = 1 <> d = 2); III- associated
with Yy = 0 and 0 < Yy £ 1 (d = 2 region; in particular
Yp = 1 corresponds to the pure d = 2 isotropic model);
IV- associated with 0 < Yy << vy << 1 (sequence of cros
sovers d = 1 <> d = 2 «> d = 3); V- associated with

0 < vy <<y, ¢ 1 (crossover d = 2 > d = 3); VI- associa
ted with 0 < Y1 S Yp << 1 (crossover d = 1 «> d = 3);

VII- associated with 0 < y; < v, <1 (d = 3 region; in par
ticular Y1 = Yp = 1 corresponds to the pure d = 3 isotro

pic model).
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2 - Examples of the thermal behavior of the reduced magneti-

zation for the pure (p = 1) ferromagnet in anisotropic
simple cubic lattice. The roman numbers are associated with
the regions appearing in Fig. 1.c,and herein respectively
correspond to Y1 yz} ={(0,0.05); (0.1, 0.1); (0,1);
(0.4,1)5 (1,1)% for the curves II, VI, III, VII'and VII.

Examples of critical lines (ferromagnetic phase stability
Timit) associated with the quenched random-bond Ising model
in square lattice (z = 4) for both competing (o = JS/J0<0)

and non competing (a > 0) cases.

Influence of o = J(‘)/J0 on the magnetization as a function
of temperature and concentration for the quenched random-bond
Ising model in square Tattice (z = 4). Remark the non
uniform convergence of the family of surfaces in the limit

o > 0.

T = 0 section of the family of surfaces representedin Fig.

4 for various values of o = Jé/do

Fixed concentration sections of the family of surfaces re
presented in Fig. 4 for various values of o = J,/J, (a)

a >0 3 (b) a<©

Examples of critical lines (ferromagnetic phase stability
1imit) associated with the quenched random-bond Ising model
in simple cubic Tattice (z = 6) for both competing (o =

J'/d

o/dg < 0) and non competing (o > 0) cases.
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Comparison between quenched bond-diluted Ising ferromagnet

critical lines associated with typical z = 4 (a) and z = 6

TMFA/‘J

(b) cases. The MFA line is given by k = zp; the z-

40 71 72](kBT§xact(”/

= 2/4n [2/@-2)] and pexact__]/(z 1)); the z = 4 (z = 6)

coordinated Bethe tree line is exact[

o
present theory line is given by Eq.(41)(Eq.(51)); the non-

crossing diagonal square lattice line is almost exact[73]

kgT X2t (1) /70, =3.93..7and p&2¢t = 0,321 ); the squa

B ¢
re lattice line is almost exac’c[29’40’73:I (kBTﬁfaCtU)/Jo

= 2.269... and pexact_ 1/2[63]) the triangular Tlattice

[ 74]

line is almost exact[753(k TexaCtH)/J0 = 3.64... and

B'c
pi%aCt==0.347[§§g);the simple cubic lattice Tine is a rea-

sonable approximation[39](kBTimﬁesU)/JO = 451120571 and

pee 1S = . 247069]y,

T = 0 section of the surfaces of the z = 6 magnetization

function m(t,p) for various values of o = J(')/J0

H
[¢)]

Fixed concentration sections of the surfaces of the z

magnetization function m(t,p) for various values of a

JS/JO. (a) a > 0; (b) a < 0.

Examples of critical lines associated with the quenched
bond-diluted anisotropic model; the pairs of numbers re-

present (y];yz) where Y

Ji/ds (i = 1,2). Although not
graphically visible in all the cases, all the critical 1i
tisf dT/d = o© , . - T -
nes satisfy(dT/ p% 5[%(2) The (131) and (0.4;1)
lines correspond to region VII of Fig. 1.c and are clear-

ly d = 3; the (0.13;1) - Tine can be considered as belon-
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to region V of the same figqure and exhibits the d = 2
= 3 crossover; the (03;1) - and (0;0.5) - lines corres
to region III and are clearly d = 2; the (0;0.05) -
can be considered as belonging to region Il and exhi-
the d = 1 «= d = 2 crossover; finally the (0.1;0.1) -
can be considered as belonging to region VI and exhibi
ed=1%>d = 3 crossover. Within the present scale

impossible to satisfactorily represent the region IV
us say vy, = 0.005 and Yy = 0.1) in order to exhibit

=1 «>d =2 +>d = 3 crossover; however it corres-
to a line whose critical temperature practically va
s at p = pc(z = 4) but nevertheless exhibits a thin

which strictly vanishes only at p = pc(z=6).

tion of the magnetization m(t,p) as function of 0ﬁ,yZ)
v; = Ji/J3 (i =1,2), for thekquenched bond-diluted
tropic z = 6 model. The two vanishing-temperature

s are universal. The d =1 <> d =2 and d = 2 +~ d =

overs are exhibited.

concentration sections of the family of surfaces re

nted in Fig. 12 for various values of (y;;v,)

ted critical Tines (out of scale) associated with the

hed random-bond anisotropic model with J%/Ji = 0
1,2,3) and 0 < Y1 S Yp$ 1 with vy, = J;/d5 (i = 1,2).
oman numbers refer to the regions defined in Fig. 1.c.
k the richness of crossovers (in particular the IV -
exhibits the d = 1 «++ d = 2 +- d = 3 «» (non dilute)

over).
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15 - Out of scale illustration of the influence of o = J%/Ji

(i = 1,2,3) on the magnetization m(t,p) for the quenched
random-bond model in the anisotropic z = 6 model. Thepre-
sent example refers to 0 < Y1 § vp<< 1 (y1 = JT./J3 (i = 1,2)).
Remark, for 0 < o << 1, the d = 1 «» d = 3 <> (non dilute)

crossover,
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