" RANDOM MAGNETISM

C. Tsallis

Centro Brasileiro de Pesquisas Fisicas/CNPq

Av. Wenceslau Braz 71 - Rio de Janeiro — Brazil

The "ingredients" which control a phase transition in well defined systems as well
as in random ones (e.g. random magnetic systems) are listed and discussed within a
somehow unifying perspective. Among these "“ingredients” we find the couplings and
elements responsible for the cooperative phenomenon, the topological connectivity as
well as possible topological incampatibilities, the influence of new degrees of free-
dom, the order parameter dimensionality, the ground state degeneracy and finally the
"quanticity" of the system. The general trends, though illustrated in magnetic sys-—
tems, essentially hold for all phase transitions, and give a basis for connecticn of
this area with Field theory, Theory of dynamical systems, etc.

I ~ INTRODUCTION .

Since the early 70's a very rapidly increasing (theoretical as well as experimental)
effort has been dedicated to study partially defined systems (glasses, polymers, ran—
dom magnets, etc) in the sense that the definition of the system itself involves ran—
dom aspects (e.g. the nature of the elements of the systems, their interactions, their
- mean positions in condensed matter, etc). In particular, in random magnetism (spin-
glasses, bond- or site- mixed or dilute magretic systems, etc) converge several pro-
blematics, related to the kind of long range magnetic order (commensurate or not), to
the cross—over between different universality classes, to the underlying geometrical
structure in what concerns its topology (regular lattices, Bethe's trees, cacti, par-
tially removed loop structures, amorphous systems, etc) or its occupancy (independent
or correlated site and/or bond percolation), to the method of preparation (annealed or
quenched) of the system, etc. By now only a few of these points are clearly under-
stood, some of them are only partially enlightened by preliminar theoretical and/or
experimental work (therefore quite a number of controversies exist on these grounds),
and finally a great mumber of aspects are still to be attacked. Within the theoreti-
cal approach a new non trivial difficulty must be handled: confiqurational .averages
besides the traditional thermal ones.

In the present work we have no intention of exhaustive réview of the area of random
magnetism, not even of all of its outstanding featureg(we shall indicate here and there
the appropriate References): we shall restrict ourselves to list down the main "ingre-
~dients” which control phase transitions in well defined systems (Section II) and how
they emerge in random systems (Section III). Though the general trends we intend to



point out pratically hold for any phase transition, we haye yoluntarily chosen most
of our illustrations related to magnetic systems. ILet us also stress that the list
(certainly incamplete) has been constructed onsimplicity or familiarity (for search-
ers in the area) grounds rather than within a strict logical classification; there—
fore some of the "ingredients" are closely related among them, and could of course
have been listed together.

For clearness reasons let us introduce same precision in the current words we shall
use. A critical phenomenon is characterized by the fact that small variations of the

causes lead to big variations of the effects (for a mathematical formulation of this

concept see R. Thom's Catastrophe Theory; for example Ref. (1)). The critical phe-

nomenon will be called cooperative (or nom cooperative) according to whether it is

(or it is not) driven by the mutual enhancement of a particular tendency of the ele-

ments of the system (the fall of aruler at the edge of a desk can clearly be consider-
ed as a non cooperative critical phenamenon) . Each element might "know" about the

others through energetic couplings (in the Hamiltbnian or Lagrangian), through quan-

tum effects such as symmetrization—antisymmetrization of the wave functions, through

particular bounds, etc. Among the cooperat-ive critical phenomena we find the phase

transitions and the regime changes. The former connect two or more phases (collective
states* of thermodynamical equilibrium) of a macroscopic** system (e.g. ferromagnet-
ism or gravitational condensation of a gas of stars to form a galaxy ); the latter

connect two or more regimes (collective states of non equilibrium) of a (not necessa-
rily macroscopic) system (e.g., the trigger of the laser effect, the laminar or turb-
ulent water flow through a tap).

The theoretical study of a phase transition typically (but not exclusively) leads to
the analysis of the thermodynamic free energy F=U-TS (U,T and S being respectively
the internal energy, the temperature and the entropy). In the limit T™»0, U dominates
and the cooperation (hence the order) is favoured; in the limit To«, S dominates and
the cooperation (hence the order) is depressed. Anything which "helps" U enhances
the phase transition, i.e. the critical temperature T o increases (more generally the
less disordered phase expands in the intensive parameter space where appears the phase
diagram) and/or the eventual long range order becomes stronger and/or several correl-

ation functions decay more slowly with distance. We shall next list the various "in-
gredients" which enter on these grounds.

* Two phases might be different even if there is no breakdown of the symmetry (i.e.
both are invariant with respect to the same group of symmetry), in other words if
both have the same type of macroscopic order or disorder (see for example Refs.(2-5)).

** Only in the thermodynamical limit (N») appear the various singularities which
characterize a phase transition.



IT - WELL DEFINED SYSTEMS

II.1 - Cooperative couplings

Obviously the phase transition is enhanced if the coefficients of the couplings res-
ponsible for the cooperation become stronger. Ferromagnetism exhibits this fact as
typically T «J, where J is the exchange integral which couples nelghbormg spins (see
for example Ref (6 .a) Another example might be superconductivity where, in the 1;-1/%’;
up > 0 of the BCS approximation, it is (see, for example, Ref. (7)) T, L, 14T e F
(T u and pp are respectively the Debye temperature, the electron—lattlce 1nteractlon
ooeff1c1ent and the density of electronic states at the Fermi level), hence T, monot-
onically increases with u. Finally in gauge theories on lattices where a gauge invari-
ant interaction appears characterized by a coupling constant A (see, for example,
Ref. (8)), the correlation function < exp i & d) > is assymptotically proportional
to e P if A is big enough and to e Aifa s?nall enough (<---> denotes the canonical
mean value, ¢j an angle associated to the j-th site, @ a sum over a closed path
(Wilson loop), and P and A respectively the perimeter and the area of the Wilson
ioop) . In other words, the less disordered phase corresponds to big values of A.

- I1.2 - Cooperative elements

The phase transition will be depressed if the concentration of cooperating elements

decreases. This is self-evident and clearly related to the previous Subsection, asif

the cooperation comes from let us say a two-body interaction, anything which weakens

either the two elements or their interaction will obviously depress the critical phe-
nomenon, To illustrate this let us imagine a regular linear chain where exist first-
and second- neighbour ferramagnetic interactions. If we call M(N) a certain magnetic

(non magnetic) atom, we will clearly have lower magnetic disorder in a crystal

... MM ... than in a crystal ...MMM... )

IT.3 - Topological connectivity

If the connectivity between the cooperating elements of the system is increased, the
stabilizing "messages" which a given element receives from the others will also.in-
crease, therefore the phase transition will be enhanced. This fact explains why for
any particular model (e.g. the Ising model) Tc monotonically increases with the space
dimensionality d.By the way, this is the reason why the Mean Field Approximation
(MFA) , which underestimates the fluctuations, systematically overestimates Tc; further-
more it is not surprising that at sufficiently high dimensionality the MFA  becomes
exact, as there the high connectivity makes the fluctuations to become neglecta:ble in~-
deed. From Ref, (9.a)we can obtain an illustration of the preceding statements, narﬁely
for the simplest ferromagnetic Ising model (n=1) we have that T c/'I‘ (where T and

MFA

T, ~ are respectively the actual and the MFA critical temperatures) equals 0 for a=1

(linear chain), 0.57 for &=2 (square lattice), 0.75 for d=3 (simple cubic latticdand



1 for @ + = (simple hypercubic lattice).

A second illustration (still for n=l) of the influence of the connectivity might be
taken from Ref, (10) where, for different two-dimensional Jlattices, we have that
kBT C/qJ (where g and J are respectively the coordination number and the exchange

integral) equals 0.51 for the honeycomb (g=3), 0.57 for the square lattice (g=4) and
0.61 for the triangular lattice (g=6).

A last illustration can be taken from the range of the cooperative interactions. If
we have a ferromagnetic exchange integral J,. which decays with the distance R,.
(between the sites i and j) as e lj/A (or as g/Rx ) then T must be a monotom:cL:-J-
ally increasing (or decreasing) function of A (or of X); furthennore the MFA becomes

exact in the limit A + « (or x »+ 0) (see, for example, Ref. (11)).

IT.4 - Topological incompatibility

There exist situations where topological constraints prevent, even at vanishing temp-
erature, the full and simultanecus "satisfaction" of every single few-body micros-
copic interaction. In such cases, on one hand the total internal energy is not as low
as it should be without those topological constraints, on the other hand the entropy
tends to be favoured by a high degeneracy of the ground state. As a consequence  of
these facts, the eventual long range order that might appear is not a simple one (Like
ferromagnetism or antiferromagnetism), it tends tc be incommensurate* with the under
lying (crystalline) structure (as it is frequently the case of helimagnetism; see,for
example, Ref, (6.b)), and its stability is quite vulnerable.

Such situation appears in the triangular lattice with first-neighbour antiferromagn-—

(13) ore in the sense that

etic Ising interactions. This case is a fully frustrated
if we consider an elementary triangular plaquette, there is no up-down configuration
of the three spins (at the vertex of the triangle) which simultaneously satisfies

the three bonds.

Another illustration of the influence of a topological incompatibility is given
by tﬁe R-S model(l4) . This magnetic model essentially consists in a set of parallel
layers: within a layer the spins are strongly coupled through a ferromagnetic inter-
action, and between first- and second- neighbouring layers exist exchange inter-—
actions respectively characterized by Jl >0 and J > % 0. At low temperatures the
system presents, for sufficiently high (low) values of ¢ = J 2/J 1’ a ferromagnetic
(helical) long range order. At high temperatures the system is paramagnetic for any
value of a. The three phases coexist on a very special point, the [Lifshitz point
(noted L on the plane p=1 of Fig. 1); another very interesting point (noted M on

(15)

the same figure) is the multiphase point , which separates at vanishing  temper-

-ature the two ordered phases. Now, all the interesting features of this model come

* Through this fact appear analogies with the Theory of Fractals (see, for example,
Ref. (12)).



from the topological incompatibility which appears for a < 0, namely if we consider
three consecutive layers of the system (each of them being ferrcmagnetically order-
ed), there is no up-down configuration of the spins which can simultaneously satisfy
both first- and second~ neighbour interactions. For such a system Tc should monoton-

ically increase with a.

Fig. 1 - Possible critical surface
of a site dilute R-S model: its
"outside" corresponds to the para-
magnetic phase (P); the "right"
("left") part (with respect to the
first order transition surface IMN)
of its "inside" corresponds to the
ferromagnetic phase (F) (helimagn—
etic phases (H)); IN is a Lifshitz
line and MN a multiphase line; the
T=0 line connecting (P) with (F)
and (H) is oversimplified in the
figqure as it overlooks the conse-
quences of the fact that the a = 0
percolation cannot be via 2R9 neigh-
bouring layers.

II.5 = New degrees of freedom

A new degree of freedom, besides those responsible for the ;Shase transition, presents
two faces: on one side it "helps" U because it introduces more possibilities for ex-—

ploiting the cooperating couplings, but on the other side it "helps" S because the

number of fluctuating variables is increased. So a new degree of freedom might be

"useful" to the phase transition if it "helps" more U than S, or "destructive" in the

Opposite case. Let us illustrate the latter situation. An asseambly of localized non

interacting (electronic) spins leads, in the presence of an external magnetic field,

to the Brillouin paramagnetism, characterized by a divergence, at vanishing temper-

ature, of the isothermal susceptibility Xp (see Fig. 2). If we release the electronic
translational degree of freedom, the overlap of the wave functions will increase ang
through Pauli principle, the spins will be prevented to be parallel, therefore the

function XT(T) will be depressed and the singularity will desappear (Pauli paramagn-—

etism). Of course there is no phase transition in the present case, but if there was

the depressing effect would be the same.



Fig. 2 - The isothermal magnetic susceptibility for
vanishing external field for an ideal assembly of lo- I\
calized (Brillouin paramagnetism)} or free (Pauli para— XT
magnetism) electrons as a function of temperature.

Brillouin

Iet us now give an example of an "useful” degree of
freedom. In KHZPO 4 (KDP)-type ferroelectricity the
protons nmove in double-wells and their "left-right"
ordering (isomorphic to the up-down configurations of
(16)) leads to the phase transition.
The tunneling through the central barrier of each -
double-well creates a dynamics which can be seen as )
pseudo-magnons (see Fig. 3). When the critical temperature T is approached by above

Ising pseudo-spins

a soft mode appears (in a quasi harmonic framework) for vanishing wave vector: when
its frequency vanishes, the crystal becomes structurally unstable and the ferro-
electric phase appears. Now it happens in the real system that, through dipolar in-
teractions, the pseudo-magnons are bilinearly coupled to a new degree of freedom, na-
mely a particular type of collective oscillations (transverse optic phonons) of the
heavy ions (see Fig. 3). The diagonalization of the Hamiltonian which describes the
_whole system leads1? to two new types of elementary excitations, which might be
called quasi-phonons and quasi-pseudo-magnons. The interesting feature is that the
instability is now related to a new soft mode whose frequency is slightly Zower than
before, hence it will vanish "earlier" (at higher temperature) than before. There-

fore we see that the essential effect of the new degree of freedom is to increase Tc.

' Fig. 3 - The frequencies (as functions of the
wave vector g) of the elementary excitations be- \ ﬁ)q’.
fore (pseudo-magrons (m) and phonons (p)) and |
after (quasi-pseudo-magrons (gm) andquasi-phonons '
(gp)) taking into account the bilinear interact- 9P |
ion between protons and heavy ions. The empty RN |
(full) dot marks the original (final) soft mode; P S
g, denotes the frontier of the first Brillouin N -
z8ne. T I
”~ .
m_ - NQ |
C;-""qm ~o | .
' _,
Ly
%

II.6 - Ground state degeneracy

-

The entropy effects at low temperatures are clearly determined by the degeneracy of
the collective fundamental level of thé system, and a strong degeneracy will provoke
a weak phase transition. The dimensionality n of the order parameter (or of the field
in Field theory) provides a direct manner for modifying the ground state degeneracy.



Tcy is a monotonically decreasing functjon of n, as n gives the number of fluctuating
variables per element of the system; in other words, if n increases, the probability
for a given element to be in the "right" direction (the one that has been favoured
by the eventual breakdown of the symmetry) decreases. See Table I for d=3 and Fig. 4
for d=2. Within‘thiscontext it is worth while to recall that Onsager's Reaction
Field Approximation (RFA) always underestimates TC because it overestimates fluctua-
tions: this is why RFA becames exact in the limit n + « (spherical model).

_ order Tc(n)
Model /T n 'parameter . _'I";'(_]_.T
Ising 5 Sz SJZ. 1 scalar 1
i3
E XX VoY complex
XY (Sisj + SiSj) 2 ] 0.99
i3]
> > :
Heisenberg E Si -Sj 3 vector 0.97
' i,j
. 0Ol
Spherical E Z SJ._Sj © tensor 0.91
i,j o=l

Table I - Various three-dimensional models (dfand J being respectively the Hamilton-
ian a?na the first-neighbour ferromagnetic exchange integral) and their approximative
critical temperatures (Ref. (9.b)) for the fcc lattice.

Besides n there are many other ways of increasing the ground state degeneracy. For
example the g-state Potts model(ls) attributes to each site of a given lattice a va-
riable oi (for the i-th site) which might take the values ci =1i,2,...,9, the Hamilt—
onian being, for example,

W =-02 8,
i,]

i"j

PR

where J is a first-neighbour positive coupling constant and 8. ¢. is the Kronecker
1
delta (g=1 leads to bond percolation and g=2 to the —%— - spin Isigg model) . The elem~

entary two-body interaction of the present model has a ground state whose degeneracy

clearly equals q. We verify(lg) that Tc monotonically decreases with qg.



II.7 = "Quanticity"

The present "ingredi-
ent" is directly re - | 4
lated to the previous

one: more a system is ’ (n=1)

i M(T)/M(0) ‘X-r

classical, the bigger
is the number of sta-
tes within a given A 'F/T

- c

f M(T)/M(0)
4 9

/T
energy interval, therel Ax‘l’f s ‘
fore we can say that
in a loose sense, its
degeneracy increases
(remember that in
Classical Statistical —
Mechanics the Third i M@/ M(0)
Principle of Thermo— 1
dynamics is violated

because lim S (T)=-x}, -3
. ™0 . (n=3)
hence the phase tran—
sition is depressed. > . >
. T . T
A trivial illustrat-

ionof this factcanbe Fig. 4 - Spontaneous magnetization and isothermal susceptibili-
ty for two-dimensional ferromagnetic Ising (n=1), XY (n=2) and
Heisenberg (n=3) models. For n=2 the susceptibility diverges for
sation of a three- T <T_ and the correlation function decays for T < T_ (T>T )
dimensional  ideal as a power (exponential) law with distance (see RefsC (2-5))€

gas of bosons of mass m and concentration p : the critical temperature is given (see,
for example, Ref. (20)) by

ér..--_.._-_---,;;_--_-—-._— -—

T/Te

the Einstein conden

. = 2 273
T, : 0.084 h? p¥ */m kg
hence the Planck constant h + 0 leads to T =+ 0.

Arpther illustration can be given by the MFA results for simple ferromagnetism asso—
ciated to spins with length S: the spontaneous magnetization (as it is presented in
Fig. 5; see, for example, Ref. (6.c)) monotonically decreases with S.

III - RANDOM SYSTEMS

III.1l - Introduction

Until now we have discussed well defined systems, particularly pure magnetism, where
the space dimensionality d, the order parameter dimensionality n, the spin size S,
among others, are perfectly defined, and where the site concentration Py and = bond

- concentration P, equal unity. The statistical treatment of such systems imvolvesonly



thermal averages. We intend now to discuss random

systems, and more precisely random magnetism, whe
re one or more of the "“ingredients" mentioned in. M(T)/ M(0)
Section ITI beocome random variables, so that the

system is partially undefined (typically Py <1l

and/or P, < 1) . Its statistical treatment obliges
us to simultaneously deal with thermal and confi-
gurational averages: a further difficulty appears.
There is however a particular case, the pure per-

colation, where the situation is greatly simpli-

fied because it corresponds to the limit of va-| - 1 $ /1,

[~
nishing temperature} therefore there is no ener -
getic undefinition, and the statistics reduces to-

] . Fig .' 5 - MFA spontaneous magnetiza—
configurational averages only. tion as a function of temperature.

The spin len S = o corresponds
The systems of interest can be classified into ., thle) class?.tcgl 1imit. Po

two main categories: the <nsulating (where no

electronic translation is allowed) and the conducting (where the electronic transla-
tion is released, appearing therefore phenomena like hopping, valence fluctuation ,
etc) magnetic systems. We shall be concerned here with the former, where the critical
aspects appear in a more pure manner,

The regions of interest in the external parameters space of dimensionality D (e.g. ,
T-p space, where p denotes a concentration) can be classified as follows (see Fig.6):
a) the ecritical frontier (or phase diagram) of dimensionality (D-1) (e.g., aline
in the T-p space), i.e. where the various singularities appear; in the T-p space the
limits p + 1 (pure magnetism) and T + 0 (pure percolation) are typically less diffi-
cult to discuss; the point p=1 (or T=0) itself might be approached by let us say high
and low temperature (or concentration) series;

b) the neighbourhood of the critical frontier, in other words how and what singular-
ities appear; this is where the critical exponents come in, and also eventual cross-
over from one critical set of exponents to another;

c) the rest, which from a certain standpoint is less interesting, as there are . no
singularities (with possible exceptions at T=0 and/or p=1); this is a very hard re-
gion in what concerns exact results, excepting the point (p,T) = (1,0) (where there
are no averages at all to be done) and the limits T + « and p - 0 which are usually
trivial.

Finally the physical quantities of interest can be classified into two (related)

* There are situations(zn

where the pure uncorrelated percolation appears in the
limit T » o,



groups: macroscopic and microscopie quantities, Among the former we find the equili-
brium thermodynamical quantities (extensiye~type functions of intensive-type varia—
bles, e.g., equations of states, specific heat, isothermal susceptibility, compress-
ibility, piezamagnetic and magnetostrictive coefficients, etc) and the non-equilibrium
thermodynamical quantities (transport properties, such as viscosity, heat and electric
conductivities, etc). Among the microscopic quantities we find static ones (e.ﬁi{ spin
correlation functions such as < Si sZ > which might be proportional to exp - 43,
where Ri' is the distance between thé i-th and j-th sites and & the correlation %.ength
which typically diverges at the critical frontier; or eventually the space Fourier

transform S(]—z) of the correlation function, where X is a wave vector)

as well as

dynamic quantities, which might gereralize the static ones (e.g., the ocorrelation
function < Si(O) Sz. (t) > or its space and time Fourier transform S(ﬁ,w) where w is a

frequence ; in this function appear the central peak related to solitons , etc).

Iet

us next see how the various "ingredients" we rentioned in Section IT can become random

variables, and their consequences.

ITI.2 - Cooperative couplings

On these grounds, the typical discussion concerns the so called bond problem. Let us

consider, as an example, the following first—neighbour Ising Hamiltonian:

M =- T g 526
i,

ij 173

‘where Jij is an independent random variable whose distribution law is given by

) v(i,3)

P (Jij) = (1-p) & (Jij—Jl) + pé (Jij-Jl

As the law is the same for each bond, the present problem is a quenched

(Jl # J2)

one. The

particular case Jl=0 is called the bond-dilute problem; the general case Jq 75» J 5 is

called the bond-mixed problem. If J, and J

1 2

orders might appear).

The

several authors (Refs. (22-28) among others ). The critic
5> 0 is indicated in Fig. 6.

In the pure bond percolation point (A in the Fig.) the

slope is infinite because the Ising model has no dynamics,

simple dilute problem has received attention from

al frontier for the case J

therefore in the magnons spectrum appears a gap, hence in
the limit of low temperatures one should assymptotically
expect & /T
(point C of of the Fig.) one should expect a linear be-

haviour because it is essentially a orne hole (or absent

(29)

C=p-= P, In the pure Ising limit p -1

bond) problem; however there is no reason for expect-
ing the frontier to be analytic in the point p=1, because
a two-hole
problem; and the two holes "see" each other critically

through the correlation length £ , we expect

the next assymptotic correction concerns

i.e.

are both of the same sign the problem
. is normally less complicate than when they have different signs

(as here spin-glass

A Te i
(P)

[ 3

-V

0 Pc
Fig.6 - Critical tempera-
ture as a function of bond
concentration ofthe ferro-
magnetic Ising model (d>1);
P (F) denotes the paramagnet
ic (ferromagnetic) phase. ™
A and C respectively corres
pond to the pure percolat-—
ion and pure Ising fixed
points; B corresponds to
the possible random fixed
point; the arrows denote
the possible flow senses.




in the limit p » 1,

T T, (1)ncte (1-p)+cte’ (1-p) TT* @r» 1

with x eventually different from zero. Another inter-
esting aspect concerns the set of critical exponents,
and now we shall restrict ourselves to d=2. For PP,
there is a percolation critical set which is differ-
ent from the pure Ising critical set (p=l). What

about P, <P < 1 ? It is commonly believed that the-

eventual random critical set is different from the
percolation one (in Renormalization Group (RG) terms,
the pure percolation fixed point is expected to be
unstable, with a crossover to another fixed point).

Is it the same as the pure Ising one? (in RG terms,
is the pure Isinc%zzzf)ixed point a stable one?). The

Harris criterium says "yes" if the specific heat

" critical exponent @, <0, says "no" if a_ > 0, and
gives no answer in the marginal case o_ = 0, (which

is precisely the d=2 case !). Neverthe‘iess the spec-
ific heat logarithmic divergence of the pure Ising
model can be represented by o £ + 0, therefore
suggesting that the unknown correct answer could be
"no", i.e., a third critical set ocould exist (with a
"random" fixed point, like ‘point B in Fig. 6), valid
for the whole critical line, excepting its two ends;

if so one could expect o, < 0 (r stands for "random"),

because it is rather intuitive that the weak loga-
rithmic singularity characterized by a, = + 0 should
be smeared under dilution. More precisely, a possi-
be(30) that presented in Fig. 7. We
see that the divergence might become a cusp, which

ble answer ocould

should of course disappear at o Furthermore a
Schottky~-type amomaly, due to the ensemble of finite
clusters which coexist with the infinite one for
P > P oould be present. The total area is expected
to decrease with decreasing p. Let us finally remark
that the smearing effect makes experiences as well
as Monte Carlo (or other computer) treatments quite
difficult in the neighbourhood of P

Te(P) ?T
iCy
(Pe<P< 1)
1
: -
Te(p) T
C,
(0< P < pe)
?

Fig. 7 - Possible specific heat
vs. temperature for two-dimen-
sional bond-dilute Ising models
(p denotes the bond concentra -
tion).



In what concerns the mixed problem('31'32) for the case Q < Jl < J2 (with a = Jl/JZ) '

typical results are presented in Fig. 8 (the different sign mixed problem will be
mentioned in Subsection III.S). An experimental realization of the bond-mixed model »
can be obtained in systems such as(33) Co(S_Se ) o where the Coatoms interact between
them essentially via superexchange tflrough ghe S atams or the Se atoms (and this oOf

oourse simulates Jl and J 2) .

III.3 - Cooperative elements

The site problem is very analogous to 4
the bond one, the dilution concerning o (P)

the cooperative elements of the system | 9 93 =1
instead of their interactions. A typi-
cal problem is the first-neighbour fer-

romagnetic site-dilute Ising model ; the
Hamiltonian and the independent occup—
ancy probability law are respectively
given by

]
i
!
|
t
1
|
I
I
!
)
I
1
1
s
H

== c ¢, s2s? (T > 0)
i3 71i7]
) i,3
_ 0 -
and P(c;)=(1-p) §(c,)+pd (c;-1) Vi 0 0.5 1 p-

Be the i t Ccu
cause of the independent occupancy Fig. 8 - Critical line (32 separating, for

the problem is said to be quenched. different values of o = J,/J., the ferromag-
netic (F) from the paramagnetic (P) fhase in
the square lattice first-neighbour = - spin
critical frontiers for the same latti- ferromagnetic bond-mixed Ising model®

ce and interactions. We verify that
T (site) < T (bond) for all concentrations. It is easy to understand why, let us think

In Fig. 9 we compare site and bond

on the squa.re lattice: in order to make a perfect covering we must associate two
bonds to each site. If one bornd is absent we loose one cooperative interaction, if
one site is absent we loose four cooperative interactions, i.e. twice the topologi-
cal proportion, hence site dilution deteriorates the OOOperative phenomenon more than
bond dilution. The theoretical treatment of the site problem is more complicate than
that of the bond problem: the absence of a bond does not perturbate the contributions
of the neighbouring bonds, whereas the impact of a site absence depends on the absen—
ce or presence of the neighbouring sites. On the other hand, the site problem is easi-
er than the bond orne in what concerns the experimental realizafions, and various sys-—

tems have been studied: Mn an F (36) ’ RbZanMgl pF4(37"38) , Fe Mgl Cl (39) ’
(40) (41) (42) (43)
pml—p r Kpn Fe) Fot FepCol C152H,0 , FepCOl pc12 ,
(44)

Cdl_panTe ; among others. As an illustration we present in Fig. 10 the EPR - re-



ts(44)‘ obtained with a single crystal of Cd

1-p
anTe (antiferromagnet with the zinc blende struc- “—rc bond !
n
ture) . Furthermore, in the same work (44) , the expo- ;

nent x defined by AH=|T-T_(p) | ™ (where AH is the
EPR line width) has been measured; the results, for
(p,x), are (0.25, 1.00), (0.40, 0.96), (0.50, 0.91)
and (0.60, 0.93), clearly exhibiting universality
along the critical line Tc VS. P.

oy
»

[ I,

The site-dilute problem might be generalized into o pd p p
the site-mixed one, where atoms A (B) might indepen—- ;

. . . I _ Fig, 9 = Typical critical
dently occupy a given site with probability p (1-p). Frombiers for site-and bond-
Therefore the exchange integral JAA will dilute ferromagnetic Ising

ith (1-0)2 and models. It is always (seg for
. "BB with ( 'p) .an example, Refs. (34,35))
Jyg With 2p(1-p). We see that this problem implies pcB < p S (the equality holds

3 different coupling constants, instead of only 2 for striictures with no loops,
like Bethe trees).

appear with probability p?,

for its bond anmalogous.

Another possible generalization might be the in- -

' clusion of further-neighbour interactioru§45’46): L T2 (°K)
[4
if we respectively call Jy > 0and J 2> 0 the 60 °
first~and second-neighbour interactions in a gi-
ven lattice, we have represented in Fig. 11 a 0 .
typical phase diagram parametrized by o = J,/J;. ho}- N
It is easy to understand, through topological 20}
comnectivity arguments, why Tc (p) monotonically 20 i °
increases when a varies from 0 to 1. *
10}
Let us finally mention another generalization : ‘
QW0 0 s L Y >
the uncorrelated quenched site-bond-dilute pro- o) 0.2 0,4 0.6 P
blem. The Hamiltonian and probability laws are
respectively given by Fig. 10 - Critical temperature vs.
concentration obtained(44) through
CHD— _ Z I . c.c. sPEZ EPR measurement on Cd, Mn Te (the
ij 173 TiTj ! arrow points the percolgtlgn thres-
hold) .
PI..) = (I-p)8(T,.) +p° 8§(0,.~0) Wi, (>0
Q(c,) = (1-p7)8(c,) +p° 8(c,-1) Vi
1 i i ° -

The expected critical surface is indicated in Fig. 12. If M (N) is a magnetic  (non
magnetic) atom, and V (U) is (is not) an atom which allows for superexchange inter-
action of the M atams between them (which otherwise do not interact) ¢ an experiment-
al realizatipn of the above model can be imagined with a substance of the type



MoN, «VgU .
pS 1-p5 pB 1-pB
4 Tc(P)/T;: (')

III.4 - Topological ‘connectivity Ap---mmmmm 2

In order to illustrate the effects of random
let
us imagine a layered Ising ferromagnet (J>0
and I > 0 respectively being the intra-layer

(P)

ness on the connectivity of the system,

and inter-layer exchange integrals). If we
call o = I/J, we have that the dimensional-

ity d of the problem is respectively 2,3 and

lfora=0, o ~1and a + «, Furthermore, if |0 ' Y
. L 0 Pc((‘fz) Pc(') 1 P
we remember that the site occupancy critical
ili tonically i a
probability Pe (d) monotonically increases Fig. 11 - Ferro-para critical line of

with decreasing d (and that p_(1) = 1), it 3 site-dilute first-and second-neighbour
interaction (J 1 and J 5 respectively)
Ising model (o= J,/J7); p.(1) and p
(1+2) respectively”denote fhe first ahd
and first-and-second neighbour critical

probability for site percolation.

is natural to expect for the critical front
iers the intrincated tailing behaviour in-
dicated in Fig. 13. The problem of - the
complex crossovers between different  di-
mensionalities critical sets of exponents has
not yet been attacked, to the best of
knowledge.

T /J

our

IIT.5 - Topological incompatibility

In Fig. 1 we have represented a possible crit-
ical surface for a dilute R-S model(M)

. Pract—-
a model
where no doubt very interesting features must

ically nothing is known about such

exist: one of"the most fascinating certainly

is the point N of the Fig., as it is simulta -

neously a Lifshitz and a multiphase point.

' 'Fig‘.‘ '12 - Critical surface for the

Another interesting illustratioh of random to-

uncorrelated quenched site-bond-di-

pological incompatibilities certainly is the lute first-neighbour Ising model
different sign bond-mixed problem where a (the T=0 critical line has recently

been studied(47) ).
spin-glass phase might appear (Refs. (13, 48-

50) among others). To fix ideas let us imagine a random distribution of first-neigh-
L < 0 (with probability (1-p)) and J, > O (with probabili -
ty p)on a square lattice of _.;_ - spins. If we consider an elementary square plaquette,
we see that, for any bond distribution which contains an even number of each exchange
~oconstant, two spin configurations exist which simultanecusly satisfy @ll the bonds,

whereas for any bond distribution which contains anodd number of each exchange constant,

bour Ising interactions J

PR



there is no configuration which simultaneous
ly satisfy all the bonds: the plaquette ”
said to be frustrated (13)‘;
mon occurs frequently in the system, a phase

is
if this phenome -~

(spin—glass) which is neither ferro- or anti
ferromagnetic might be the most stable (the
higher the dimensionality of the system, the
easier for the spin glass phase to appear);
see Fig. 14. |

III.6 - New degrees of freedom

Let us illustrate this "ingredient" by comp-
aring the quenched models (where
of the elements or of the bonds is forbidden)
and the annealed ones (where that migration
is allowed) . Though an annealed crystal
frequently easier to prepare, its theoretic-

migration

is

al treatment presents usually greater diffi-
culty (with respect to its quenched version),
precisely because of the additional degree

of freedom.

Iet us fix our ideas on site dilution on a
square lattice ferromagnetic model. If we
have only one absent site, bothquenched and
annealed problems are eguivalent to a one
hole problem, hence their slopes in the li-
mit p~+lshould be identical. The situation
is quite different if we have two absent

sites. In the quenched problem the two ho-
les will probably be far away one from the
other, therefore 8 cooperative interactions
the
two holes will probably migrate in order to
become first neighbours, therefore only 7

will be lost; in the annealed version,

cooperative interactions will be lost. As a
consequence of these facts we expect T

c
(annealed) > T (quenched) ¥ (n,d). An example

L T (P)/Te (D

O >>1

% = 00

(F)

Pe3) Pc(d PN p

Fig. 13 - Ferro-para critical lines for
a layered site-dilute Ising ferromagnet

(o = I/J where I and J are respect-
ively the inter-and intra-layer exchan-
ge constants) .

‘knTc v |
i
i'z J.
I
~17,) :
|
i
|
1
|
]
(AF) :
:
0 1 P

Fig. 14 - A possible phase diagram for

a bond-mixed Ising model with J,<0<J
(P,F,AF and SG respectively denote thé
para-, ferro, antiferrcmagnetic and
spin-glass phases) .

(50) is presented in Fig. 15.



I11.7 = Ground state degeneracy
Untilnow we have basically restricted ourselves 4 Te
to the Ising model (n = 1). Not very much is
known about random magnets with n > ;L. If we call
p*(n) the probability where the critical temper-
ature of a dilute n—- model vanishes, and P the
corresponding percolation critical probability ,
it is obvious that p_(n) > p, ¥ (n,d), . because

the existance of an infinite cluster is necessa-

ry for the development of a long range order.
The equality will hold ifit is also sufficient.

10

P

That seems to be the case for the Ising model,
i.e. pc(l) = P, ¥d, but the question is contro-

: (s1) g
versial for n > 1 (for example, Barma et al __
found p*(3) > P for a particular model; see
Fig. 16). In any case it is clear that p*(n) %

cannot decrease with increasing n, as the phase

" 'Fig. 15 - Approximate phase dia-

) of a planar quenched (full
lines) and annealed (dashed lines)
bond-mixed Ising model (with
=J,=J,); P, F and AF respectively
defioté the para-, ferro—-, and anti
ferromagnetic phases.

transition weakens in this situation. The critical frontier is expected, for the same

reasons as for n = 1, to be linear in the limit p » 1. In the simple n- models, Tc

is expected to follow a power-law (T_ = (p-p%)™, with x > 0) in the limit p » p*, be-

cause of the absence of gap in the spectrum of elementary magnetic excitations (mag—

rons) ; the absence of a gap is of course due to the fact that, for n > 1, the Hamil-

tonian of the system is invariant with respect to a continuous group of symmetry.

A very rich (and, to the best of our knowledge, complete
let

like the

ly unexplored) discussion is certainly related to a
us say three-dimensional first-neighbour model
following one:

- . zZ.2 ' X Y% .
&"P J ZC-C~{S-S- +A()L(S);Sj + Sisj)} (g > 0)
i,J

13 13

P(c,) = (1-p)&(c,) + pélc;-1) ¥i

We see that a = 0, 1, « respectively cofreSpond ton=1,
3, 2, therefore quite a number of unknown possibilities
(in what concerns the critical lines and sets of expo-
nents) must be imvolved for arbitrary values of a. In
Fig. 17 we have indicated two possible results (and have
omitted the eventual compiicate tailing effects for arbi
trary values of a). |

} Te » !

(P)

0. P

- Fig. 16 - Critical line

for bond- or site-dilute
ferromagnetic m model
(d>2and n>1); P and
F respectively dernote the
para—- and ferrcmagnetic

phases (it is expected
p*(n) > p . = percolation
thresholdY .

- Another illustration of randomness related to the ground state degeneracy might be



the quenched bond-dilute g-state ferromagnetic

first-neighbour Potts model, namely Te (p)/Tc(1)
H Ap-m——
= - ]
Z J:'Lj 60.,0 \
ilj * j % =z0 {
o= A |
PW,.) = (-p)6(J,)+p8(T..~T) ¥(i,3) @ > 0) =00 !
(735) = (P 6@, 5)4p8(T, 3 @) :
In Fig. 18 we have reproduced the resultsobtain (F) i
.' | (52). (P) !
ed for this model by Southern and Thorpe |
]
|
0 - >
0 Pc= PT(N) 1 p
T (P)/Telh)
1 fr = o — e - ———
]
'
]
f
B '
(b) |
|
{
(P) |
]
0 - ¢ 1 .
0 PP p) pPr3) S
Fig. 18 - Ferro (F) -para (P) cri-
tical lines for the quenched bond- o ] .
dilute g-state ferromagnetic first %?_:_l.zt'_' P‘isi!—ble Eerrcf éF) —para
: ohbo N 31 (52) § Ar critical lines for let us say
ﬁiglceur Fotts s © three-dimensional site-dilute mix-—

ed model (0=0,1,~ respectively cor-
respond to n=1,3,2).

III.8 - "Quanticity" (@) p*(3)=p*(2)=p*(1)=p_;
(b) p*(3)>p*(2) >p*(l)=pc-

To illustrate this "ingredient" we shall

restrict ourselves to a single simple example(53)

. Let us have a quenched site-mix-
ed first-neighbour ferromagnetic Ising model in a z-coordinated lattice. The fami-

ly A is made of spins with size 1 (and occupancy probability p) and the family B is
1

made of spins with size > (and occupancy probability(1l-p)). For simplicity let it
be JAA = JBB = JAB = J > 0. Then the critical temperature is given(53) , within the
MFA, by ‘
T, = zJ (2-p)
1Ky

Therefore ch decreases when the weigh of the larger spin increases (i.e. when it be-
comes less quantical).



IV — CONCLUSION

Random magnetism is a good "bridge" between geometrical and thermal physics. Though
we have been, in the present quick survey, extremely restrictive (we have not gone
very much beyord the phase diagrams), an enormous number of almost completely  un-
explored possibilities has become evident. This fact (as well as the various non
uniform convergences that have appeared along this work) is typical of this area
where very much is still to be done, on theoretical as well as experimental grounds.
Through the general trends, it has been exhibited the relevance of the topological
concepts in random magnetism, and through them (as well as for other reasons) the
Theory of Critical Phenomena becomes related to the mathematical Catastrophe Theory
and Theory of Fractals as well as to other branches of Physics such as Field Theory
or Cosmology. We might be a little bit closer to _the "fundamental unity" of Physics.

My collaborators A.C.N. Magalhaes, D.M.H. da Silva, E.M.F. Curado, G. Schwachheim ,

I.F.L. Dias, L.R. da Silva, R.A.T. de Lima, S.V.F. levy and S.F. Machado have, in a

way or another, very much contributed in the ideas presented in this work: it iswith
pleasure that I acknowledge this fact. Several useful related remarks from R.B.
Stinchcombe, M.E. Fishér, A. hAharony and M. Thorpe are also acknowledged.
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