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ABSTRACT

We analyse and extend the real-space renormalization
group proposed by Reynolds, Klein and Stanley 1977 to treat the
site percolation. The best among 3 possible definitions of
"percolating' configurations and among 5 possible methods to
weigh these configurations, are established for percolation in
square lattices. The use of n x n square clusters leads, for
n=2 (RKS), n =3 and n = 4, to v_ = 1.635, vp ~ 1,533 and

1%

vp = 1.498, and also to p. = 0.382, P. = 0.388 and P, = 0.398,

exhibiting in this way the correct (but slow) tendency towards

the best up to date values.



RESUME

Le groupe de rénormalisation dans 1'espace réel pro-
posé par Reynolds, Klein et Stanley 1977 pour traiter la perco
lation de sites, est analysé et étendu. La meilleure (parmi 3
possibilités etudiees) definition de configuration "percolatri
ce" et le meilleur poids (parmi 5 possibilites €tudiées) sont

établis pour 1la percolation dans le réseau carré. L'utilisation

d'amas carrés n x n améne, pour n = 2 (RKS), n = 3 et n = 4,

R

1,533 et v
b p

P. = 0,388 et p. = 0,398, manifestant ainsi la tendance correcte

1R

a Vp =~ 1,635, v 1,498, et a p. = 0,382,

(quoieque lente) vers les meilleurs valeurs actuellement connues.



I - INTRODUCTION

Bond and site percolation problems have received great
attention during last years because of their applications in
many fields, as well in Physics as in other branches of
knowledge (see the reviews by Shante and Kirkpatrick(1971) and
by Essam (1972)). Different theoretical approaches have been
attempted, particularly by using the ideas of the reciprocal
space (see Wilson and Kogut (1974), Toulouse and Pfeuty (1975) ,
Ma (1976)) and real space (see Niemeyer and Van Leeuwen
(1974, 1976) and Harris and Lubensky (1974)) renormalization
group (RG). A great number of interesting related topics are
analysed in the collection of reviews edited by Domb and Green

(1972 - 1976).

Young and Stinchcombe (1975, 1976), Stinchcombe and
Watson (1976), and Kirkpatrick (1977) directly transformed the
probability in the bond problem. Harris et al (1975,1976) and
Dasgupta (1976) made an RG expansion near d = 6. Stanley et al
(1976) discussed two-dimensional phase transitions near the
percolation threshold. Plischke and Zobin (1977) used RG arguments
to discuss the two-dimensional dilute Ising and Ising spin-glass
models. Finally Reynolds, Klein and Stanley (1977, RKS) made a
real space RG proposal for treating the site and bond percolation

problems in regular lattices.

This last work (RKS) is the one we mainly deal with
in the present paper, where we analyse and extend the RKS ideas
for site percolation. By a simple and interesting way, RKS

introduced a RG which allows for the calculation of the critical



probability p. and the exponent vp*. Their method essentially
consists in making a partition of the lattice into cells or
clusters (which will become the renormalized sites) that
completely covers it (all sites must be considered one and

only one time) and simultaneously preserves its original symme-
try. Once the cluster has been chosen, they consider it as a
renormalized site (with probability p' of being independently
occupied) of an expanded lattice (the expansion factor 1is

noted b). The next step is to relate the original and renorma-
lized probabilities by a non linear transformation p' = R(p),
which immediately leads to P and vp; more precisely, p.-
corresponds to the non trivial (pC different from 0 and 1) fixed
point of the transformation (in other words P. = R(pc)) and v
is given by (RKS) vp = 1nb/1nxp, where Ap = (dr(p)/dp) is

Pc

the eigenvalue of the linearized transformation RL(p—pC) = Ap(p-pc).

It is clear that the whole point is how to effectively
write down the transformation R(p), or in other words what
cluster configurations are to be considered as '"'percolating"
(and with what weight). This is the point we shall examine in
the present work by introducing three different but "reasonable"
definitions of percolating cluster configuration. We concretize

this by studying the square lattice. Let us anticipate that all

three definitions become, for simple clusters, precisely the

one used by RKS. Furthermore, once the percolating configurations

* -V
We recall that the exponent Vp is defined by Ep = ]p—pcl P

in the 1limit p - P.> where & 1is the mean size of a cluster

and p is the probability of a site being independently occupied.



have been determined, it is not obvious that they should not be
weighted to obtain their contribution to R(p). This point has
been examined in the present paper, by introducing five diffe-
rent but '"reasonable" ways of calculating the weight. In other
words we have considered, for each choice of cluster, 15 diffe-
rent possibilities. The complete discussion has been performed
only for a 3 x 3 square cluster (besides the simple case of
the RKS 2 x 2 square cluster). For the best among the 15
possibilities, we have also performed the calculations for the
4 x 4 square cluster. The discussions relative to the definition
and weight of a percolating configuration are presented in

Sections II and III respectively.

IT - DEFINITION OF PERCOLATING CLUSTER

Let us fix our ideas on the square lattice with only
first-neighbor interactions. We choose a particular cell which
completely covers the lattice, for example a n x n square. This
cell will usually present a great number of configurations
(2n2 in our example) if we remember that each site may be empty
or occupied (see Fig. 1). Some of these configurations will con-
tain "paths" (defined by first-neighborhood), and among them will
be the '"percolating' ones, which necessarily begin and end on
two different sites of the periphery of the chosen cell. A
configuration will be considered as 'percolating" (and will con-
tribute to R(p)) if and only if it contains at least one perco-

lating path. It is clear that this definition allowds for con-

figurations where appear two or more disconnected percolating



regions in the cluster. Now the central point is what paths
are we going to consider as percolating for our n X n square
cluster. Let us now state three possible definitions for this

kind of path:

st

1 definition: it must contain at least 2 sites;

an definition: it must contain at least n sites, including

the possible "hanged' ones;

Srd definition: it must contain at least n sites, after elimin

ation of the possible '""hanged' ones.

In Fig. 1, configuration (a) does not percolate, con-
figuration (b) ‘percolates only within the 15t definition, confi
nd

guration (c) percolates within both 15 and 2 definitions,

and finally configurations (d), (e) and (f) percolate within all

three definitions. The aim pursued with the 15t

definition is

to mantain without changements the definition used by RKS which
essentially demands the possibility of transfert of the inform-
ation. In the an and 3rd definitions we essentially demand the
possibility of getting across the cell in the most direct manner
(straight line). We have not succeeded in finding out a clear

a priori argument in favour or against the inclusion of the
possible hanged points, because on one hand they clearly do not
contribute in the percolation process, but on the other they do
affect the mean size £ of the infinite percolating cluster, par

ticularly if p > p.. Note that for the 2 x 2 square cluster used

by RKS, all three definitions reduce to only one.



ITIT - PERCOLATIVITY

Let us now turn our attention on to the problem of
the weight atributed to each percolating configuration in what
concerns its contribution to R (p). For example, configurations
(e) and (f) of Fig. 1 equally percolate ? Should not we rather
consider that configuration (e) percolates '"more'" than the (f)
one ? This question brings to us the necessity of introducing
the concept of percolativity P (0 < P < 1) of a given configura-
tion. In order to be relatively complete, we introduce 5 different

methods for evaluating the percolativity of a given configuration:

1St method: P

H

1 for every percolating configuration;

nd

2 method: P

H

(number of peripheric occupied sites which
belong to a percolating path)/(total number of peri
pheric occupied sites);

rd method: P = (number of external peripheric paths leading

to occupied sites which belong to a percolating
path )/ (total number of external peripheric paths
leading to occupied sites);

4th method: P = (number of peripheric occupied sites which be-

long to a percolating path)/4(n-1) ;

th method: P = (number of external peripheric paths leading

to occupied sites which belong to a percolating

path)/4n.

For example, for the configuration (e) of Fig. 1 we

have P = 1, 7/8, 9/11, 7/12 and  9/16 for the 15t, 2Md 3Td
th h

4™ and 5P methods respectivelly. Notice that the unitary



weight is the one adopted by RKS, and that, for the 2 x 2

square cluster, the 1St, an and 3rd methods coincide,like the

th d

4 and Sth ones between them. Remark also that the 37¢% and

th

5 methods atribute double weight to the 4 corner sites (as

they are twice more accessible from the outside), and that

th h

the 4 and 5t methods lead to P = 1 only when all the

4 (n~1) peripheric sites are occupied. On the other hand the

d and 3rd methods will lead to P = 1 only when all the

on
peripheric occupied sites belong to percolating paths. Let us
finally add that, for all 5 methods, we atribute the value
P = 0 for every non percolating configuration.

Before writting down the expression of R(p) let us
define the "multiplicity" m of a given cluster configuration as

the number of configurations which are topologically equivalent

to a given one. For example m = 4 for the configurations (b) and

|

(f) of Fig. 1, and m = 8 for the configurations (a), (c), (d)
and (e).

Let us now explicitely write the transformation which
relates the original probability p of independent site occupation
to the renormalized probability p' associated to the n x n square

cluster considered as a site of the expanded lattice:

2
2
R(p) = J A p" T @-p)t (1)

with A = 1 and A_ Z m{r) P£r), where the index i refers to
i

all topologically non equivalent percolating configurations
which have (nz-r) occupied and r empty sites (their number is

usually a few times smaller than (nz)!/(nz-r)l T.).



IV - RESULTS

Let us first recall the RKS results for the 2 x 2
square cluster* (hence n = b = 2), which correspond to our

st nd rd

1°", 2 and 3 methods:

pt = preapd(i-p) + 4p’(1-p)? (Fig.2(a))

hence P. = 0.382, Ap ~ 1.528 and vp ~ 1.635.

h

The 4t and Sth methods lead to

p' = pte3pda-p) + 2p?(1-p)? (Fig.2 (b))

hence there is no non trivial fixed point.
Let us now present the results for the 3 x 3 square

cluster (hence n = b = 3): relation (1) stands

Q-
A p TP

I t~12

p' =

r=0

In the limit p - 0, we obtain, for all five methods,

p' N A7p2 within the 15% definition and p' A6p3 within the

nd rd

2 and 3 definitions. On the other hand in the limit p » 1,

we obtain, for all three definitions, p' ~ 1 - (126—A4)(1—p)4

d d

for the 15% method, p' ~» 1 - (36—A2)(1—p)2 for the 2"% and 37

th h

methods, and p' v 1 - (1-p)-(28-A,) (1-p)° for the 4'" and s*

methods. In general terms, we may say that, for all three

d rd

definitions, the 1St, 21 and 3 methods lead to a behaviour

*

Remember that in this case all three definitions are equivalent,.
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h and Sth methods

like that indicated in Fig. 2(a), and the 4t
like that in Fig. 2(b) (in other words, no fixed point other
than the trivial ones p = 0 and p = 1).

The results for the case n = 3 are indicated in
Table 1 and Table 2. It is interesting to remark in Table 2 the
completely monotonic "horizontal' and '"vertical" behaviours in
what concerns the values of p. and Vp: These results are to be
compared with the most up to date known values (Shante and
Kirkpatrick (1971), Essam (1972), Dunn et al (1975), and.Kirk—
patrick (1976)) P. = 0.590 + 0.010 and Vp = 1.34 £ 0.02. In
order to decide what definition and method are preferable, we
have used as criterium the value of Vp rather than that of P
(essentially because the central goal of the RG theory is the
knowledge of the critical exponents rather than the critical
probabilities or temperatures). So it is clear that our best

d definition and the 1% method. The

trial corresponds to the 3T
4 x 4 square cluster (n = b = 4) has been studied (with computer)
only for this trial, which leads, for the relation (1), to

p' = pO+16pt® (1-p)+120pt* (1-p) 2+s60p 3 (1-p)°

+ 1820pt2 (1-p)*+4364ptt (1-p)°+7890p10 (1-p) ©
+ 10440p° (1-p) +9514p8 (1-p)®+5664p7 (1-p)°

+ 2096p° (1-p) 1 0+440p° (1-p) +a0p* (1-p) 12

This expression leads to the results indicated in Table

3, together with those corresponding to n = 2 and n = 3 for the

rd

same trial (3 definition and 1St method). An analysis of this

Table shows that, within this trial, the numerical values of pC
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and v_ exhibit, for increasing n, the correct tendency towards
P. = 0,590 and vp =~ 1,34 respectively. However, because of the
relatively slow convergence, it is impossible to make, at this
stage, a good extrapolation for achieving the limit values when
n -~ o, or in other words, to say if this RG supports the numeri-

cal results obtained by other methods.

V - CONCLUSION

In order to conclude let us say that the real space
renormalization group proposal of Reynolds, Klein and Stanley
(1977) for treating the site percolation, can be considered as
essentially satisfactory. In particular, the procedure they used
for the weight of the percolating configurafions (namely to take
the percolavity equal one) proved to be the best among the five
possibilities we considered here. On the other hand, it was
necessary, for complex clusters (n x n squares in square lattice),
to extend the RKS definition of percolating configuration, and .
we found that the best among the three definitions we considered,
is the following: a‘cluster configuration can be considered as
percolating for the renormalization group needs, if and only if
it contains at least one percolating path wich begins and ends
in two different peripheric occupied sites and contains at least
n occupied sites after elimination of the possible '"hanged' ones.
Let us finally recall our central result: the sequence
n = 2(RKS), n = 3 and n = 4 leads to vp ~ 1.635, 1.533 and 1.498
respectively. These values exhibit the correct tendency towards
the best known value 1.34 # 0.02 (Dunn et al(1975)).

One ofAus (C.T.) acknowledges with pleasure valuable

discussions with P. Lederer and A.A. Gomes.
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CAPTION FOR FIGURES AND TABLES

Fig. 1 - Six different configurations (among the 216) of a
4 x 4 square cell.

Fig. 2 - The renormalization transformation Z(p). The (a)-type
corresponds to the 1St, an and 3rd methods, and the
(b)-type to the 4th and Sth methods.

Table 1 - The set of {Ar} for all five weighting methods for
a 3 x 3 square cluster: (a) ISt definition; (b) an
definition: (c) 3%9 definition.

Table 2 - 3 x 3 square cluster: the critical probability P.
(top number) and the critical exponent Vp (buttom
number) for all three definitions and the first three
weighting methods (the 4th and Sth methods lead to
no non trivial fixed point).

Table 3 -~ The values of the critical probability P and the
critical exponent v obtained with a n x n square
cluster within the 379 definition and the 15t method;
in the last column the most up to date values (Shante
and Kirkpatrick (1971) Essam (1972), Dunn et al (1975),
Kirkpatrick (1976)).



N A, A, Ay A Ag
a) 15 Meth. 36 84 125 116 54

a) 2 Meth. 35,33333 78,66667 108 91,33333 | 43,33333
a) 379 Meth. 35,2 77,83333 | 106,31746 | 89,94286 43,6
a) 4P Meth. 27,5 52,5 60 40,5 14,5
a) 50 Meth. 27,33333 51,66667 58,33333 39 14

b) 15t Meth. 36 84 117 80 22

b) 2™ Meth. 35,33333 76 95,2 67,33333 22

b) 379 Meth. 35,2 75,25556 93,46032 | 65,71429 22

b) 4R Meth. 27,5 50,5 52 28,5 6,5
b) 5P Meth. 27,33333 49,66667 49,66667 27 6

¢) 15t Metn. 36 84 109 64 14

¢) 2™ Meth. 35,33333 76 91,2 56,66667 14

¢) 374 Meth. 35,2 75,25556 90,03175 | 56,11429 14

c) 4t Meth. 27,5 50,5 50 24,5 4,5
¢) 5P Meth. 27,33333 49,66667 48,33333 23 4

TABLE 1

_VI_
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Method
15t 2nd 3rd
Definition
0.141 0.1687 0.1689
1st
1.851 2.140 2.152
0.328 0.378 0.385
nd
2
1.540 1.826 1.865
0.388 0.438 0.443
rd
3
1.533 1.760 1.785
TABLE 2
n 2 3 4 almost
exact
P, 0.382 0.388 0.398 0,590
vp 1.635 1.533 1.498 1,34
TABLE 3
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