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ABSTRACT

A system only containing two diffuse massless (bearing
a uniform ratio) of two different short range scalar fields 1is
studied, according to Einstein gravitational theory. One field
is attractive, the other is repulsive. The diétribution is in
static equilibrium with spherical symmetry. A class of solutions
of the field equations is obtained. The solutions are nonsingular
and have simple physical interpretation. A Schwarzschild-type
gravitation is found at infinity, with ﬁass parameter solely
arising from the scalar fields; these rapidly disappear with a
Yukawa-type behaviour. The stability of fhe system is briefly
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stated, and the appli;ability of the model to large or small

physical systems is pointed out.



1. INTRODUCTION

One finds in literature (Kurguno§lu 1976) an ever gro
wing belief that general relativity must play an important role
in the description pf elementary physical systems. Nonéingu]ar
solutions of Einstein's equations are particularly desirable,
corresponding to systems with specified values for some physical
parameters such as mass, electric and nuclear charge, angular
momentum, etc.

In an earlier study Duan' - I - Shi (1956) obtained a
class of solutions corresponding to the fields of a point nuclear
charge; howeyer, his solutions contain a number of functions
whose forms'are not exp]i;ip]y known. Stephenson -(1962) enlarged
that study by introducing electric charge, and obtained an-explicit
but approximate solution which ressembles the classical fields
of a proton; however, his solution is singular in the origin.

More recently Teixeira et al. (1975) considered a sys
tem of dust whose constituents are sources of gravitation and of
a repulsive éhort range scalar field; though non-singular, their
solution does not allow inclusion of electrostatic charge to a
' physica]]y.desirable value without degtroying the ‘equilibrium.

Quantum effeﬁts are certainly important for microscopic
objects, where the uncertainty relations play a fundamental role;
nevertheless it seehs worthwhile to investigate from the purely
classical viewpoint the formafion and stability of elementary
systems, under the combined effects of short range fields and
space curvature.

Very recently Souza et al. (1977) studied a system not

containing matter explicitly; the constituents of their system



were sources of a long range attractive scalar field and of a
short range repulsive scaiar fteld. The asymptotic curvature of
spacetime produced by such a distribution is analogonus to that
produced by a usual "material" source. The system is under static
equilibrium aﬁd does not‘show any singularity. In their approximate
solution, however, the asymptotic attractive effects of the long
range scalar field excéed the grgvitational effects, what seems
not to be a desirable result.

In the present papeh we consider a physical system
which does not present that inconvenient. We here study a sphe-
rically symmetric static distribution of two different diffuse
sources of short ranée scalar fie]és. The ratic between these
two sources is taken constant. The attractive character of one
of the fields prevents an indefinife expansion of the system,
while the repulsive character of the other field (with a shorter
range) prevents a collapse. From the solution of the linearized
'field.equations one finds that the sole interaction present in
regions far from the center of symmetry is the gravitational one,
which has a Schwarzschild-type behaviour; both scalar fields

rapidly disappear with a Yukawa-type behaviour.

2. BASIC EQUATIONS

"We derive our field equations from a Lagrangean density
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in these expressions g 1§ the determinanf of the gravitational
potentials guv » R is the scalar curvature (Anderson 1967), A and

B are attractive and repulsive (Teixeira et al. 1976) scalar fields
of finite inverse ranges o and.B > o. Subscripted commas mean
ordinary derivative. The quantities a* and b* are scalar densi-
ties of weight + 1, and répresent the diffuse sources of the fields
A and B.

Einstein's equations are obtained upon variations of

the gravitational potentials guv s
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while the variations of the fields ‘A and B give respectively
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B3V + g% = b ; (2.7)
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a semicolon means covariant derivative, and we introduced the

scalar quantities of weight zero [Souza et al. 1977)

a=a (-g)71/° b = b (-g)7 /2

(2.8)

A ve%y useful expression is provided by the contracted Bianchi

identities, which here take the simple form

aA,v + bB,v = 0 . (2.9)

Spherically symmetric static systems are conveniently

described by the metric element
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with the potentials n and A , the fields A and B, and the densi-
ties a and b all functions of r alone. We then obtain from the

preceding equations
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where a subécript 1 means d/dr; these equations satisfy the iden-

tity
aA] + bB] = 0 . (2.16)

In the five independent equations (2.11) to (2.15) we
have six functions (n, A, A, B, a, b); one constraint is then ne
cessary if one wants explicit solutions. We assume a proportiona

lity between the sources,
a = f b s f2 = const < 1 . l (2.17)

In view of difficulty in finding exact solutions we try
an apprdximate method: expansion is made of the four fields n ,
A, A, B and of the two densities a, b in integral powers of some
dimensionless parameter g , to be identjfied later. In the lowest
approximation we have taken A, B; a, b proportional to € , and

we have taken n, X proportional to 32; the equations (2.11) to

(2.17) then simplify to
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One finds that the four last equafions determine the four
functions.A, B, a, b; the poténtia] n is next obtained by integra

tion of (2.18), and finally A is directly given by (2.19).

3. THE SCALAR FIELDS

In regions where the sources a and b are nonzero we get

from (2.20) to (2.23)

Ay = - Y[Eur)~] sin ur + {] , | (3.1)
B, = Yf[gur)" sin ur + s(a/fB)f] ~ ,’; : (3.2)
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where the subscript i means internal, y and & are dimensionless

constants of integration, and where we defined the constant
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In writing these results we have discarded solutions presenting



singularities in the origin. We also eliminated the possibilities
f262 < az, since the corresponding interior solutions do not sa-
tisfy the continuity condftions at the boundary.

In regions where the sources a = b = 0 we easily obtain

from (2.20) and (2.21)
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B, = vg r exp(-Br) s * (3.7)

where the subscript e means external, and where YpP and ygp are
constants of integration; solutions diverging at infinity were
eliminated. 4 |

We now impose the continuity of the fields A and B, énd
of their first radial derivatives on the boundary éf the sphere.
Thése four boundary conditions will fix the three constants Ype Ypo

8§ and the radius p of the sphere in terms. of the constants a, B,

vy and f. From the continuity of A and B we obtain

Yp = \f[(l{;))'1 sin up + BJ exp(ap) (3.8)
Yg = Yf[gup}_] sinup + G(a/fB)%J exp(8p) (3.9)

while the continuity of the radial derivative of A gives
6 = - I'] _] "] . .
(1 + ap) (cosup + au sinup) ; (3.10)

finally the continuity of the radial derivative of B imposes a

constraint on the radius p ,

[%263(1 + ap)~a3(]+sp{} tanup = - u[%282(1+up)~a2(1+8pi].(3.1])



4, THE GRAVITATIONAL FIELD

We now integrate (2.18) tc obtain n(r) in the 1n£erior
and extérior regions. We impose that n(0) be finite, and that
n(e) = 0; we also impose that n(r) and its radial derivative both
be continuous through the surface of the sphere. Under these four

boundary conditions we obtain for the interior region (r < p)

ny(r) = n(0) + 4 y2 (1 - fz)[E ¥ log 2ur - ci (2ur)
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where, for short, weeused the constants
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in these expressions C is the Euler constant 0.577... and the

cosine and exponential integrals are defined by

ci(x) = - f t7 cos t dt , Ei(-x) & - J - et dt, x>0
X o X

For the exterior region (r > p) we obtain

2(r) + % Br82

ne(r) = - (6n/c?)r™l - 1 ara (r)
- (vaeo)? Ei(-2ar) + (vy8)% Ei(-28r) (4.5)

where we used the mass parameter m given by
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one finds in (4.5) the usual Schwarzschild asymptotic behaviour
—Gm/c?r for ne(r), since the fields A(r), B(r) and the exponential
integrals all rapidly disappear with increasing r.

We fina]Tyvuse (2.19) to obtain the metric potential

X(r): for the interior region (r < p) we get

Ai(r) = -»% YZ (1-f2)[}1—}u~cot ur)(ur)—2 sinzur - % (gur)?J R
(4.7)

while for r > p we obtain

A (r) = (om/cyr™h - 1 (rar)af(r) + 5 (14pr) B3(r) . (4.8)

One finds from (4.7) that X(r) vanishes on the origin, and from
(4.8) one finds the Schwarzschild asymptotic behaviour Gm/c%*for
Ae(r). The continuity of A(r) through the boundary of the sphere

is obvious from (2.19).

5. DISCUSSION

A special case of the present work 1is already known
- (Souza et al. 1977), in which thé attractive scalar field is of
long range (a = 0).

Though being unaware of any exact 301ution of Einstein's
equations involving short range fields, we still regret our ina-
bility to exactly solve the system of equatiohs (2.11) to (2.17).

Our linearized equations (2.18) to (2.22) present however an im-
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portant convenience, namely that their corresponding weak field
solutions have a dynamical behaviour which can be described in
terms of usual nonrelativistic concepts; fhis will save us some
deal of labor when studying the stability of our system.

For example, a short reflection shows that in the weak
fields 1imit the attractive field A must have a rangé larger than
that of the repu]sive field B; this is a neceséary condition for
avoiding the escape of scalar sources. We then only considéred
systems satisfying the condition B > o. We also have only consiF
dered systems with repulsive source stronger than attractive source,
on physical grounds; this condition, expressed by f2_< 1, is ne-
cessary for,pféventing the collapse of the system.

A third condition f?BZ > a2 for the eqdi]ibrium of the
diffuse system was later found, in (3.5); this condition results
from local cummulative effects of the diffuse sources, and seems
to have no counterpart in systems made of point scalar sources.

The Bianchi identity (2.16) ressembles the equilibrium
equation found in the interior Schwarzschild solution, where the
,gravitatfona] attraction of the iatter is balanced by the gr?dient
of pressure; we now have a static equi?ibrium between the radial
forces produced by the attractive and repulsive séa]ar fields
upon the respective densities of‘source. -

The dimension]ess parameter y can be seen to represent
the intensity of the distributioh in our first order approximation;
it is then identified with the hecéssarily small dimensionless
parameter e in terms of which we made our series expansion. One
finds from (4.6) that the condition YZ << 1 1implies Gm/czp << 1,
a condition usually nmet both.in the very éma]] as well as in the

very large physical systems.
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Differentiy from the Schwarzschild interior-exterior
solution we have in our system'not.only n, A and the radial de-
rivative N continuous through the boundary r = p, but also
M1 My x] and A]] are continuous; this can be seen either
from direct calculation or most-easily from the differential
equations (2.18) to (2.22).

It is well known that a rigorous demonstration of the
stability of a dynamical system is in general a considerably
hard task; however, we may content ourselves with the following
simple reasoning, similar to that already used by Teixeira et al.
(1975) and by Souza et al. (1977), to state the stabi1ity.of our
weak field system. If some small disturbance produces a local
compression of the diffuse sources, the additional repulsive for-
ces of short range (produced by, aAd acting on the compressed
sources) exceed the fainter additional attractive forces of a
longer range; a tendency to restore the equilibrium configuration
thus manifests itself. The same final tendency is observed in the
reverse situation of a local smé]l expansion of the diffuse

sgurces.
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