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ABSTRACT

The spinor space representation of Homogeneous Lorentz group offered by
Clifford numbers in Minskowski space is reviewed. Two spinor calculus
naturally follows when spinor matrix representation for these numbers is

used. Representations of the improper four group are also discussed.
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1. INTRODUCTION.

The purpose of the present értic]e is to discuss the four component and
two component spinor analysis, starting from the representation of
Lorentz group in terms of Clifford numbers.The results are not new], however,
a good deal of clarity in discussion is achieved. With the extensive use of

2

spinors in Riemanian space this is perhaps desirable.

In sections 2 and 3 we review the four spinor representation of the
restricted homogeneous Lorentz group offered by Clifford algebra in
Minskowski space. Section 4 is devoted to 2-spinor calculus which naturally
follows when we express the matrices y“ in the spinor representation and
the SL(2, C) group structure is made transparent. In section 5 we discuss
how a spin frame in two dimensional spinor space can be defined in terms two
legs like the four-legs or tetrads of vectors frequently used in Minskowski
space. A set of null tetrad of vectﬁrs q“(A)(é) is also constructed. Final-
1y, in sections 5 and 6 we discuss in detail the representations of the
imbroper Four group in spinor space together with the transformations of

bilinear invariants.

2. NOTATION. REPRESENTATION OF LORENTZ GROUP BY CLIFFORD NUMBERS. SPINOR
SPACE .
Homogeneous Lorentz group (H. L. G.) may be defined as the group of 4x4

real matrices {A} which satisfy
GA=G (n

3

= (AH - - T\u Voo -
where A= (A" V), G= (guv) = (gvu)’ (A)7, A o with u,v = 0,1,2,3
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0 for u # v. We will be mostly

u

and goo ,= ]’ gkk = ~] ’ k = ]’2’3 gu\)
concerned 4 here with restricted H.L.G. - indicated s$imply as Lorentz
group, for whiChi,v

A%, > 1 and det A=+1 (2)

The equation (2.1) written explicitly reads

AB o AB =g

v oo gae A u Y (3)

948

T\u
(¥, W

Here the summation on repeated indices is understood.

The matrix group can be represented by the group of linear transforma-
tions on a four dimensional real linear vector space, called Minskowski

space, with baﬁis vectors gu which transform as:

gu-L(A)gu AN (4)
The contravariant components of a (real) vector A w.r.t. the basis {Eu}’

indicated by real components A%,e.g., A = AY e,» transform as

LY v
AR et A | ‘(5)

since

= AMe § (6)

1= v = V
AR e - A e s e

The group éffébntréjradiéﬁtiﬁatrites AT} is isomorphic to the
matrix gfoupffﬁj}:"Iﬁdicétingfthé_bas1s vectors in the corresponding
representation space by gP it cén be realized as a groupiof linear trans-
formatioﬁs defined by | |

R L (7)
The covariant compone’ntS'Au of vector A w.r.t. this basfs (A = Au g?)

‘transform as
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" -1y = -1T\u
Ay = ()7 A = ) A (8)
Equation (2.1) implies

. )
AT —gag™ | (9)

so that the contragradient representation is equivalent to the representa-
tion {A}. We note also from equations (2.5) and (2.8) that the Kronecker
delta 65 is an invariant tensor. From the fact that A~} is also a

: . . . =-1.0 -1
Lorentz transformation equation (2.3) implies 9 = (A7) 0 (A )Bv 98
which states that the indices u and v are covariant tensor indices and that

guv is an invariant tensor.

‘ v 14
It is clear that (guv e") transforms like g, for

Vv oL Vo o B -1 v p
(980" =g 8" =g % A% (A7) e

HY —

o

- ' P
= A ’uy(g e")

ap —
Thus we may define

_ v
S % & , (10)

which is an alternative statement of the equivalence expressed by equation

(2.9). This leads to

- u
A, = g, A (11)

In other words while the components (A®, Al, A2, A%) transform by matrix
A, the components (A®, -Al, -A2, -A®) transform according to the matrix
(A"T). The two representations are equivalent since the former can be

obtained from the latter by a change of basis in the representation space

according to equation (2.10).
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tion of the Lorentz group. The Clifford algebra in Minskowski space is defined
by a set of four hypercomplex numbers yv°, y!, y2, y® which satisfy the anti-
commutation relation 7

Yt eyHa2g?h o1 (18)

Any product of y's can be reduced to, using equation (2.18), to one of
the 16 elements I, v*, (y* ¥ - vV Yﬁ)’ Ye W, Ys Wwhere v, =0 vl y2 y®
Representing the y's by (rxr-) matrices we can show that the 16 elements are
linearly independent so that r-must be > 4. It also follows that the repre
sentation of the algebra by 4 x 4 matrices is irreducib]e. In the follow-

ing y's will be regarded as (4x4) (irreducible) matrices.

It may be easily shown that the 6 elements Y = (y y - yvy“) satisfy
the commutation relations of the Lie algebra of the generators MY of the

homogeneous Lorentz group, viz,

B, 5 = (g 2 g“" PO PR L P ) (19)

Thus we can obtain a representation by (4x4) comp]ex matrices 9 {S(A)} - of

Lorentz group in terms of Clifford numbers with
. /9 pHY -
s(n) =22 (20)

where 10 Wy = A - guv; The corresponding representation space is 4-

Hv
dimensional complex vector space called Spinor Space. Equations (2.18) to

(2.20) lead to

STV s(a) = Aty (21)

Denoting the basis vectors of the Spinor space by Z, (a = 1,2,3,4), and the

components of a vector £ w.r.t. this basis by £ e.g., £ = g2 cor-

_a’
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responding to a Lorentz transformation A in Minskowski space the transforma-

tion in spinor space is defined to be the linear transformation given by
- b
2, = UMz, = S(N)° 4 Z, (22)

Here S2 p are the matrix elements of the matrix S. Group property of the
transformations (or the operators U(A) defined on spinor space) méy be
easily verified. The components £ are seen to transform as

£z (UME)® = s(n?, £ (23)

The contragradient representation constituted by the group of

matri ces 1

ié-lT(A)T is realized on a representation space, whose basis
vectors will be indicated by Z?. The group of linear operators acts ac-
cording to

2% . (s R, 2 ' (28)

and the components &, of a vector § = £, % transform as

A N G (25)
We observe that &2 Ny is an invariant under homogeneous Lorentz transforma-

tions.

The conjugate representation by the group of matrices {S*(A)}

is realized on a space with basis vectors indicated by Zé with
|

; b , b . _ b \* |
| Z; =S 1z % 2 = (s ,) (26)
and

£ =5, & (27)

where £2 are components of g w.r.t. the basis Zi.
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The representation contragradient to the conjugate one is realized

on a vector space with basis vectors denoted by Z? with
' e _ * .
FAENCRTILIY o (28)

and

£s= 7k . & (29)

3. INVARIANT TENSORS

It will be shown below that all these representation, in the
Present case are equivalent to each other and there is essentially one ir-
reducible representation. However, it is convenient to work with upper,

lower, dotted and undotted indices (just as in the case of Minskowski space).

The equation (2.20) can be written explicitly as «y“)a b = y“a b):

Ybe s T v © g (M

The "mixed quantities" y”a p thus are invariant or held fixed under the
Lorentz transformation of the indices defined above and the tacit assump-
tion made that the index 'u' in ¥ is a space time contravariant index is

consistently assigned. Since A7 s a Lorentz transformation we also have:
a -1 - b
W = (T TN (s)® g (2)
Taking the complex conjugate of equation (3.1)

y“5 5 = M N s(A)5 . (s"(A))a g yVé p (3)
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It may be remarked that the Kronecker deltas Gab, 6a5 are also invariant

tensors.

. The equivalence of the representations indicated above follow

from
* * .

T, YVT}+ = (L vY), - W, T, s 2 gV ()
which from the fundamental lemma 8 assures the existence of non-singular
matrices A, B, C such that 12

A .Y]J Ay'l = .Yl-l'i'

By 8™ =T | (5)

C .YU C-l = Yu*

One can show then

BS(a) B™ =57 T(a) or B =s(a) B™ sT(a) (6)

As(yat = st ; (7)

cs(aye™ =s*y | (8)

We can write equation (3.6) explicitly as:

-1T\a -1,d -1,¢C -1,d i _
(S )7 cBe g8 ) p=(57)" yBqg(57) =8y

or

(s, (5T ? By

ab

SN, s, B | (9)

where the matrix B = (Bab)' This relation shows that Bab is an invariant

tensor with a and b transforming as covariant indices. B matrix plays.the
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role of metric tensor in spinor space. Since BabZP transforms as Za we may

define
b
Z3 =B Z (10)
which implies
_ b
£, =By, £ | (1
It may be shown that B may be chosen unitary and antisymmetric. 13 Metric
tensor B2 "can be introduced by
_ cd
Bab = Bca Byp B (12)
so that (Bab =-B..)
cd __ €
B B = - ¢ p
cd . d
B, B = &7 (13)
and B - - Bba as expected. Also if B = (Bab) then (Bab) = - B!, We may

also choose a representation of y matrices such that B is a real matrix,

then, B* = B = -BT = 8! and (Bab) = B. Using equation (3.13) we have

-8  and f--8P g
against £_ = -B Eb and Z. = B_, 2°
o a ab =a ab = *

We may define the inner product between two vectors £ and n by

b _ pab |
En=g,n' =B, e =BT g ny (15)
From Z, = Gba L, etc. it follows 14
a b ab
Z;Z,=8, 2%.2° =8B

g -8 --2,7 | (16)
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Other properties of inner product are
En=c-nE

(af)'n = &+(on) =0gm
| (17)

|m
*
=3

(§, +&)mn=§n+&-n, g (n,t,) = én

£

-
(5_-5=gga=0 for all £ )
and gen = 0 for all p implies £ = 0. The representation space is called
Symplectic space and the transformations S(A) leave invariant the non-

degenerate skew symmetric bilinear form given by equation (3.15).

An exactly similar discussion can be carried out for conjugate
and its contragradient representations; Since (S'IT) = Bs"8"! the
1nvar1ant metric tensors are Bs and BiB where (B--) = B and (BaB) --g*
wh1ch for real matrix B are the same as B ab and Bab. We observe that
E ng 18 an fhvarfant but g n, s not so and’that g transforms 1ike

Ea* while E° - B'E 5 trans forms 11ke E

We cons1der now the equiva1ence relation of equation (3.7). It

can be written explicitly as:
(s -A-d(s e sTHE L agsThe b = Asb
or

Ay = (571 () , (s Ay (18)

where we write A = (ASb) This relation shows that A; is an 1nvar1ant

tensor with one dotted and another undotted covariant index. Tak1ng the
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complex conjugate we obtain invariant tensor Aa5' Raising the indices by

metric tensors we obtain invariant tensors 1° a2 A%, Aab, A2 g etc.
It is clear that they are usefu] in constructing invariants of type -
g? A-b nb and of type & A-b g which may not vanish in contrast to
a _ 8 -
g ga = 0. We may choose A to be hermitian e.g. A Ab (Aba
A% = 1,
Other invariant hermitian tensors are 16 = (ng) = (Aéc y“c
A TV = (rMY )5 Avg = (Tegp)s (1A yeY") = (r“a ). For example, PE& =
_ * uc * .o uc e fe = (vMT ave o Wy,
(rBa) (Agc ¥ a) = Abc a - afep =0 Agp=(Ay Yab =

.l.

ng since from equation (3.5) A Yu= Yy~ A. Tensor guantities may be

ab, pseudoscalar
H : .
rséb nab’ four-vector Fab nab’ pseudo four-vector r;gb nab’ antisymmetric
P\
A ab 17
tensor Pab n.

constructed from a quantity like nab e.g. scalar Aéb n

* *
In particular, reminding that £2 transforms as £ we have the
. . *a b _ .t t u - - e
well known bilinear covariants & AR:p & =8 AL, B AY £ & Tap E >
£T A vs Y €, T A £ and T A Ys £ transforming as scalar, vector,

pseudo-vector,antisymmetric tensor, and pseudo-scalar in Minskowski space.

4. SPINOR REPRESENTATION OF y MATRICES. TWO SPINORS

To bring out clearly the relationship of the 2-spinor calculus

b) »

with the 4-spinor calculus discussed above we use a convenient matrix repre

sentation for traceless y matrices.

We take:




v =40 = yk, k=1,2,3 (1)
so that v, = y° y! y2 y3 = -y:; y2 = - 1. Clearly v° y* ¢° = YT so that
: -1
we may identify A = (Aéb) =y° = AT < A7, Further we will take 18 v

to be odd matrices so that ™V, hence, S(A). are even. A suitable represen

tation is spinor representation defined by

o _ ' k o° 0
o (\O o > P (0 o > < )
Y= Y- vy =1
\o° 0 | < o 0 =°

k

where o~ are the Pauli 2x2 matrices,

01 0 -1 10 1 0
ol = ( . 0% = ( ) . o) = ( ) and ¢° = ( .
10 i 0 0 -1 01

T T 1T

We note also for this representation O = v0, v3T =2, yiT a o 41, ® -
T

=-y' andy, ' =1y,. A real matrix B satisfying equation ( 3.5) can be

taken to be (B = B* = - Bl = - B™):

.0 2 | ( 1o* 0 j | (3)
Be-y, vy vte
' ’ ‘ '\ 0 io?
so that _
0 1 0 0
: C e -1 0 00
b a (4)
(B,p) = (B%°) = (Bzs) = (B®) =
M ab ab 0 01
oo -10/

Also
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o(@ - 1B) 0
w zpa_ , (5)
0 G+(3 + 1b)

where bk -'% (“ok - mko);_ ak = ;'(“zm - “hz) k, 2, m cyclic and 333 =

=o'al + o2 a? + o? a’, For S{A) we find

S, (A) []
S(a) = (6)
0 sty

where
(7)

The representation is unitary for space rotations but is in general non-
unitary. In so far as only restricted Lorentz group is concerned S(A)
appears as direct sum of two-dimensional representations.

The (2x2) *~ matrix groups {S,(A)} and {ST-I(A)} them-

selves constitute 19

two inequivalents representations of the Lorentz
group. Under parity transformation, we will see below, the two get inter
changed so that representation s’ irreducible under full Lorentz group.
We note det (S;(A)) = + 1 s0 that {S,(A)} and'“{sff*(A)} constitute the

two ingutva]ent representatﬁonS}of,SL(Z,C)ig?pupu ZQ

It is clear the two upper components (£!,£2%) of g8

transform, under a Lorentz transformation, among themselves according
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to (2x2) matrix S,(A) while the lower components (£°, £*) according to

ST'I(A). A change of notation is thus sugges ted:

uizgto oursgr ovzg vz (8)

A . | : -
u'" = SI(A)A B uB

(9)

vi; = (s-:‘(A))BA vg -

where A, B=1, 2 and A, 8 = 1, 2. Also £, = -g%=- u?, £, = £ =ul,

Ey = -E* =-v; £, ,=¢%s v: and (€, , &,) transform;according to

-1T

matrix S,° (A) while (53, g€,) according to the matrix S:(A). We may thus

introduce the notation 21.
_ : _ $ _
u, =g, u, £§, -V =g, -v¢=¢g,  (10)
so that |
Up = = €pp uB s VE = - €48 va (11)

22

where eAB’.EAB; are Levi-oevitta symbols and u'A = (S{I(A))BA Ugs

u' A= (SI(A))A'Q. ué. We'remarkwthat‘the invariant tensor B is an even

matrix in our representation
() | O\ (*) | 0

| ' ab
B = (B) = \ (8%°) =

o |/ °

(12)

(e4g)

where (eAB) = (eAB) = (EAB) = (eAB) ='<9] g); From the identities
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eCD
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A sB

Si¢Syp

= (dets) ™ =¢

AB

(13)

if det S1 = ] we see that eAB, €pg eAé, €8 areAinvariant tensors. Hence

equation (4-11) expresses the equivalence of representation S, with (SI")
* e

and S: with S;if. Since ga trans forms 11’ke_£a we see-that u' trans-

forms like uA

while VX transforms like Vp- We will adopt the cus tomary

A

practice of identifying u ='u*A and uA = u;. There is no invariant quanti

ty (like Aéb) which related the dotted and undotted components since the

conhjugate representation (uA) is not equivalent to the representation (uA).

Likewise we define the basis vectors h by

-1
and _

-h 1

h?

so that

i =
and

ha

Under a Lorentz transformation the basis vectors h transform as

..

=2
. -

P I O

Z, h, 2L, » hlE—Z-:-; D-ZE—u
=1'=-2,=-h, , -h=72=2 =h
"r--z e, hpszt=z =h
"AﬂA"VAL‘-A““AﬂA'VAﬁK

- e ﬂA"'sAéﬂé

B
S1(A)" p by

-2, \WA B
(s g b

= (5,(M)° 4 b

(s;} ()R 5 B

(14)

(15)

(16)

(17)

(18)
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From

C
g€ =-87 €8 € =" s, (19)

it follows -

Py = R h (20)

and similar expression for dotted indices.

From equation (3.16 ) we find the following inner products

hp 87 = b - hg =g =g b® e nheng

DA' —E - EA' EF - _A'ﬂé - ﬂé'ﬂa =0 (21)
and

'l ~ o < < o0 (22)

g = e = ol < ph ob

The vector spaces generated by undotted and dotted basis vectors are ortho-

gonal. The inner product of two vectors u and ¢ in undotted space is

Ah B h AB A A (23)

usp =uhy-o -43=€ABuA¢B=€ Up 9 = - U g = Up ¢

and satisfies properties given in equation (3.17). The representation
space is a symplectic space SP(2) in two dimensions. The same goes for the

dotted vector space and the linear independence of basis vectors follows

from equation (4.22). We remark that uA ¢A = -up ¢A and‘uA u 0.

A=

In the spinor representation the equation (2.21) leads to 24

M= s () 0¥ s, T | (24)
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from which it follows that

=
i

- (o* M8, | (25)

and

LAB B . vCb
M = s (R s ) 5 0¥ (26)

uAé

showing that o defined by equation (4.25) is an invariant mixed quantity

like (y“a b)‘ On lowering the indice; by invariant metric tensor €AB and

using -
DB -1 B -1.B
eac S ° e = - (5T B, = s 7B, (27)
we Show
o = 2, TNy (57 5 ¥ (28)
"AB T " v 1 A ' B~ CD
Both(c“AB)and(gRé)are hermitian matrices, that is ia AB UuBA’ cxé =

I T Mooy o o MCD
céA = (o7gp) + From (o ag) = (€ac p © )

(U:é): 0‘0’ (o’lAé) = _0-1’ (O,ZAB') = 02 . (OaAé) = - g3 _so that

= - (e o €) we see

k. K o\ * kK )
(GOAB)=OO; (o AB):(O’ AB) = -0, k=1, 2,3 (29)

uAé

: u
The matrices (ouA é) are not all hermitian contrary to (o" ), (OAB) and

(c¥4g). It can be shown easily

uAé Ve '\)Aé v, uw A _
o g t O Oge =29 8¢ (30)

fr_om which follows
= 2 V
o O AB g“ (31)

Then .
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which implies 25

. uAB _, A B.
ocp o =288y (32)

Other similar relations follow by raising a lowering the indices and taking

complex conjugation. From equations (4.26) and (4.31) we have

MY _ LM A B . pCE) v,
2" = A p(51(/\)) c (5,(A))" o~ o'pg (33)
or
Vo, _ UV, ,=1,0 1 A B,aCf)v.
A =g 7 (A ) u=.'2's1'(A) c S1(A)" po o
so that
w1 A B, _chb p .
A\) = -2-51.(1\) c S,(A) D % 9 B (34)
] *
= 29 TP (%) S,(0) 0% ST (A))
The following explicit form of y* will be useful latter.
0 (*8)
() = (35)
(GUAB) 0 '
Mo
X © AB) I 0
(Azp ¥ o) = . (36)

The results obtained here are the main tools of 2-spinor calculus discus-

sed in references 1 and 2.
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qn. :(4.26)shows that o“AB uAé transforms as a 4-vector in Minskowski
space while, for a vector UY, (Uu o“Aé) - transforms as Upg- Thus we may

establish a correspondence between ”Aé and a 4—vectot UM by the relation 26

uo_ 1 uAé .
U = '2" [¢) UAB
(37)
Upp = O an U11
AB uAB
™ s real if uAB is hermitian, it is a null vector if Upg = gA ”B and a

real null vector if uAB,= i.EA EB (e.g. a 2-spinor EA determines a real

AB

null vector). Since u are component of a vector in the direct product

spinor space spanned by {h () hp}

uzu(h®hg) = U o Bh® ng) = U B (38)
where .
B = (,® ) (39)

constitute a basis for the representation of the Lorentz group. In fact

EM e (VP simh S;I(A)B 5) SI(A)E s (A) 5 (h - hg)
= A‘1U y VCD nc® . (A )11 V (40)

thus establishing the correspondence e! «— E". Explicitly,

Pe®hrh,® ), E = (@ +h,® by
(41)

Pe-i® by - h,®h;), E'= (0,® h; -h, ®hy)
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The inner product is found to be

‘J \) . ® o
EY . E 0" (hy + hy)(hg « hy)
Aé ) e e AB. L]
WAB ;vCD €ac €55 = O Oopg = 200 (42)

5. SPIN FRAME

The expression in equation 4.37 reminds us of tetrad formalism
frequently used in general relativity. The formalism is useful for discus-
sion in Riemannian space where the metric tensor guv becomes function of
space time coordinates while at the same time we introduce local cartesian
frame of reference at each point in space-time. The tetrads or four legs
then connect the world component A* with local components A(“). We will
1imit ourselves to the discussion in which the metric tensors remains
constant independent of the coordinates. The discussion in 2-dimensional
spinor space goes in close analogy to the case of 4-dimensional Minskowski

space which we first review briefly.

Consider four vectors ﬂ(a)’ (o) = (0)s (1), (2)5 (3) such that

May" 2(8) = 9(a)(8) (

mmne%aﬂa)=(1,-h 4"4)’%GHB)=O mr(a)#(B)eg.goistmw-
like and g{l), sz)’ g(s) are space-like. They are clearly linearly

independent and we may write S :
A A By = Ay ' (2)

where we define g(a)(B) = g(a)és) and A(®) - g(a)(B) A(gy: MWe expand
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g(a)w.r.t. the basis {gu}
M) = Ma) & Mapu & (3)
n(® - g(a}(B) Ny = “(0?1 ! = (e e,
whence it follows
Asate = Al b e | (4)
or
TR h?a) | (5)

and similar relations obtained by raising and lowering the indices. The

normalization conditions of &, and ﬂ(a) gives 27
(a) (B) _
Yoy(e) " M T 9y

(6)
U Voo
Iv Pay M(8) = 9(a)(8)
From the discussion in section 2 we find that under a Lorentz transformation

L) By = Mgy Ky & 2 (o) 2 7

2 (a)

M _ aH
e.g. h (a) = A v

hv(a) so that index (a) is un affected. From A(“) =

= h(a)u A", shown easily, we see that A(a) components are unchanged too.
Thus tetrads of vectors h?u) (or g<u)) definé a (fixed) frame of reference
w.r.t. which any vector A* can be decomposed. The 1linear independence
of h?a) is easily demonstrated. We also note A+B = AM Bu = A(a) B(a) and
that the inner product remains invariant under a Lorentz transformation as

well as under a rotation of the frame of reference, that is, when
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. _ : 28
with ﬂ(a) H{B) = 9(a)(8) °" equivalently

N © o)
(@) N(g) Wt o)) R (a) R (8) = 9(a)(e)

For 2-spinor space a spin frame may be defined in terms of two vectors
") and LI in complex two dimensional space with basis vectors h , and
h,

which satisfy, like DA’ the norma]ization'conditioht

%) " NB) T S(A)B) (8)

29

where €(1)(2) = 7 €(z2)(1) ° 1, €(A)(B) = 0 for (A) # (B). The spin

frame is completely specified in terms of the components hB(A) of the
_ B _ B . u .
vectors Nepy = h(A) hg = h(A)B h™ Jjust as h (@) did so in earlier case.

From equation (4.23) it follows

C D D D
S(a)(8) = %o " (ay "By = oAy Mey) = T M (a) "eyp (4
This leads to 30
AB _ (C)D), A B _,A (C)B_ _ . (D)A,B
E =€ h (c) h (D) = h (©) h =-h h (D) (10)

where e(A)(B) = S(A)(B) and they are used to raise or lower the indices in-
AB

side brackets in the fashion identical to that of €aB and ¢, for exém-
ple, gﬁA) = (A)(B) gy and "(A) = - €(A)(B) u(®) etc. From
= y(A) - - (A - By = - B
Us=utlngy = -upyl=u hg =-uh | (11)
we have the expansion : !
A_ A (B) _ _ .(B)A | ‘
u'=h By Yy = h U(p) (12)

The inverse relations 31 are




290

ulA)o -héA) B = n(AB (13)
c c |
hy = -ni" neey = Mieyn 0t

and others obtained by raising and lowering the indices. A Lorentz trans-
formation A induces, according to the discussion in section 4, the trans-

formation:

- 1.4B
niay = hiay hs = 5, (0 h? (A) g = P(ny g (14)

or

N:

R ° 5,(0)°% th) | | (15)

S1m11ar1y, we have h(A)B = (S (A)f B h(A)C‘ Thus the components u(A) are
unaltered. For the inner product we note usg = up ¢A = P op = Ua) ¢(A) =
=-u(A) ¢(A)‘ It thus remains invariant under Lorentz transformations as
well as under the spin frame rotations. The latter constitute the trans-

formations defined by
Ny =5B) =B (16)
—(A) (A) HB) =~ "(A) -8B

' A B
such that H{A) . E(B) = €(A)(B)" It follows that €(A)(B) s zC) S((g) =

ekC)(D) so that the complex matrix (S B ) is unimodular and belongs to
B () = y(A) (A N impli
| SL(?, C) group. Also H(A) = S(A) (C) and u = u —(A) =U ‘ -(A) implies
U(A) = (S'l)(A)(B) u(B). We observe that while u(A) is unaltered under
Lorentz transformations, uA is unaltered under spin frame rotations. An
exactly analogous discussion goes for the complex 2-spinor space with dot-

ted indices spanned by {h;, h;}.
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An arbitrary spinor uAB, likewise, may be expanded w.r.t. the spin

frame , uAé = h?C) h%ﬁ) u(C) (D) For the case of M8 we have

SHAB h?C) “?b) SH(C) (D) (17)
or

MAY(B) _ héA) hgé) SHCD (18)

Under a Lorentz transformation the quantities cu(A)(B) transform like a four

vector, viz, )
o H(A)(B) _ ,u ! SV(A)(B) (19)

prerr o sty o D 0y - 2 8 off 0
cv(A)(é) = 2 g"¥ so that cu(l)(l), Gu(i)(z)’ SR g HENE)

linearly independent set. We may thus expand 32 any four-vector U in
terms of them

" MR (B) _ . SHAB
where

1

“ay@) = 5w (dy v (21)

The explicity expressions for o*(A)(B) ape

GOAYB) L p(A) ((B) | () p(B)  La(R)(B) _ (A p(B) , (A) ,(B)
1 1 2 3 1 2 2 i (22)

2B (B) 5 n(R) n(B) | (A ((B)y o (R)(E) . (A),(B) p(R), (B)
1 2 2 r 11 2 2
We also note that

H(A)(B) cu(A>(é) -0, (A), (B) fixed. (23)

u(A)(B)

Thus o constitute a basis in Minkowski space of four null
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tetrad of vectors, two of which are real e.g. 'o“(l)(l) and ou(z)(z) and

cu(l)(z) and H(2)(2) are complex conjugate‘of each other. 33

6. REPRESENTATION OF FOUR GROUP IN SPINOR SPACE ,
The following 4x4 matrices A, Ay Ay ‘together with identity matrix

I constitute'an- Abelian group called the Four-group:

-1 0 1 0 -1 0 \
..'I 'l » _ _'| i
A = A, = A A
S -1 t 1 st sit T -1
0 1 0 -1 \ 0 -1
(1)

They correspond to space reflection, time inversion and space-time inversion
in Minkowski space. Combined with the restricted Lorentz group we obtain the
Full or Extended Lorentz group. We can show that, if we stick to linear

transformations in representation Space,'it is impossible to represent the

four group by 2x2 matrices while maintaining the mixed quantities oM AB fixed
~according to equation.(4526). For AS we have,
KAB KAB. .+ . |
(%) - - 5 ) (o) stiag)s k=1,2,3 )

(0°%) = 5,(0)(c**®) sT(a,)

while for At’

(okAé) =+ 5,(Ay) (o kAB) sTa)s k=1,2,3
(3)

(6B = - 5, (n,) (oM ST(Af)




k

In either case we require S o ‘3;1 — (or s, o = - ok $,) for k=1,2,3.

It is easily verified that this is not possible to attain this in terms of
~ 2x2 matrices for which (c°, o', 0%, o*) is a complete set. The situation

‘fs different in 4-dimensional spinor space and the “improper transformation

can be represented by tinear transformations _th?rough‘ 4x4 matrices.

The restricted Lorentz group is invamant sub-group of the full group

and one venfwes the foﬂowing reIations /

T - : “','_1-. Aow A
'As"AR-As’ £ T fAt'A-RAt, Ap

-1 . -1 ’ - o ‘ ‘ _1

I.\s.. AL As s AL ‘ » At AL At = AL | (4)
Aoy fp Age = Mg R TR T

where Ap 1s a space rotation and A pure Lorentz transformation, say, in

'(01) p"l'ane. Hence we requi re the corresponding * representation matrices in

‘spinor space to satisfy.

5""’(A.,;) Y"'y” s(A,) VR 571 (Ay) ¥ ¥ s(a,)
| (5)

s” (As> y° y s<As> « =K =57 A0 ¥ s(ay)

At the same time we requi re that'th,e y”‘a p Dehave as invariant "mixed

quahtity" ilndpr the full group, according to equation ( 3.1 ). This leads
0 .

S (hs) ¥ 57 () = - ¥ R

S (Ag) ¥° sTHAG) = ¥°




224

and

S (A) vE ST = K

S(ay) ¥° STHAY) = - yo.

It is easily shown that these imply 34

Yo = S(A) v STHA) = (det A) v,

or, written explicitly,

1a =S(A)as'1Ad c _ d.tA a
Ys = CA()bst-‘(‘e')Ysb
From equation (2.18), it follows that we may choose

<7, o)
S(As) =ay

0
S(Ay) = b v, ¥

then

1]

S(hg) = S(A) S(A) = -ab v

-S(A,) S(h) = -S(hy)

(7)

(8)

(9)

(10)

(1)

We note that, though A = A o but S(Ag) = - S(A.q). Hence, we have

" double valued representation of the four group in spinor space

. The

constants 'a' and 'u' may we fixed by requiring that the parity and time

inversion operations applied twice lead the identity transformation upto

a + siagn due to double-valuedness of the representation. Thus




295

[:S(AS)]2 =a? =21 or a? = 4]
(12)
[s(A)]2 =b2 1 =41 or b2 =+l
so that 36 5. #1,+xi;b=4+1,4+7; [a]2=1, [b|2=1, a* =1 and b*= 1.
= A2

We find then the following relations.

ot

A S(AS)A.‘1 ay = aa*(a YO)T-I = S(As)_l-]-

A S(A)A™ = byl y%T = bo*(b

- - -1 - -
PR LR (I LIV W LA )

which may be combined with equation (3.7) as

As(a) ATY = syt AR
(14)
= -s(n)™? 2%, < -1

for the full group. This may be interpreted as the transformation of matrix A,

A=) A STH(A) = sgn(a®) A ., (15)
or
1 = -1 C -1 d 0
R'ap = (ST ()5 (ST, Az = San(1%) Agy (16)
(o] . 0 0
where Sgn(A o) = +] according as A 0 > TorA, <-1.

The metric matrix B in the spinor representation of y matrices of

section 4 is given by B = - v, v° y*. We find

B' =57 T(A ) BSTM(A) = a% B
| (17)

[v>]
1!

-1T -
ST (A,) B STH(A) = -b2 B

or B',p,=S 1(AS)c a S'I(AS)d b Bed = a? By, etc. Taking inverse of
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ab

] L
equation (6.17) we find similar relations for B We note that B 3¢ B

cb ©
= Ba¢ Bcb = - Gab since the Kronecker delta is an invariant tensor under
the full group. The tensors Aéb’ Bab and Bab are invariant only upto a

sign under the four group.

7.  TRANSFORMATION OF SPINOR AND BILINEAR INVARIANTS
The transformation of spinors given by equations (2.23), (2.25),(2.27)

and (2.29) reads in terms of 2-spinors of section 4 as follows:

: |A . A =1 . } -1 A 1 A
Parity: u'® = a vp, v!IT = -a* Ups U'p=-a " Vv, vy = a* u (1)
Time-inversion: u'A =ib Vas v'A = i b-l* uA, uA = ip~? vA, Vp = ib* uA
(2)

and the relations obtained by taking their complex conjugate. From equa-

tions (4.12) and (6.17) it follows

(ep)' = a%(™) (") = a2(ez3) - (3)
for parity and
(ep)' = - b2(B) (")t = -b2(ezs) (4)

for time inversion. 39

The bilinear invariants of section 3 take the following form in spinor
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representation
a b A A ,
S (Scalar) = ¢ Ajp N =u XA + Vb : (5)
A A ‘
where £ =(J.) and n= (%) (6)
A XA
P (Pseudoscalar) = £° A Yg c n® e i@ Xp = Va oM (7)
V (4-Vector):
u_1 & uc b
v E’ £ Aéc Y b n
L ] L] (8)
1 B B
= E-GEA(¢ WP+ VB A
A (Pseudo vector):
1.4, . b _ 1 B A_ B A
W g E Al v S o 7 = g (8 - )

T (Antisymmetric tensor): FH¥ = g8 Aéc(z“\’)C b n® is apart from a factor

= uACJlJl[\B 0B Xc + Vp M of ¢C:| - (L&)

98¢
For 2= n?

S = uA vA + uA Vp = S*

A . A *
P o= -i(u” vy -u"vy) =P

. . * (10)

W= l'OEA (uB AR vA)‘= vH
AU_];O,EA (B - \B Ay o
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A
We observe that the invariants S and P vanish for 4-spinors of type (:u,) =

=& =n. Itis easily shown that V" Vu = AH Au = 4( A xA)(¢B vB) which for

A
£ = n reduces to 4(uA v;\)(uB vB) and is real. Hence £ =n = (:u,) defines
A

2

a real null vector, or that a 2-spinor defines a real null vector The

two scalars S and P and the two vectors V and A behave differently under

improper transformations. For example,

(€+A .Yug)l = gl-r Al ,Ylu gl - €+ S+ S-i'i' AS-I A]': S _Y\) s S E
=Ty e Ta e (1)

the last equality following from the invariance of yHe b under full group.

From equation (6.15) it follows:

= -t ayke, k=1, 2,3 (12)
A=Asor‘At

=+ Ay g u=0

- + H -

40

For pseudo-vector £+ Ay, y“ & we have opposite sign for A - AS or At'

For scalar and pseudo scalar we obtain

E'T A E' = g* At for A= A
.i..
=-£g" Ag for A=Al A
ET Ay £ =g Ay, & for A=A, A

=4 g* Ay g for

-
1
=3
c*
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and for tensor case

k

et aykytg =+ eh A vk yhe

gAY Y e =T A e

the upper sign holding for AS and Tower for At'
The choice of the phases factors 'a' and 'b' may be narrowed by appeal
ing to antilinear operation of charge conjugation associated with Dirac

equation:
. ua - a b _ ya b
(iy g au mé L )E e Au Y € (14)

On taking the complex conjugate, multiplying by Aéc and using Aéc y“ﬁ)=

= A. ~HC . ;
ACb Y we obtain

. ud *h w T
TA Y ¢ 8}J £ +m AcB'g =-e Ay ASL Y ¢ €
From ¢ - YUT, - YVT = 2 gHV it follows that there exists a monsingular
matrix ¢ such that 41 ¢y* ¢! = - v or y“ac ¢b - _ ¢ac b ¢ Where

C'1 S (Cab) and whose invariance under restricted group may easily be

verified. Hence

(i, 8, -m & = - e A n? (15)

where the charge conjugate spinor n is given by

*b

a ca
€ As. € (16)

n

It corresponds to a Dirac particle with charge (-e). A candidate for € is
-1

C=Xvy,B (17)




300

Requiring that charge conjugation applied twice leads back to original

spinor leads to |A|%= 1.

We verify 42 that under a restricted transformation
\ ca *'h  ca b . .d a b
n'd=g¢ Agc &€ 7 =07 As S(A)” 4 &7 = S(A)% ¢ n (18)
and now impose 8 that n'? = ¢“@ ABc g*'b satisfies the same relation
under the improper transformations as well which Tleads to
¢ =s(a) ¢ sTn) < ¢ for A% »1 (9)
= -¢"" for Aoos -1

This in turn requires a2 = -1, b%2=-1e.q., a = +i,b=4+1.
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The first or upper index iabels row and the second or lower index

labels coloums when AM v °F guv are written as matrices. We will

. . . . A%
avoid using matrices corresponding to AU .
-See section 7 where representations of Four group are considered.

It follows that g“v is a contravariant tensor in indices U and V.

w o B .
A . A v

uv Aa AB v _ 0B of =g

(v%)2 = I (identity), (¥)2 = -I, k = 1, 2, 3. The tacit assump-
tion that 'U' appearing in Yu is8 Minskowski space index will be

shown below.

The references are marked by an asterisk.
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13.

algebra are traceless. Note also wuv + W

, -1
hand side. Note that AY" A” =y
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See for example, S. S, Schweber: Relativistic Quantum Field Theor& (Row

Peterson and Co., 196D, Chapters 1 and 4.

Due to the appearence of half-angles the representation is double-valued
for space rotations, e.g. both the matrices + S(A) represent the rotation.
There is no ambiguity in sign due to half-angles for pure Lorentz trans-

formations. We will adopt‘the normalization det S(A) = 1,

Note that except the identity matrix all other elements of Clifford

‘ o B

| T tlg“B w " w v = 0. The
relations S(A) S(A') = S(AA') and S(A” ) = 8§ (A) may easily be

verified.

b

T indiéatés'transquévénd'(AT)a = A" _. The greek letters label

b a

space~time indices while roman letters the spinor indices. It is

{s71T

clear that (A)}, {S*(A)} and {S_lf(A)} constitute representa-

tions isomorphic to the group {S(A)}.

We also have matrices corresponding to a megative sign on the right

WT* 1%

-1 % %* -1 -
=@y ) =8cy'c B,
-1 _*%
Hence (A B C) is a multiple of identity. If we impose det(A) =
= det(B) = det(C) = 1, these matrices are defined only upto a factor

+ 1, + 1,

It cannot be chosen to be symmetric as it will lead to ten antisymme-

tric linearly independent 4x4 matrices (B Ys Yu), (B Zuv).
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14, Thus Za . Zb = 0 when a = b and Z . Z = - Zb . Z , Also equations
(3.16 ) ensure that Ea are liﬁearly 1ndependent vectors (when Bab =

=-B . is non-singular matrix).

15. These tensors are like metric tensor and may be used to relate the dot

ted basis with undotted basis vectors.

16. We have Y, = vo vyl y2 3, y: = A vy, A", shVT o ald

= (. : ) 1

TN A

17. In fact n'b regarded as (4x4) matrix can be decompoqed in terms of the
16 linearly independent matrices A, A Y“, A ZUV, i A Ys Y s A Yg which
form a basis for all 4-dim. matrices of the form (néb). Similar 31th

tion holds for (n b)’ (n' ) etc.

18. Since Y's constitute an irreducible representation dhey can not be all

chosen to be even matrices.

19, 'They become identical for space rotation sub—group{ The representa-
' . . . o | - -1
tion {S,(A)} is the so called D(%-, 0) representation while {ST W}
. is D(O.,%») of the SL(2.,C) group. {s(n)} corresp@nds to D(13 0)

® D(O,' %.); See for ekample,‘CO:son 1 r SChweer 8.

20. M. A. Naimark, Linear Representations of Lorentz Groﬁp, (Pergamon
Press N.Y. 1964); I. M. Gel'fand, M. I. Graev and N. Ya, Vilenkin ,

Integral Geometry and Representation Theory (Academik Press, N. Y.,
1966) ; M. Carmeli: J. Math. Phys. 11, 1917 (1970). |

= det S(At) = det S(ASt) = ], .

37. These relations (as well as the express1ons for S(A ) and S(A )) are
derived using equation (2.18 ), A Y A = Ypf and the def1n1t10n

Ys =Y ¥ ¥? v
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26.

27.

28.

29,
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The minus sign for §, and £, is for convenience.

£ = sAB and same definition for dotted

€., mel? w1, ¢ \B

12
indices.

AB = T Epa’

AB

. . -1 - ‘
In matrix notation € §; € = ST ! where € = () = (eAB).

2

vse Y () = A% s ¥ and (¥ A Ak REDR

k

W o™ 0% =) e P ()? - (UF )% =1 ete.

) uAﬁ = A B: : : \)u - ! ] ? -
In fact ouCD Uﬁ 2 GC 6D + Fég such that ch Oad 0. It is easi
ly shown Fﬁﬁ = 0.
v tM = det (uAB). Note g"¥ = 1M oV (2€Ac eBD) implies gAB,CD -
u v 4 “AB ~CD
= 5 AC BD

() (B
h h

The first relation leads to the second by noting guv g(a)(s) y

o JHV - (a2) (B)
€ By T By & ¥

(8) U woo_ R . H ’
(@) 2g) Them Brgy > By = Rig) B gy 2nd

A® =4 Nore s = 4 gy =/

Ny = R

(@) -1, (a) (@)
ATT —= (R ) (g Noy*

The label (A) = (1) or (2) is convenient. We could, of course, use

aﬁy other labelling, say (A) = (0) or (1) etc.




305

These are exactly the results obtained in the non-degenerate case 1 .

ii) Identical sub-bands

We now considers two identical sub-bands, one gets the following results:

xggg(k,q) = xggg(k,q) - xggg(k&)
x5 0a) = X7 (k0) = x(1y(k,9) (56)

U =u,=u and V@) = Bk

vk = 1.

The susceptibility ng% = x%gg assume a particularly interesting form,
namely: ngg(k’q)
x(g)(k.a) = — (57-a)
1(u{Eh@) + T gl@x{ga)

where the effective interactions are defined by:

(d) JaB Xmix(q)
Uetr(@) = U 1+ = = (57-b)
X(O)(Q)

As for the s-electrons are concerned, since Ekgg = 5?;3 the effective ex-




38,

39.

40.

41.

42.
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Thus we need two kinds of 2-spinors to represent parity and time inver

corresponding to inequivalent representations D(13 0) and D(O, %-).
] . .

Under space-time inversion u'd = i(ab)uA, vi = -i(ab)vA.

1 % ' '
(EAB) = (EAB) = az(eAB) etc. andu, =-(gp)" u B ete.

A
Ye = (det Ny,.

€ must be antisymmetric just like B matrix.

¢! =5 ¢ s s"r(A) A S(\) = A,




