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ABSTRACT

. It is the purpose of this note to discuss for the § = 1/2 ferromagnet how
recently proposed decoupling schemes may be obtained, the validity of the

- . involved assumptions and the consequences in the low temperature range. It is

suggested that the spurious T® term present in almost Green's functions ap-
proaches is connected to local kinematics violating treatments of the spin cor
relation. '
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I. IEFINITIQI G‘ THE PROBLEM AND CALLEN'S APPROXIMATION

OmsideraferranagneticmaterialdescribedbyN locaJJ.zedsp:l.nsma
crystal lattice, and coupled through the isdtrcpic Heisenberg Hamiltonian:

H=- I J § §
g,f
vmeregg is the spin operator (in units of h) of the lattice site g and J 1is

the exchange integral corresponding to the interaction between the spins on lat.
tice sites g and f. The thermodyamics of the system (1) will be studied here
within the framework of Green's function theory (ZUBAREV 1960 or TYABLIKOV

1967). The apptopmiatE;;nx:xxﬁnxnr<<S+;

g S;n»E satisfies the following equa-
tion of motions:

,

<s%>

s;»E) o 2)

+ -
E<<sg’ sm>>E =

§ + 2% J . (<<8%8T: §7>>_ -~ <<sZs?t
n 5 fhg gf( fg’ m'E gf’

where <<A; B>>_ is the time Fourier transform of the doble-time Green's func-
‘ tim.«A(t);B(t')». As uéually, eq_uatim (2) involves more camplicate pro-
pagators.and one should introduce some sort of approximations in order to
break the chain of equations.

For higher-order Green's functions Callen (1963) has proposed a new de-
coupling instead of the classical RPA approximation. (TYABLIKOV 1959). To get

his basic equation of decoupling, he proposed a representation of the S;
operator in terms of the transverse spin operatars (S , S+)' and of a

tenperature dependent parameter. This representation for S = 1/2 is-

s;-;‘ 2(1 )ss 7(1+a)ss . : (3)

where cne choses o = 2<§%>, With this choice for a, the equation (3) becomes



It fo

i)

ii)

iii)

z z 1 z + - ot
s? = <% + = (1-2<8%>) 5~ 8§ - 3 1+2<8? > S .
g -2 ( ) g g ( ) g 8

llows from this representation that:

for the lcw-tenperature Umit <sZ> =1/2, then eq. (4) reduces to

1 -+
==-5S 8§
2 g 8

g%
g

describing then small derivations from perfect order;

for the high-temperature limit <$%5=0, then eq. (4) reduces to

+ - - +
s: =% (s8 S, ™ S, sg)‘ ,

which describes fluctuations of the z-component about <8%> = 0;
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(4)

(5)

(6)

the higher-order Green's functions involving SZ are transformed in higher

arder Green's functions involving ahly the S and 8~ operators, that 1s,

“the equation of motion for <<S § >>5 ificlides then only transverse
propagationis. To these prcpagators is then reasonable to apply the

- symmetric decoupling (Callen) where the fluctuations of transverse cor-

iv)

T,

ne.nt

<<8 S

g £ °m E

relations are neglected;

introduces a supplementary information on the degree of order associated

to the system at a certain temperature.

With the representation (4) the Green's functions involving the z~-compo-

in eq. (2) are written as:

§™>>_  m<§I>x<stis o> +

3S_>>¢
£°m E
g#f

(1—2<s >)<<s s S

(X

f’

]
N =

(1+2<s >)<<Sssssf’ S.>F

(7)
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Decoupling in a symmetric way the higher-order Green's function of the righ-side
of eq. (7) we cbtain:

<< >> < ><< >> _ + < >< s
sgsgsf,s S;f SBSB Sf,S E sgsf <Sg’sm>> E (8)
and
<<sgsgsf,sm E ;f<s s ><<Sf Sm}>E + <sgsf><<s8 sm>> E (9)

Substituting equations (8) and (9) in equation (7), we get

zZ. .+ - 2z + 4 -+ + -
>>_- -
<<SgSf Sm >/E,g;f<s ><<Sf S >> 2<8 ><SgSf><<Sg Sm>> E +

1l z +o- z -t +
+ = {(1~2<8%>)<8" 8 >~ (1-2<8%>)<8 8 >}<<s” § >>
2( _)88 ( )88} £

but the third term in the right-side of this expression is zero by eq. (4).
Hence. |
+

Z.+ o a2 -
<<$§ sf.sm»E g <S8 ><<sf s~ >> 2<s?® ><sgsf><<sg sm>>E . (10)

One should note that for the high-temperature limit all the points in the
lattice are unocoupled by the thermal agitation, then the second term in the
righ-side of equation (10) goes to zero more rapidly than the first one. This
means that in the high-temperature limit the symmetric decouwpling and RPA
coincide. Equation (10) is the basic equation of Callen's decoupling (CALIEN
1963). We must remenber that using this type of basic equation Callen has
cbtained goods results for the low-temperature magnetization for S >1. How-

ever for S = 1/2, in this result is appears a spurious term in T3

have Dyson's T4 term in the low-temperature magnetization. In order to

and do not

discuss the reason for this discrepancy we firstly analyse the implications

of the symmetric decoupling.
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II. IMPLECATIONS OF THE SYMVETRIC [ECOUPLING

Thé spin operators must satisfy the following subsidiiry condition:

(S;)ZS+1 - (S;)ZS+1 =0 . . (11)

This cmditionplays a fundamental rule in the S = 1/2 case for the choice of
the decoupling. “In the Green's function method ohé can automatically determine
certain  carrelation functions in terms of lower-order carrelation functions,
by using the Gécowpling. That is, in the Heisenberg case, the choice of a

fl
S_ >>(g # £) implies that the correlation ’“fxmetim<s s; sts' - c#n be calculated

basic eqtatieh BffBEcHipling for the higher-ordér ﬁ‘reen's Binctien «Sg st

in terms of the correlation fmctimofmooperators Ontheotherhand,
Sg operator has the following exact representation (IVDRITA and TANAKA 1965) :
1

s =g -Lgs - — 7 G ey, 5D BD (12}
g 75 8‘;‘5;_ (25)% (2s-1) 8 |

- ot "’

where the largest pover is 2S because of the subsidtary ccndihm (11). In that

case, the corrélation function S_ s; sff' using eq. (12) is given by:
' . -,v,w’.':‘-" z + = = + . - wj-l . _‘ + + - - - .
<Sfﬁsgsf> g#fs<smsf> 35 <smsgsgsf> Cieevenes (13)

For the particular case where g = m the last term in eq. (13)
<S; (s )ZS (S+) 28 S+> is rigorously zero. Conversely, using the basic equation
of deco@ung in order to calculate <‘sg Sg sf> it turns out that almost
always the subsidiary condition (11) is not satisfied. This in general is

responsable for the spurious terms and discrepancies in the thermodynamics.

" Now'éné carr understand why the Calléfi's approximation had sticess for S>1.
Indeed, when S>1, the approximation will Be felt by dofrelatich findtions of
higher order than four, where the symmetric decowpling does not apply. This

| means that the Sﬁbsidiary condition (11) will be violated at temperatures

higher than ¥ and this is responsible by the spurious terms 63S+1/2 and O3S+5/2
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The situation is rather different for the S = 1/2 case. In this case the
susidiary condition (11) implies that <S_ S_ S} Sp>= 0, this means that the
- 4+ + -
approximation over the Green's function <<S$g Sg Sf; Sm >> must be done in
such a way that, when g =m, the subsidlary condition (11) will be as much as

possible incarporated.

1et us now analyse the appraximation made over the carrelation functions.
<(s;)2 s; s;> and < s; sg 8;> by the symmetric decowpling. Subtract-
ing eq. (9) from eq. (8) and using eq. (6), which is the representation of

S; in the high-temperature limit, cne gets

z
<<8_ S
£

+ - z + -
s§ >> = <8§><<S.: S >>_ . (14)
H s

f*'m Eg#f f> "m E

The eq. (14) shows that in the high~temperature limit the symmetric decoupling
implies in neglecting the mag;;etization fluctuations (RPA), thus confirming
the heuristic analysis develloped above. Calculating the jump of the Green's
functions (all jumps in this note are calculated for t = t') in eg. (14) and
taking m = g, we find the correlation finction <S; S; S;>, which is given
by

<s” s s*> = <g8®><s” s;>

s (15)
£ g#f

in the high-temperature limit, in agreement with the R.P.A. spirit. On the
other hand, taking m = g in the eq. (10), one gets:

p I z + o 2ot
> = <§°> : >> -
<<8§°S_;S E S <<sf, S8 E 2<S ><sgs £

;
8L 8 E gy

Calculating the jump of the Green's functions in eq. (16), cne gets the cor-

+. -
><<sg, sg>>E (16)

relation function <s; sg s;>, which is given by

<s~ s? s;> = <§2% (1—2<s‘s+>)<sfsz
gt 8

But, calculating the average of eqg. (5), which is the 'S; representation in the
low-temperature limit, cne gets:

> (17
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1-2 <S_ 92$ =2 <s% . (18)
From egs. (17) and (18) one concludes that the correlation function <S;S§S';>
in the low-temperature limit is given by:
<578 = 2 <«sB2sTst> .
) gsf (19)

g#f
(CEMBINSKI 1968) has shown that eg. (19) is oconsistent with Callen's results.

Still in the low-temperature region and from egs. (5) and (19) one concludes

that the correlation function <(Sg)2 S; S; 7 is given.by:
2 ot . 1 _ z 2 - ot
<(Sg) sg S¢> = (2 2 <§™>%) <s Sg> - (20)

g#f
At low—temperature the magnetization <s%> and the correlation function
<S; S"f' > are respectively given by (CALIEN):
3/2

z . 1_
<S>—f a ©

o (21)

-t . 3/2 i
<SgSf> o aoe . (22)

_ _ - 2/3 ,1/3 4. .
where a, = p(3/2) and 0 = 3kB T/41rJo SV v=1, (3/4)2 , 2 SC; bee; feco).

Substituing the egs. (21) and (22) in the eqg. (20) one gets:

2 + _+ =2a23

<(s )“ s s> S

£ 0
showing that only at absolute zero <(S g)2 S; S;> =.0 rigorously.

(23)

’

The correlation function <S; S;> (g # £f) is connected essentialy with
effects of excitation of spin waves and since Callen's results are satisfactory
when the subsidiary condition (11) is not strongly violated, one can admit
that the difficulty is not introduced by this correlation function in the S =

=-1/2 case.

For S = 1/2 and g = m the eq. (13) reduces to:
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;> = %- <S~ s;> (24)
g#f

On the other hand, substituting the eg. (21) in the eq. (19) cne concludes

<s” s% s
g '8

that:

«s"s%st> =~ LT

+ 2 .3
¢ 5g 5 ot 5 £ 2ao e, (25)

3

Showing that the error of the Callen's approximation is 2 ag 0~ campared with

the exact given by eq. (24) in the low-temperature region.

The high~temperature limit, given by eg. (15), is consistent with the RPA
approximation introduced by TYABLIKOV (1959). However it is reasonable to
propose that the relation (15) should also hold far the correlation function
s, s; St

low-temperatures, the correlation between £ and g is expected to be not very

> in the low-temperature limit. Since, the system is "frozen" at

much affected by the fluctuations of S; which are supposed to be small. So
let us propose a new decoupling that, for g = m, and low-temperature implies:
<s~ s s;> = <8% <5~ S;>,, (26)
g gt g
In these conditions, with aid of egs. (21) and (22). cne gets:
<" s%st> =Lt - 2% o7 . (27)
g g £ g*fZ f o
showing that the error of the new decowpling is less than the Callen's one. By
the new decouplingénd using eq. (26) one also gets:
<«sH? g sp> = aoz o>
g g ghf

where the subsidiary condition is better treated than in the Callen's approxima

(28)

’

tion, eqg. (23). We hope that in the new decoupling the discrepancies of the
subsidiary condition (11) will be present in powers of temperature greater than

four.
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III. DISCUSSION OF THE II\PIUVED moor.mms _

mnusthcdevererphasizethatpmposingsmedeompungprocedure for
higher-order Green's function, that is, to express them :Ln-terns of lower—-order

Green's functions, enables us to solve the infinite chain of equations of mgtion
in a approximated way. Thus we can get the lower-order Green's function as
precise as the decoupling procedure is. But also the higher-order Green's
functions are deteymined in the same spproximation. This can be seen by the
substitution of the lower-order Green's function, already determined, in the
basic equation of decowling procedure. In conclusion, a physical insight
over the corrglation functions is very desirable in proposing schemes. Among
the various decoupling procedures we are going to fix one that gives the same
regult for the carrelation fuiction <S_ s;n.s} at low-and high-temperatures.
We propose the folloving decoupling for the higher-ou:der Green's fmctions,
which appear in the righ-side of eq. (7): '

+

<<s S “st S > = <s's” ><<s .S >> + < st ><<s > + § A<<S S~ >> 29
gef’m E L. 88 'm gf g E' "gm T£m (29)
and )
- -
<<sgsgsf’sm>>E = <Sgsg>«sf’s >>E + <sgsf><<sa;s »E + 68‘“ B«Sf,s >> (30)

gHf
where A and B must be such that the following omditims are satisfied:

a) we must get the RPA approximation in the high-temperatures limit;

b) we must get the expression (26) far the low-temperatures limit, when m=g.

We note that this decoupling reproduces Callen's one for mpg. The corre-
lation term of the symretric decoupling must be proportional to <<sf;s >> since
mlywrxenmisequaltogtheprdolemof subsidiary condition appears. In the
equations (29) and (30) two function of temperature involved.{A-and B) ;. they
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shomﬂdbechtemﬁnedseparatelyinthemtelperatme linu.tssincethereisa
priorimraaémfortheireqbautyinbcthtelperaturexegims

Substituting egs. (29) and (30) in the eq. (7) ane gets the general

) ecﬁaticm
- <<s%s
8

=X

f,s >>0 ;f <S ><<sf,s > = 2<Sz><s;s;><<s;;s;>> +
g

- —55-{A(1—2<s >) - B(1+2<S2>) - B(1+2<8%>)} <<§
2

f,s >0 (31)

where again Callen's results are reproduced for g#m.

Subtracting egs. (29) and (30) and using the high-temperature limit (6) for

- -the representation ofrsg oane gets:
. - : A-B .

<<szsf S>> o (<8%> + § —— )<<s7;
L« A

The condition (a) for A and B implies that we must have in eq. (32)

£ sm>> g - (32)

A=B | | (33)

| at high-temperature. Substituting equation (33) in the eq. (31) one gets:

Z
<<sgsf,s >>p :f <$S ><<sf,s >>0 ~2<8% ><sgsf> <<s8 ;8 _>> —268m<s >A<<sf,s >>5

Taking m = g and calculating the associated correlation function one gets:
<s7s%st> = <sZ><sTST> - 2<5%><s sT><sTs¥>- 2a<8%><sTst > L

88t 4 g f gf g8 gf
- Since RPA smst hold at high~temperature, then we must have

2<8%5<s” S§'> <sT gt > = - 2a<s® <s st >, (34)
» g f g8 g g £
g¥f

+
A=B==-<5 §> .
g

at high-temperature. -
On the other hand, using the low-temperature limit (5) for the representa
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tion of SZ and the expression (30) we get

<sZ%><<s’ s >>n —<<s%g’ s > = '<s"s"'>'<<'s‘;;s;>>E & B<<s’

; ; 3 S>>
£ gf ga‘f g £ £° m E
which for m = g implies:
<8%><s 8T> - <57s%"> = <5 st><sTs'> + B <ss> .
g f g8 f oy 8% 88 g f (35)

The condition (b) fcrAandBiup]ies thatwemsthaweineq. (35)

--<S S . . )
B . g> (36)

at 1ow-tenperature. With the aid of eq. (36), the eq. (31) becames

«<sg zg* ,s >, =<§ Z5¢<sy ,s >> —2<s ><§_§r><<8 ;5. >>_ +
f g,‘f £ g £ g’ E

’ z -4 ‘-
£ {A(152<sz§) + (12<8 >)} <Sgsg>} <<Sg5 S, >>p |
which with the jumps of the Green's functions and taking meg, reduces to

<5 s%s*> = <8%><s7st> - 2<s%><g7st> <s7st> ¢+
88 g g £ g8 8f

1 z z ~at i ‘
+ = {A(1-2<8">) + (1+2<8°>)<8 8 >i< 8§ > , -
5 {AC )+ ( )<s S >)< oS) (37

Using again the condition (b) for A and B we must have in eq. (37)

o - .
A=-<5 8>, 38
<gs> (38)

at low-temperature. Hence we conclude that in the low-and high ta%_t}gg
limits. | "

A=B=-<5 8> . (39)
g8

The expressions (31) and (39) give the basic equation for the new decoupl
ing in the low-and high-temperature limits which is

: <<sgsf,s > ;f<s ><<sf,s “>>=2<8%> <sgsf><<sg,s >> +6m82<s ><Sgsg>«sf’s >>pe
(40)
~ At this point we must remember that the representation (4) for S;was pro-

posed anly to get a basic equation of decoupling. So after this basic eqmation
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was established the following relations:

e szal_s-sq.
g 2 8 8

"
z +
s.=— ss S S
g ( gg ss)

must hold independently of the temperature region. Hence in the eq. (40) we can

substitute
- ot 1 z
<§ S§ >= = - <8% 41
g 587 3 (41)
and we get
+ - o+ -
«Sgsf’s >> 8;f<s ><<sf,s >>e= 2<S ><Sgsf>«sg ;S >>p+ 63m<sz>(1-2<sz>)«sf;sm»E'

(42) /
We must however emphasize that this basic equation of the new decoupling is only
valid in the low-and-high-temperature limits. But for practical proposes only
two temperatures regions has interest.

The expression (42) is the bésic equation of decoupling proposed by
Denbinski. Using eq. (42) he cbtained the low-temperature magnetization without
the T° spurious term, the coefficient of T* term is quite similar as the one
cbtained by DYSON (1956) and also cbtained the Curie temperature which is the
same obtained in the RPA approximation (TYABLIKOV 1959, TAHIR-KHELI and TER

.HAAR 1962) .

DISCUSSIN ‘

"Finally we must emphasize, as pointed out by WORTIS (1965), that "the
mechanics of the Heisenberg model is daminated by two properties: (a) It
always cbeys spin kinematics and (b) the low-lying states have a propagational,
particle-like, "spin-wave" behaviour. These opposing properties must be recon-
.c:i.led in any formatism". In this point of view we must point out that RPA
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(TYABLIKOV 1959, TAHIR-KHELI and TER HAAR 1962) dbscures the property (b),
because the eq. (15) holds independently of the temperature limits. The T-
spurious term in the low-temperature magnetization appears because that RPA does
not treat well the spin correlations and because of this gives the worst
renormalized energies of the excitations of the system. For S>1 the Callen's
decoupling does not violated the properties (a) and (b) at low-temperature.
This means that this decoupling treats better the spin correlations and getting
a better renormalized energies of excitations than RPA and the subsidiary condi
tion (11) is satisfied at low—temperature. For S = 1/2 we can say that
Dembinski's decoupling does not violates the properties (a) and (b), which was
the main point of this note. |

kkkkkkkkk

CALLEN, H.,1963, Phys. Rev. 130, 890.

DEMBINSKI, S. T., Can. J. Phys. 46, 1021,

DYSON, F. J., Phys. Rev. 102, 1217, 1230.

MORITA, T. and TANAKA, T., 1965, Phys. Rev. 138, A 1395,
TAHIR-KHELI, R. A. and TER HAAR, D., 1962, Phys. Rev. 127, 88,
TYABLIKOV, S. V., 1959, Ukr. Mat. Zhur. 11, 287.

1967. Methods in the Quantum Theory of Magnetism (Plenum Press, New
York).

ZUBAREV, D. N., 1960, Soviet Physics USPEKHI, 3, 320.
WORTIS, M., 1965, Phys. Rev. 138, A 1126.





