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1. INTRODUCTION

The purpose of the present article is to prove some general
results concerning the weighted approximation for algebras and
modules of continuous scalar-valued functions on a completely
regular space E. We shall deal with uniform approximation over
the whole E. The fact that E need not be compacf and, accord-
ingly, a continuous scalar-valued function on E need not be
bounded, calls for the use of weights. To build a simple
theory, which is reasonably general so that it will subsume

important classical cases, we are led to introduce two kinds

of welights.

First of all, we introduce a set V of upper-semi~-continuous

positive real-valued functions on E, whose elements are called
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welghts. We may assume that V is directed, in the sense that,
given vy, v, € Vy there are A >0 and v e V such thét vlé AV,
va{?\v. In terms of V, we define a weighted locally convex
space C voo(E)’ It consists of all continuous scalar~valued
functions f on E such that vf vanishes at infinity for any veV.
The topology on GVOO(E) is determined by the family of semi-
norms £ — ||£]l, = sup{v(x).]’f(x)l Ixe E}, where v varies in V.
To exemplify two instances, let us say immediately that:

(1) when V 1is the set of characteristic Functions of all
 compact subsets of E, thenCV (E) is the algebra C(E) of all
continuous scalar-valued functions on E endowed with the compact

open topology;

(2) when E is locally compact and V is reduced to the

~ constant function 1, then QVOO(E) is the algebra GOO(E) of ali
continuous scalar-valued functions on E vanishing at infinity,
endowed with the topology of the supremum on E.

Turning back to the general case of GVOO(E), we consider a
subalgebra (L containing 1 of C(E) and a vector subspace {lf of
€V, (B). We assume that {/" is an @-module, that is @Y/c /. The
. weighted approximation problem consists of asking for a descrip
tion of thé closure of I/ in @VQ(E) under such circumstances.
This .problem has not yet been solved evén in some classical
special cases. Notice that since (A does not necessarily lie
in €V (E), the elements of {/ appear as weights which, when
multiplied by the elements of (3, lead to elements of CV  (E).
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A more precise form of this problem to be discussed in the
present article 1s as follows. The algebra @@ defines an
equivalence relation E/@ on E if we set X,V X, for xl,xze E,
provided f(x,) = f(x,) for any fe@ . We then say that %/ is
localisable under (@ in €VOO(E) if the following condition
holds true: an element f belonging to 8Vm(E) is in the closure
of I/ in evm(E) if (énd always only if), for any veV, any
€ > 0 and any equivalence class X ¢ E modulo E/(¥ , there exists
some w € I such that v(x).|w(x) - £(x)|]<€ for any x € X. In
defining localisability, we look for a natural description of
the closure of 4/ in GV (E) using E/@. The strict weighted ap
proximation problem consists of finding necessary and sufficlent
conditions for {/ to be localisable under & in €V (E). This
problem has not yet been solved even in some vclassical speclal
cases. On the other hand, the classical necessary and sufficient
conditions due to Pollard, Melgelyan, etc. (see [R], [4]) for a
continuous scalar-valued function on the real line to be a
fundamental welght in the sense of Serge Bernstein may be
regarded as being necessary and sufficient conditions for locali-

sability in the situations in question.

The present article is devoted to the proof of some fairly
general sufficlient conditions for localisability which, in
suitable senses not described here, are fairly close to Dbeing

necessary too. Notice that {/ will be dense in evw(m) whenever:

(1) W satisfies a sufficient condition for localisability
under (2 in @Vm(E);
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(2) B 1s separating on E.
(3)‘ﬁ/is eﬁerywhere different from zero on E.

We point out also that, in the complex case, @ is always
assumed here to be self-adjoint.

Our main general result 1s Theorem 2. It reduces the
search of sufficient conditions for localisability on a complete
ly regular space to the search of sufficient conditions for a
welight on R to be fundamental in the classical sense of
Bernstein. The next general result which follows from Theorem
2y 1is Theorem 4. It reduces the search of sufficient conditions
for localisability on a completely regular space to the search
of sufficient conditions for a weight on R to be fundamental.
Theorems 3 and 5 are slight variations of Theorems 2 and 4,
respectively. We note that the proof of Theprem 2 as given here
'1s based on Theorem 1 (a different proof of Theorem 2 is given
in [7]). According to Theorem 1, there is always localisability
in the so=-called bounded casey which essentially is the case
where all functions belonging to 4 are bounded. The emphasis
that we put here on the bounded case, as a bridge to reach
géneral results, has its motivation in the Fourier transform. As
a matter of fact, if we look at some classical proofs of suf-
ficiency of conditions for a welght on R® to be fundamental, we
realize that the success of the use of the Fourier transform is
in part due to the fact that the function t —» exp(it) is
bounded on R. Finally, by combining Theorem 5 with classical
sufficient condit;ons for a weight on R to be fundamental, we
get some fairly general sufficient conditions for localisablility



of a more practical nature; see Theorems 6, 7 and 8.

The results of this article were summarized in [5], in the
real case, under the assumption that E is locally compact and V
is reduced to the constant function 1, hence va(E) = Gm(E).'
Under such assumptions, Malliavin [3] had proved the corollary
to Theorem 7 which asserts the following: if & is separating on
E, {4/ has one generator w which 1s everywhere different from
zero on E, and the divergence condition in Theorem 7 holds for
this fixed w and all aeA, then 4/1s dense in G (E).
‘Malllavin's methods are entirely different lfrom ours, as he does
not prove our Theorems 2, 3, and 5. We would like also to point
out that Theorem 7 of this artlicle follows from the main theorem
on quasi-andlytic mappings md‘icate‘d in [6] » This approach will

be developed elsewhere.

2 ATIO TERMINOLOGY

We shall denote by' R and C the systems of all real and of
all complex numbers, respectively. We shall refer to R or C
indistinetly by K. The elements of K are called scalars.

Throughout this article; E will denote a completely regular
space. C(E) is the topological algebra of all eontinuous
K-valuned functions on E, endowed with the compact-open topology.
'eb(E’) #s ‘the Banach algebra, actually a subalgebra of C(E), of
all functions belonging to C(E) that are bounded on E, endowed

with the supremum norm.
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A K-valued function f on E is said to vanish at infinity if,
for any £)>0, the set {|f|>/8} = {xler, If(x)l>/&} is relatively
compact. This is surely the case when the support of f is
compact. When £ is continuous, the above definition 1is of
interest only if E is locally compact. We shall use the above
definition in the case of f such that |f| is upper-semi~
continuous, without assuming E locally compact: then the closed
set {lflge} must be compact, for any € >0; it follows that
f is bounded.

Assume now that E is locally compact. @m(E) is the closed
ideal of eﬁ(E), hence a Banach algebra, of all functions belong~
ing to C(E) that vanish at infinity, endowed with the norm
induced by G, (E). Moreover X (E) is the 1deal in C(E) of all
functions belonging to C(E) with compact supports. Notice that

K(E) is a topological algebra with respect to its natural
inductive 1limit topology.

In case 1t appears necessary to avoid any misunderstanding,
we shall include K in our notation by writing C(E; K) in place
of C(E); and similarly for the other spaces introduced above
and defined below. Except as stated otherwise, we follow the
terminology of Bourbaki [1].

3. ED _CONVEX SPACES OF CONTINUOUS FURCTIONS
Definition 1. Introduce a set V of upper-semi-continuous
positive real valued functions on Ey, whose elements shall be

referred to as being welghts. The functions f e C(E) such
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that vf is bounded on E for any veV form a vector subspace
CV,(E)C E(B). If veV, then £ — it , = sup{v(x).|£(x)]||xeE]
is a semi-norm on CV,(E). We shall endow ev,( E) with the so
called weighted topology, which is determined by the family of
all such semi:qorms corresponding to ve V. Thus va(E)
becomes a locally convex space. Notice that Gvb(E) is a sub=-
module of C(E) over the algebra Cy(E).

Definition 2. In the notation of Definition 1, consider
the vector subspace GV, (E) of all fe C (B) such that vf
vanishes at infinity for any veV. It is clear that CV o (E)
is a closed vector subspace of C),Vb( E). We shall endow GVOO(E)
with the weighted topology induced by CV,(E), so that GVm(E)
is a locally convex space. Notice that GVOO(E) is a sub-module

of @Vb( E) over the algebra @b(E).

We shall refer to evb(E) and GVQSE) as welghted locally
convex spaces of continuous scalar-valued functions. Actually
we shall be more interested in GVQ(E), as evb(E) has merely

an auxiliary role.

Remark 1. V will be said to be directed if, given vy
v5> € V, there exist A >0 and v € V such that v, & Avg"vaé Av.
Without affecting the locally convex spaces CV,(E) and @Vm(E),
we may replace V by a larger directed set. Accordingly there

is no essential loss of generality in assuming V to be directed,

as we shall do.

Remark 2. When V is reduced to asingle function v, we

shall write evb(E) and Cv, (E) in place of CV,(E) and CVof E)
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respectively. Then we shall consider these two vector spaces as
being semi-normed by f -*Ilfllv o Actually the consideration of
evm(E) is interesting only when E is locally compact; then
Gvoo(E}) is the closure of J (E) in evb(E)0

Remark 3. When V is the set of characteristic functions of
all compact subsets of E, then QVb(,E) = va(E) = P(E) as
locélly convex spaces. If V is reduced to the cvonstant function
1, then eVb(E) = Gb(E); if moreover E is locally compact, then
Cv_(E) = G (E).

4. THE WEIGHTED APPROXIMATION PROBLEM
Definition 3. Let V and GVOO(E) be as in Definition 2.

Consider a subalgebra (2 C C(E) and a vector subspace ’&/cevm(Eﬁ).
Assume that W is an (#-module, that is @Wc W . Without

essential loss of generality, we may assume that & contains the
unit function 1. The weightéd approximation problem consists of
asking for a description of the closure of % in GVOO(E) under

"such circumstances.

In the special case in which (d consists only of constants,
W' is the most general vector subspace of GVOO(E). In such a
casey there is not much that we can say to describe the closure
of W in @VOO(E): we may at most describe the dual space of
CVOO(E) and apply the Habn-Banach theorem. The attack on the
weighted approximation problem that we shall discuss in the
present article consists precisely in reducing the general case

to the special one just mentioned. This will be achieved by
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looking at the subsets of E on which the functions belonging to
@ are constant. Such a viewpoint materializes in the follow-
ing definition. '

Definition 4. In the notation of Definition 3, (£ defines
an equivalence relation E/@ on E if we write X, ~ Xy Whenever
X;y X,€ E and f(xl) = f(x,) for any fe@. Given an equivalence
class X C E modulo B2, we may consider the set V|X of the
restrictions to X of all functions belonging to V and the local-
ly convex space @(VIX)OO(X), which contains as a vector sub-
space the set % |X of the restrictions to X of all functions
belonging to UW: We shall say that ‘J/is localisable under (3 in
@V, (E) when the following condition holds true: a function  f
belo;xging to @VOO(E) is in the closure of U/ in GV (E) if (and
always only if) its restriction f|X to X belongs to the clpsure
of UW|X in e(le)w(}(), for any equivalence} class X modulo E|&.
This condition means the followings:s a function f belonging to
va(E) is in the closure of ¥/ in GVOO(E) if (end only if), for
any ve Vy, any € >0 and any equivalence class X modulo E/G,
there exists some we W such that v(x).|w(x) - £(x)]|<E | for any
x€X. The strict weighted approximation problem consists of
asking for necessary and sufficient conditions in order that U
be localisable under (2 in CV_ (E).

Remark 4. U/ will be dense inCV,, (E) provided the folloy

ing conditions are satisfied:

(1) YW satisfies a sufficlient condition for localisability
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under (3 in CV o (E);

(2) @ is separating on E, that is, if x;4 X, € By X, X5
there exists some a ¢ T such that a(xl) £ a(xa);

(3) 1V is everywhere different from zero on E, that is, if

x € E, there exists some we W such that w(x) 2Z O.

Therefore, corresponding to every sufficient condition for
localisability established below, there is a corollary of densi
tye.

5. TIHE BOUNDED CASE OF THE WEIGHTED APPROXIMATION PROBLEM
Definition 54 In the notation of Definition 3, the bounded

case of the welghted approximation problem is the one in which
every ae(@ is bounded on the support of every ve V. Each of
the following assumptions leads to a noteworthy instance of the
bounded case:

(1) @cC(E);

(2) each veV has a compact support.

LEMMA 1. Let (£ be a closed subalgebra containing 1 of
@b(E), where @ is assumed to be self-adjoint in the complex case.
For every equivalence class X modulo E/@,; let there be
associated a compact subset Kx of .E disjoint from X. Then there
exist a finite subset L of the set of such equivalence classes

and functions % €@ such that @, 2 0, P |k, = O for X€ L, and
Zxer Px =1
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PROOP. Introduce the Stone-éech compactification pE DE.
We have the natural Banach algebra isomorphism 3 : eb(E)?@(ﬁE)
which to every fe eb(E) associates its unique continuous
K-valued extension ﬁfe 4 (ﬁE). Let BQ be the closed image of
@ under fﬁ « It determines the equivalence relation /?SE/[SG. on
IS‘E. Call F the compact quotient space of ﬁE by /SE/FQ and letw:
IBE ->F be the corresponding natural continuous mapping. If YEF
and YNE £ B, that 1s Ye 7(E), then YNE is an equivalence class
in E modulo E/@. In this way, we set a one-to~-one natural cor-
respondence between the points of w(E) and the equivalence clas-
ses of E modulo E/4. If Ye w(E), it follows from our assmptioms
that YN B and Kyn g are disjoint; hence Y does not belong to
the compa'g_:t subset v(Kan) of w(E). This implies that
ﬂz € w(E) "(KYnE) = . By the finif:e intersection property for
compact subsets, there is a finite subset M of w(E) such that
mzen "(KYI)E) = f#. By the method of the continuous partition
of the unity, we may find functioms T/lY € @(lj‘) such that'i’Y?____ 0,
Yylm(ky pg) = for Ye M, and T yoy ¥y = 1. Put By =Yowec(pE),
so that we have <b! € B for all Y& M, by the Welerstrass-Stone
theorem. Call L the finite subset of the set of equivalence
classes of E modulo E/(@ that’corresponds to the finite subset M
of w(E). It 1s then clear that ¢y = $ ¢|E for X = YNE€L, where
Ye M, satisfies all the requirements q.e.d.

THEOREM 1. 1In the notation and terminology of Definitions
4 and 5§, there 1s always localisability in the bounded case of
the welghted approximation problem, provided we assume K = R, or
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K = C and ({ self-adjoint.

PROOF. It is sufficient te prove the theorem by assuming
that V 1is reduced to one funection v. It is also sufflicient to
prove the theorem in case (@ C eb(E), for we may reduce our-
selves to such a case by replacing E by the support of v. Let
then fe@voo(E) be such that, given any &£> 0 (to be kept
fixed until the end of the proof) and any equivalence class
X C E modulo E/@, there exists some Wy € ‘W such that
v(x).]wx(x) - f(x)|{E for any xeX. We want to conclude
that f belongs to the closure of I in Cv(E). The closed set
Kx = {xler, v(x).lwx(x) - f(x)l}&} is vcompact, since
L fe evoo(E). Moreover X and Ky are adjoint. By Lemma 1,
there is a finite set L of equivalence classes in E modulo E/Q
andy for each X€L, there is <Px belonging to the closure of @
in C,(E) such that Py & O ‘Olex. = 0 for XeL and Jyor Py =1.
We then notice that

g&(x)v(x).lwx(x) - f(x)|‘$€°Px(x) for any x€X and X€ L. (1)

In fact, either x €K and then <Px(x) = 0; or else x¢&, which
means v(x)-lv&(x) - f(x)]<€ . In both cases, (1) holds true.
From it we get

V(x).lZXeL Prlx e (x) - £(x)]4E for any x€E. (2)

Given any § > 0, there exists some axe@, for each Xe& L, such
that Iax(x) - gox(x)lgs for any x€E. Noticing that each vw,
is bounded on E, we get

v(x).lixeL ax(x)ﬁx(x) - f(x)| & 2€ for any xeE ,
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provided & is taken small enough. There remains to notice that
axwxe@fﬁ]tﬁ/for any XGL, to conclude that w(x).|w(x) - f(x)|42¢

for any x€ By where w = EXQL L&wxew. Bence f belongs to the
closure of W/ in CVoo(E)s qeeud.

6. REDUCTION OF THE TOPOLOGICAL CASE TO THE FINITE DIMENSIONAL
CASE |

DEFINITION 6. Let E be a real vector space of finite
dimension n. Let us denote by GP(E) the algebra of all
K-valued polynomials on B (that is the subalgebra of the
algebra C(E) generated by the K-valued constant functions on
E and the K-valued linear froms on E). A weight w on E, that
is an upper-semi-continuous positive real-valued function on E,
determines (see Remark 2) ‘the\semi-nomed spaces C’cub( E) ‘and
@wwcm; moreover wa(E) is the closure of 7{ (E) in G%(E)a
The welght w is sald to be rapidly decreasing at infinity when
P(E)C Cwy(R), or equivalently P (E)c Gy (B)s If, in addition
to this, J(E) is dense in the semi-normed space wa(E),
then w 1is called a fundamental welght in the sense of Sei'ge
Bernstein. We shall denote by $2(E) the set of all fundamental
veights on E. When B = R%, we write si.mply?n = .f/)(Rn) and.

Qn = 2(B®). For future reference, notice that @b(E)C?%(E)
provided the weight @ vanishes at infinity, this being the -
case. if w 1s rapidly decreasing, hence if &) is fundamental.
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DEFINITION 7. Let V,QV_(E); Qand"/ be as in Definition
3. We shall denote by A a subset of (£ which tepologically
generates @,as an'algebr"a over K with unit, that is such that
the subalgebra over K of @ generated by A and 1 is dense in &
for the topology of @(E). We shall also introduce a subset W
of thich,topologically generates Was an a-module, that is
the (2-submodule of 4/ generated by W is dense in "W for the
topology of CV__(E).

THEOREM 2. 1In the notation and terminology of Definitions
44 6 and 75 let us assume that K = Ry or that K = C and A
consists only of real functions. Let us assume also that, for
every ve V, every al,...,aneA and every weW, there are

NZ ny $#17°°098g € A anda)eQ-H such that

a
a
v(x)e W) £ wfagx)yeresay(x)yeragx)]  for any xeE. (1)
Then U/ is localisable under @ in GV _(E).

PROOF. We start with the following remark, to be used at
the end of the proof. If veV, 81900098, € A, w€W,0L€.G’b(Rn)
and 8> 0 are given, there exists some w'e"&/ such that

v(x)e|w (x) = o¢ al(x),...,an(x)]w(x)]<6 for any x€E . (2)

In fact, by virtue .of the assumption made in the statement of

the theorem there are N2n, _,_l,...,aNeA and a)e.QN such

a
n
that (1) holds true. Define are @, (RV) by

u‘(tl’too’tn’oto,tn) =“(t1’coo,tn) er tljoo-,tn,ooo,tNeRt

Since @b(RN)C@wOO(BN), there exists some pe @H such that
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%

w(tl,"" tn,ooo’tn.)olp(tl,.ot,tn,ooo’tn)'a(tl’ooo’tn)|<6
for any tl’ooo)tn’von,tnea 3 (3)

From (1) and (3) we get, letting a = p(al,...,an,...,an)eeand
wk wea'&/C'&/:

v(x).|w (x) -&[al(x),...,ah(x)]w('x)l
gw[al(x)’oo o,én(x)'ooq’an(x)] .]a(X) -d al(x),o o e ’an(X)] l < 6

for any x€E ,

which proves (2).

Let us now prove .the theorem: Let f ¢ evm(s) be such that
corresponding to any veV, any £€>0 and any equivalence class
XCE modulo B/@, there exists some w ¢ W such that
v(x).|w(x) ~£(x)|<E for all xeX. We may assume that w
belongs to the vector subspace of ’Z{/ generated by W,y that is w
is a finite linear combination of .-eiaments of W with scalar
coefficients. This is ’due to the fact that the &-submodule
generated by W is dense in'l/ for the topology of evm(m) and
to the fact that the functions belonging to @ are constant on
X. Let us introduce the subalgebra (@' of C(E) of all funce
tions of the form oc(al,.-.-,.,an), where ngil,'al,...,ane A
and o€ G (R?) are arbitrary. Notice that @'c €,(E).  Fext
let us call {J/t the @ '-submodule of C(E) generated by W. It
is formed by all functions of the form alwl-t-...-o-_anwn, where
nz21, 8q3¢.era.€ @' and Wyseses¥W, € W are arbitrary. Since
W< @V, (E) and GV (E) is a C,(E)-module, it follows that

W'e @V_(E). Notice that the equivalence relations E/@ and
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and E/@,' coincide because the subalgebra of (4 generated by A
and 1 is dense in @ . Notice also that the vector subspace
of W generated by W is contained in W' to0. By Theorem 1,
' 1is localisable under @A’ in €V  (E). It then follows
from our assumptions and all that has been asserted, that f
belongs to the closure of W' in QVOO’(E). Using then the
remark made at the beginning of this proof, we readily deduce
from this that f belongs to the closure of W in va(E),
g.e.d.

COROLLARY 1. In the notation and terminology of Theorem?Z2,
let us assume that A consists‘ of :stl,.'..,a.ﬂ and W of WygeessWoo
Let us assume also that K = R, or that K = C and A consists
only of real functions. If for every v€V and every

i =1y...ymy there exists some weQ.n such that
v(x).]wi(x)]_g_w[al(x),....,an(x)] for every Xx¢E ,
then U 1s localisable under @ in @V (E).

REMARK 8. A different approach to the proof of Theorem 2
not using Theorem 1 (hence not using the Welerstrass-Stone
theorem) is to be found in [7].

In the complex case of Theorem 2, we have assumed that A
conslists only of real functions. In order to drop this assump

tion, we introduce the following definition.

DEFINITION 8. We shall consider R® as a vector lattice in
the usual way: If x = (nr;:‘_,...,xn)ezkn and ¥ = (yys.e05y )€ R®,
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write x Sy provided x.ig,yi (1=1y...9n)3 and put |x| =
= (lx};h....,,lxnl)enn. We shall denote bng the set of all
weﬂn (see Definition 6) which are modulus-decreasing, that is
such that x, y€R® and |x| ¢ |y] fmply w(x)s wiy). |

THEOREM 3. In the notation and terminology of Definitions
4y 7 and 8, let us assume that K = R, or that K = C and @ is
self-adjoint. Let us assume also that, for every veV, every
819ee09a, € A and every we€ W, there are N 2 n, an,,_l,...,aNeA
and aIGQd such that
v(x). lw(x)l<w[|al(x)|,...,lan(x)l,...,lah(x)l] for any xe€E.

Then W/ is localisable under @ in ev, (E).

PROOF. The case K = R is uninteresting, as it is trivially
subsumed by Theareaa for K = R. Let K = C. Bvery ae A may be
written uniquely as a = a' + 1a", where a' and a" afe real.
Call A' and A" the sets of all such a' and a", respectively.
Since (4 is self-adjoint, A' U A" and 1 generate a subalgebra
over C whieh is dense in (2. If we notice thatweQd and that
la*} & lalsla*} < lal, we see that we may apply Theorem 2, with

= C and A replaced by A'U A", q.e.d.

COROLLARY 2. To Theorem 3 there corresponds a corollary
which is analogous to Corollary 1 to Theorem 2.

REMARK 6. Although Theorems 2 and 3 will be sufficlient in
the next section by taking N = n, we notice that they are not

sufficient for the proofs of Corollaries 1 and 2y if we take
N =n.
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7. REDUCTION OF THE TOPOLOGICAL CASE TO THE ONE-DIMENSION CASE

LEMMA 2. Let El,...,En be finite dimensional real vector
spaces and E = E;X...xE . Consider wy € Q(Ei)(i=1,...,n)‘ and
define the tensor product won E by w(t) =c»l(tl).,.cun(tn),
Whel‘e t = (tl,ooo,tn) 6 Eo Thenwe—Q(E).

PROOF. It is clear that w is an upper-éemi-continuous
positive real-valued function on E. It 1s also clear that w
is rapidly decreasing at infinity. Consider the following
commutative dlagram of spaces and mappings

| TZ :
@(El) XoooX ,(f)(En) — % (E)

(Gl ) o (By) xevox (Coop) o (Bp) ——>Cg (E)

J T

1
The vertical mappings .1.1, 12, '11 and ja are inclusion mappings.
The horizontal mapping t is defined by tensor multiplication
as follows. If f, € (emi)oo(Ei) (£=1y.009n)y then
£ = Y (fy5..09f,)SC (E) is defined by £(t) = £3(;)...£(t)),
where t = (tl,...,tn)e E. The horizontal mappings T and T,

1
are defined as restrictions of T». We note that the vector

<*

spaces Jé(Ei)(i =19.s.9n) and K(E) will be endowed with their
naturdl inductive limit topologies. However, it 1s' trivial to
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modify our argument so as to avoid the use of these topologiles;
t'hils,kis‘ don:e”by:v_ focusing attentlion on their vector subspaces of
functions héving; 'sﬁppt)rts' contained in fixed compact subsets.
The mapping "( is continuous. 1In fact, it is multilinear and
I T(Eyaeeest, )"w ﬂrluwl...llr Hup for £4€ (Cuy)  (E))

(L = ;,...,n). It is clear that T Tyy 4, and I, are contlnuous
too. The image of 11 is dense. The vector subspace generated
by the ‘image of 'I’l is dense. The image of 31 is dense. From
these remarks and from 'ral = 1171, i1t follows that the vector
subspace generated by the image of T is dense. On the othe_;
hand, tho image of Jp 1s dense. The vector subspace genérated'
by the magg of T is the whole space. From these remarks and
from iz‘rz = ”2’ it follows that the image of i, is dense, that
is w is a fundamental weight, q.e.d.

DEFINITION 9. Let E be a real vector space of finite
dimension n. We shall denote by [ (E) the set of all weightsﬂ’,
that is upper-semi-continuous positive real-valued funétions,
‘on E such that 'rh is a funduiental welght on E for any h> 0.
Notice that, 1f ¢ Q(E) for some h>0, then 7% Q) (E) for a1l
k>h. We have obviously | (E)c Q(E), and it is known that
this set inclusionis proper. When E = R®, we shall write L =
= ['(R®) for short.

THEOREM 4. 1In the notation and terminology of Definitions
4, 7 and 9y let us assume that K = Ry or that K = C and A
consists only of real functions. Let us assume also that, for

every ve€V, every a €A and every we W, there exists some 're_r;



144

such that
v(x).]w(x)| £ v[a(x]] for any xc&E.
Then W is localisable under @, in GV, (E).

PROOF. We shall prove that Theorem 2 is applicable withN =
=n. Let veV, ay3esera, € A and w € W be given. By the as-
sumption, there are 7;€ Tl such that v(x).lw(x)lﬁ’)’i[ai(x)]
for any 1 = 1j...yn and any xe E. There results that
vix).|lw(x)]| & T[al(x),...,an(x)] for any x€ E, where 7 is
defined on R by nr(t) = [71( tl)"‘ 'rn(tn)]l/n for
t =(t1,...,tn)€Rn. Since 75 € G_, we have that
('fi)l/nGQl(i = 1,...50n), hence ¥€Q,y by Lemma 2+ Qecode

DEFINITION 10. In the notation of Definitions B and 9, we
shall denote by rz the set of all 7], that are modulus-
decreasing, that is such that x, yeR® and |x| £|y| imply
vix) 2 7(y).

THEOREM 5. In the notation of Definitions 4, 7 and 10, let
us assume that K = Ry or that K = C and that @, is self-adjoint.
Let us assume also that, for every veV, every ae A and every
we W, there exists some ’Xerg such that

vix).|w(x)]| & 'r[la(x)l] for any x €E.
Then W/ 1s localisable under @ in CV_ (E).

PROOF. The proof consists in reducing Theorem 5 to Theorem

4, in the same way that Thoerem 3 was reduced to Theorem 2.
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8. PRACTICAL SUFFICIENT CONDITIONS FOR LOCALISABILITY
The notation and terminology will be that described in

Definitions 4 and 7. (3 is assumed to be self-adjoint in the
complex case. The classical results concerning Bernstein's
fundamental weights to be used below are to be found in [Z] and
[4].

THEOREM 6. If for any veV, any acA and any weW, there
are C >0 and ¢ > O such that

v(x).lw(x)l_gc.exp[-c.la(x)l:‘ for any x€E,
then U 1s localisable under 3 in Cv, (E).

PROOF. This theorem results immediately from Theorem 5 and
the following classical result. Let ¥(t) = exp(~-|t|) for teR
Then ’rer’f sy qee.d.

THEOREM 6 gives us one of the simﬁlest sufficient conditions
for localisability. It is tied up with the concept of analytic
mappings, whereas Theorem 7 below is associated with the concept

of quasi-analytic mappings.

REMARK 8. 1If every ae A 1s bounded on the support of vw,
for every veV and every we W, it follows immediately from
Thoerem 6 that W/ is localisable under Gin @V (E). This
extends Theorem 1 and may be proved directly as Theorem 1.
Therefore Theorem 1 follows from Theorem 6. When V is the set
of characteristic functions of all compact subsets of E, it
follows from Theorem 1, hence from Theorem 6, that we always

have localisability of 1/ under @ in G(E). For %W =& (or
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more generally for “U/ a subalgebra of C(E) and (Z the subalgebra
of C(E) generated by #/and 1), we then get the Welerstrass-Stone
theorem as a speclal case of Theorem 1, hence of Theorem 6. Of
course, it should be noted that Theorem 6 was proved by using
Theorem 24 which was based here on Theorem 1. Once we prove
Theorem 2 as noticed in Remark 5, we may say that Theorem 6
genuinely contains the Welerstrass-Stone theorem: this
corresponds simply to the fact that the ori%inal Welerstrass ap
proximation theorem is a consequence of the remark that the

welght t —>» exp(~|t|) is fundamental on R.

THEOREM 7. If for any veV, any ac Ay, and any weW, we

have
00 1

m=1. ¥ Mm‘

= o

where

M = sup v(x).| [a(x)]™ w(x)||x eE} (m = Oylyece)y
then ¥/ is localisable under @ in eV, (E).

PROOF. This theorem results immediately from Theorem 5 and
the following classical result. Let 7 be an upper-semi-
continuous positive real-valued function on R. Assume that v
is rapidly decreasing at infinity. Put

N, = sup{ltml_-fy(t)lteﬁ} (m =0y 1y ous)
and assume that

(o4} 1
T T 0.
m=1 /Nm

Then 7€ ['1. By using this result, let us prove the theorem.
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Take K‘(m = 0y lyeece) to be the sequence defined in the state-
ment of the theorem. Define '

Hn :

(t) = Inf { ———

17

R =051 «eo | for any teR

where we take 7(0) = Mo IfN(m=0,1, ...) is the sequence
defined above, we have FpeM (m=0,1, ...). It follows
then from what we sald above that w4 e ]_"g. Moreover we have
obviously v(x)a.|w{x)|< 7~{| a(x)l] for any x eE, q.e.d.

THEORRY 8. If for any veV, any a€ld, and ée_w, there
exists some Ye€C(R) satisfying the follewing conditions
T(£)>0 amd 7(t) = 7(-t) for teR,
’Y;(.t) 1s decreasing for t>o0,
1
Ti%)

‘oo

1 1l
J' e 108 « @t = o0 s
.2 7(0)

log is poqvex in log t for t >0,

for which
v(x).lw(x)lg'r[la(x)l] for any xcE,
then U 1s localissble under @ in evw(z).

PROOF. This theorem follows from Theorem 5§ and the clas-
sical result that then 7e[ %, g.e.a.

REMARK 8. Theorem 6 is easily seen to be a particular case
of either Theorem 7 or Theorem 8. |

REMARK 9. Thedrem 3 remains trme if w is supposed to belong
to Q) and to safisfy w(x) w(y) provided Ix] £ly| and x is oyt



side a suitably large compact subset of RN. In fact, there
exists then an upper=-semi-continuous positive real-valued func-
tion w' on BN such that w'(x) = w(x) for x outside a suitably
large compact subset, such that w'(x) 2 w(x) for all x, and
such that '(x)2 o' (y) provided [x| £ |yl for all x and y.

Then 'e Q%, which justifies our essertion. A similar remark
applies to Theorem 5. Then concerning Theorem 8 we may say the
following. We may dispense altogether the assumption that v(t)
is decreasing for t2 0, and it is sufficient to assume that
log 1/ 7(t) is convex in log t for t>a, where a20 is large
enough. As a matter of fact this type of convexity for 7(t)
implies that (t) is decreasing for t >a, provided a is large

enough.
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