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ABSTRACT

Using the quaternion representation of the Riemannian space-time of
general relativity it is formulated the description of the gravitational
field in flat space. The method presently used is an extension for the
quaternion fields of a formalism introduced by Rosen. It is stablished
the theorem of quasi-inertia. The equations of the gravitational field
are obtained in terms of spinors which are function of quaternions defined

on the flat spaces The equation of motion of a test particle is also
obtained,

This paper was in part supported by the Funtec, Ric de Janeiro, Brazil.



AN

;ﬂito ”EJON :
L. GCivita many years ago showed the possibility of associat

ing twe different metrics to a same space in a given sgystem af
ceo;d;naLes 1. The significance of this result may be
~ ihterbreted in several ways. We indicated here two possible
"1nterpretations, the first which we may call a global
interpretation is that of imbedding the four dimensionallﬁemann-
ian manifold into a ten-dimensional flat space. A mapping is
then stablished between the Riecmannicn space snd 2 giv&n four-
diménfﬁonal~sub~space of the ten dimensional flat space - in.
such way that we assign the same value to the coordinates of
cargesponding‘points. ‘The second possible interpretation is to
cdnsider'thé>flat space metric as describing the geometrical
properties of the space as if we had no gravitational fields
presantg_vln‘this way it is possible, in a same formalism, to
»chpare\directly the differences which arise from the
simultaneous use of thesé two metrics, This type of
1nterpretafion may be subsequently re-interpreted by'cpnsider- -
ing tha'gP¢: which initially was essociate to the Riemannian
$pace ds: the potentials of the gravitational fisld, the space
vrbeing now flat in all its extensions, with the other mefrié
Htensor playing the'role of the metric., This point of view was

used by Rosen 2._

| In this paper we consider the Rosen's formulation but now
written in terms of guateérnion fields which take over the place

of the symmetric second order metric tensors of the conventional
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tensor formulation of general relativity. Due to this modifica
tion of the basic formalism several results of Rosen's method
are presently generalized since the quabternion fields, or its
corresponding fields, the spinors posess more degrees of

freedom than the symmetric second rank tensors.

The results which are obtained by this method are
equivalent to those belonging to the sther flat space theories

which are well knowne.

1. QUATERNIONS IN FLAT SP.CE

In the Minkowski space it is possible to write the arc
element in the form

a1® =7, (oax ax’ (1)

where the coordinate xM are related to the cartesian set of
coordinates by means of known functions (the % P denote the

cartesian coordinates),

<P = xf(x)
and thus, - —
. T 0%P,
p(x) = ——— gd@
ZxP be
We may introduce at each space-time point x P where a;w is defined

according to the above relation, a system of four quaternion

fields Zp(x) such that

Zp(x)l ZV(X) = 32‘ (Zﬂ(x) iy(x) + Zy(x) Zp(x) = Zy(X)I(E (x)
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This relation defines the scalar product of quaternions. The
quaternion E " is the adjoint of the quaternion ZF' 3 fTaking as
the quaternion basis the set of the three Pauli matrices
together with the two-by-two identity matrix, we will have

o (1 O\ o 01._0-1._1»0
%)\ o 1>-’ "(1)’(1 o "’(2)"(1 0)“’(3)' 0 -1

2 0%) = h‘“}}m ety ” (3)

From the equations (2) and (3) we get for the relation (1),

a1% = Zﬁ(x)lz y(x)dx)udxv- (4)

The Riemann-Christoffel tensor constructed with the metric
'J}W(x) vanish over all space, and this is the condition which
1mplies that the space is flat.

From the egquations (1), (3) and (4) it follows that the

coefficients h which here form the tetrad components, are

—c
%
p() = — (5
H 2xH
its reciprocal matrix is given by the matrix elements
H 'OXP
hiw) = o (6)
2x

2e

UATHRNIONS IN CURVED SPACES
In a Riemannian space where it is used the same coordinate

system as that used previously, we define the element of arc by
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means of the relation

gsZ = gw(x)' ax? ax” (7)

Similarly as before we may introduce at each space~time point a

quaternion field oh(x) such that

Bt = %

The OP is now written in terms of the quaternion basis of the

()|, (x) (8)

previous section

gp(x) = kﬁx)(x) gﬁx) (9)
The tetrad components h(;")(x) posess an inverse k(&),
(ot) LV _aV -
kP Ky = 6)* (10-1)
(@) - p(o®) -
K, kfyy =6(n) (10-2)

The use of an abstract space within which two metric fields
are defined, in the same system of coordinates, is a mathematic
al concept first introduced by L. Civita lo This concept was

also used by N. Rosen in the theory of general relativity'a.

3. CORRESPONDENCEH BETWEEN THE CURVED AND THE FLAT SPACES

The existence of two metrics associated to the same systenm
of coordinates implies in the possiﬁility of stablishing a
correlation among the components of these metrics. Such cor-
relation may be obtained for the components of the affine con-
nection associated to these two metrics. It may also be

written directly for the two arc elements ds and dl. In what
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follous we first obtain the relationships between the two

quaternion fields o- and ). The inverse of the relation (3) is

° _ LM .
Tler) ~ h(oL)v Z A
Substitution of this into the right hand side of (9) gives

Introducing the composed tetrad components H7‘/.{ by

A _ A ().
H (X)F = h (x)(q) k (x:)F (11)
gives,
o;,’(:c) . H*(::)H ROR | (12)
‘The inverse of the matrix H = ‘(H’P) is
A A L (p)y
= (8 = h'P (13)
8= (T = ey 1PN
indeed,
s")l gh = s o (14-1)
AR A -
Hpo}t&mS oL | (14-2)
Th\lS,
o |
Zﬁ(x) = 3 (x:);\ o"x(x) (15)

the following formulas are of importance;
SH(x) _ V. (o)
hH ) = Ml
plec) - pv ()
k g ky
i = gh it

- 7O
HM—’X?‘OLH I
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sa}l = gf}l“s}‘

o
- S &
Sap = Bpo S R
sY H,, =%
A TPY IR
A
The element of arc in the curved space may be written as
= ax o) = e B x) () (16)
and in the flat space as |
a1 = ax” 2 (x) . (17)
In the appendix we indicate how it is possible to stablish a
relation between d8 and 41 Z. In the next section it is treated
the problem of the relationships between the affine connections

in both spaces.

4, THE AFFINITIES IN CURVED AND FLAT SPACES

We have seen that to the points with coordinates x and x+
+ dx there are associated two arc elements ds and Hgiven by
the equations (16) and (17). They represent two distinct
metrical spaces. To these spaces there are associated two types
of observers, those corresponding to the quaternions ZF(X) which
describe a flat metrical space and those associated to the
quaternion op*(x) which describe a Riemannian metrical space. The
transition from one representation to the other being accomplish

ed by the tetrad field gl A(X)’ or its inverse st ?\(x), according to
‘the equations (12) and (15). |
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In the flat space we now introduce an affine connection by

means of the relation

aZ, () = axt PP @ 24 - (18)
From (15) we obta.in 2sH ,
d Z (x) = dx?’--&- a(xns*‘ (x) doy (1) (19)
24¥ 3 p
the differential of o P is given by 3
d o (x) = axv & cr(x)+(f‘(x)o’(x)+0'(x)r(x))dx
i {”}‘} * ) ) (20)
imposing |
T+ T"r =0 . (21)
and introducing the Hermitian quaternion
A'C,.\= T'% % ~ % T,é
this quaternion is written in terms of the quaternion basls O}l
as
(\1
'CF = A'g Ho-oé '
Thus, we may write (20) as
N T g o
do- = dx [:{"F}+ A‘Z/‘] a, (22)

it should be noted that {t’ F} is symmetric 1n (£ R but A
skew symmetric over this pair of indices.

/4\

Substituting (22) into (19) and at the same time using the

relation (12), ‘
dz} - dx'g 3SF . S" [{'g"}"'A ]Hp 2‘3 dx%’




a -eomparison of this ‘e&;»ue.‘tion with (184)-g‘ives
_p sl X P[ g TP -
Ty 2= 5 o8 H}[’“ 54 “V{UP}*A'C,}LJ.EM"" (z3)

From the equation (22) we see"t«hat' the affine conne;ction in'

curved space is given by the quantities

, O & - ‘ »
= + (24)
X, {z: /u} | A?; - |
'so that the relatlonship between the affin:.ties f and Y is given

bY(Z)as " ,
28
'AHp

Pl 5 ﬁ , )
f;f9\~ax'g /1+3FAY?5;: (25

It is important to note that the tetrad H.’Jx and Sﬂa transform one
: re‘presentation'into the other, as example, given the vector @F

defined in the curved space, the quantity

@ﬁ =¢H H?\H

- represents a vector in flat space 4

Y smilarly's“ also
‘cransforms indices from one metrical space te the other. 4'1“he‘se
properties may be verified easily from the s’cruc‘&ure of the IIR A
and b,l';\- given in (11) and (13). They are characteristic

properties of the structure of the tetrad fieldQ

From the form of the equatJ.on (25), the presence of the
tetrad HHx and S“ is interpreted similarly as a transforma’c:.on
of indices belonglng to the curved space into in(dices referring
to the flat space, with exception of ¥ which is common: to both

spaces due to its appearance in the difﬂerehtial of coordinetes.
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Thus, we may interpret the term

s Y'do;lﬂﬁof Tog A

as the projection of the curved space affinity into the flat

space. We rewrite (25) as p | ‘
. 28 .
T{f - Jgﬁa =2 ﬁ/u | (26)
A 9XQ§ -
the left hand side of this equation represents the difference of
the two affine connections as seen from the flat space observer.
According to a theorem of L. Civita 1 this difference behaves as
a tensor in flat space. Therefore, the right hand side of this
equation is also a tensor in flat sbace, where the curvilinear

K

coordinate x° are used.

L. Civita's theorem is presently generalized due to the fact
that Jﬁﬁz‘ also contains the spinor affine connection I}l'

Another important relation is the equation which gives %Py
in terms of 7%;;(and its inverse). Such relation is obtained by
takihg the scalar product of two quaternions given by (12), -

g §

tpe inverse relation being

AP .
= 2
| | %W S}lS v EAR . (28)
Using (11) along with the -definition given for h&x) in the section
| (1) we write (27) in the form o
= (%) (p) ¢
=k k d (29)
TE R T By

This is the usual formula of the tetrad'calculus, which'shows
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that the present results are mathematically equivalent to the

usual equations of the tetrad method.

5. THE EQUATION OF MOTION AND THE THEOREM OF QUASI~INERTIA
Using the definition of the previous section we write (26)

sF
A { } a6 -3 P (30)
“where the subsecript "F" was used for remembering that the quanti

ty refer to the flat space.

The equation of motion of a2 test particle follows from the

variational principle

Gfds =0 (31-1)
ds = (g}w ax M dx”)% (31=2)
which gives as result the Euler equations
ax“ jt ax ¥ dx%
+{ = X .. (32)
dsZ 2 A ds ds

We_introduce now as Independent variable the line element 4l
belonging to the flat space, a simple transformation gives

}dx'ﬁ ax*  /as \T a%s axf |
{“ at <an>. as ay >
Using the equation (30) we rewrite (33) as

et poax® et 28 H ax? ('ds)"l a%s  axf

— —

= + [ =
at trab @ o, Yar Ak

dl
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where the antisymmetry of the spinor affine connectionA,UPAhas

been used.

At the neighboroud of a given point O we can set the
25 %,

2x %
obeys the equation of motion of a free particle, (the dif-

derivatives equal to zero, so that locally the particle

ferentials ds and d1l can be taken as equal in this neighboroud

of 0)
2.1 % LA
a ax® ax
WU o/ A (35)
WY TA af al

We now introduce the convention of considering g}“, as the
potential. of the gravitational field, the metric of the space
being given by the ;a}‘,,, The formula (34) it an extension  of
a result obtained by Rosen since presently we use the quaternion

formalism and the concept of vierbein.

A

By choosing cartesian coordinates we can set all h(u) equal
to 6#. In this coordinate system we choose some point O as
origin and suppose that the observer is located at this point.
In the neighbohood of O we can set all k(}f)) equal to 6!:.

| | UP(O) =ZF(0) . (36)
In this region we will get ds = dl. Thus, the equation (34)
simplifies to (we also impose that (ls-,ga =0 ,
72X
Bk (37)
— = O ° . ’
e

The equation of motion of a partiecle under the action of the

gravitational field as seen by the observer at O, in the im-
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mediate vicinity of this point has the form of the equation (37).
From the principle .of equivalence the observer at O is equivalent
to a freely falling observer. At O the components of the Riemann-
Christoffel tensor are the unique non-vanishing quantities as-
sociated to the gravitational field, but since they are absent
from the equation of motion, we get the result that the particle
falls free in the nighbohood of 0.

Introducing the quaternion

dx = axFZF(o)
we get for the four~dimensional velbcity
ax ax!

51':572;& (o)
and for the four-dimensional acceleration

d;X d;xf
= Y (0) . (38)
agf  ar? #

From the equation (37) the four-dimensional acceleration

vanishes in the vicinity of the point 0. This result was called
in the literature as the postulate of "quasi-inertia" °. How-
ever, as was shown this result is a direct consequence of the

fact that locally the gravitational force vanishes.

6. IHE FIELD EQUATIONS IN THE QUATERNION FORMALISM
The Lagrangian density for the Einstein's field equations
ok 6. Using this

result Sachs has obtained the field equations from the Palatini

may be expressed in terms of the quaternion
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variational principle 7. The expression for o@ is

og(O' C’/'la /“l [;“ IIAW’U”V):R";".%'
The field equations in empty space have the form
1wt Q oL 1
- + o )+=Ro, =0 (39)
P Q}“" pee R
where @/u. is the quaternion curvé.ture defined by
?
G0 =--c:7‘R‘8 =— [+ (40)
ans Ape BT ox P poe
which satisfies 4
Q Tx‘ - )40(’ (41"'1)
Q’Aq’, '-‘-""@q_)( (41=-2)
Ry = - (41-3)

/{OL

The scalar curvature may be expressed in function of quaternions

as
O'(o) R‘*"O- '(@ H"" O'i{q* (42)
Since in empty spaces R vanishes, we obtain from (39),
oL
cRt +®@ o =o0. (43)
poe e
The components of the Ricci tensor R’“/ are given in terms of
quaternion as
ke +
R %0y © UHI( 4 of Q

since these components also vanish, we have ’che pair of equations
(c™*Q - Q cr =0
io-PI(Q 0‘ o-o@ )
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These equations imply in the condition
Xy, (of'eY- "5 =0 . (44)
Using (41-1) along with (12) we write (43) as
Mo s AQK - o
P w Z,- L, L&

oL

multiplying by H H we obtain
oA LA
mz -3, 1 =0 (45)
where
xA A v
TT = H‘;H RN (46)

The equation (45) represents the projection of the equation (43)
over the flat space, and the 'ﬂ'u;\is the projection of the
gquaternion curvature Q“')‘ over the flat space. The quantities
-lTom are not interpreted as a curvature but as physical
quantities associated to the gravitational field, similarly to
the g Py (or the 0}{) which: now rep.resents the gravitational
potentials. Thus, in the flat space theory the gravitational
field is described by the |] A which are solutions of the
field equations (45), the role of the gravitational potentials
being taken over by the quaternions 6, .

K

Similarly the conditions {44) may be written in the flat

space theory as

T V(Z"f” -5'sh =0 . (47)
In the literature ° from }::he use of the theorem of quasi~inertia
and by postulating the equation (47) it is possible to derive
the three tests of general reiativity. We call attention to the
fact that presently none of the two above postulates need to be
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done, both results are direct consequence of the theory.

7+ CONCLUSION
With the help of the "two metric formalism" of L. Civita

and using the basic ideas of the Rosen's model with the proper
modifications which are needed for the quaternion formulation
it is possible to derive a natural correspondence between the
theory of gravitation in curved and in flat spaces. The
equation of motion and the field equations are obtained in the
flat space theory in a very simple and elegant form. All
results are direct consequence of Rosen's interpretation and of
the Sachs variational principle. The corrections associatéd'to
the spinor degree of freedom appear naturally. Since the
present method deals with tetrad fields we may introduce intep

actions with fermion fields and thus obtain a more complete

theOI'y .
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PEND
R ON BETWEEN THE LINE ELEMENTS d d
We give here a very short discussion of this subject since

a more complete treatment may be found in the literature 2.

oL
Multiplying (34) by the quantity'qkm'%ﬁf we get
ax* [ osf Fdx% ax? (ds>'1 a%s axM
7, Bl — — (=) — —
P ag ox®  Pal ak at/ apc al
since the left hand side of (34) vanishes when multiplyed by

n
o

the above quantity. At the vicinity of the point O (the origin
of the coordinate system used previously) we obtain

(vsﬂ)_

-——-% ..o

X7 )

as \"1 / a5

.....> -—--2-> =0
(gdk o al=/o

which gives by integration

and thus,

(ds)o = C(dQ)o

vhere C is a constant. It is always possible to take C = 1, and

thus proving that in the neighboroud of O we can set ds=dl, as

was'used in the text. The relationship between ds and d1 outside
the point O is more complicate and will not be given here.
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