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1. Introduction.

The diffraction of an electromagnetic pulse by a  perfectly

3 by the

method of branched wave functions, and later by other authors 2,

conducting half-plane was first treated by Sommerfeld

who employed different methods. Apparently, however, the problem
has not yet been treated by the Fourier method. Since the
solution of the problem for a monochromatic plane wave is well

known 3, the latter methed is perhaps the most natural one.

Sommerfeld's solution for the monochromatic case will be
reproduced in section 2. In section 3, the solution for a
delta~type incldent pulse will be derived from the monochromatie
one by the Fourier method. In section 4, the solution for an

arbitrary incident plane pulse is derived, by considering it as a
# To be published in Anais da Academia de Glencias.
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superposition of delta-type pulses. The results agree with Bate-
man's 4 forn of the solution for perpendicular incidence.

The physical 1nterpreta'tion of the solution will not be

considered here; it has already been discussed elsewhere 5.

The cartesian co=-ordinate system is defined in such a way
that the half-plane is represented by x>0, y=0. S 1s the
geometrical shadow region, T is the region of incidence arid trang

mission and R is the region of incidence and reflexion:

region S: © € (0, $);
region T: 6 € (¢, 2r-%); (1)
region R: 8 € (2r -, 2r);

where r, 6 are the polar co-ordinate and ¢ is the angle between
the direction of incidence and Ox (fig. 1); & can be restricted to
the interval (0, w), without ' 4
loss of generality. The-
solution is defined on a
two-sheeted Riemann surface, T

as discussed by Sommerfeld 3,

The physical sheet is defined
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by values of © belonging to
the intervals (0, 2m). If we
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consider the case of transverse electric waves,

E= ¢z
- A A (2)
H= Igcx +Hy Y

the wave function S[’(r, @, ¢, t) must satisfy the boundéry condi~
tions for a perfectly conducting half-plane,

¥ (r, 0, P, t) =0,

(3)
‘l’(r, 2’"’,4’, 4t":)"—"Oo
If the incident wave is a monochromatic plane wave
(k) k[r cos(6-¢)-ct]
e (rs 8, Py t) =0 y (4)

the solution is given by 3
o=17/4

Y (k)(l‘: 8y, b, t) = o

{éik[rcos(e-db)- ct] G(v_) -

N eik-[rcos(e-‘i’)'ct] G(w+)},. (s)

where

6 +¢ o
w,(r; 8, ¢, k) =5 vVZkr sen > (6)
and
W
2 .
G(w) =f el dq. (7)
=00

If F(w) denotes Fresnel's integral,



146

W
2
F(w) =Ieiq dq (8)
0
then, owing to the properties
5 -l A -
F(oo) =F(oo)=§ei“'*, | (9)
we can write
w
6(w) = 3 el™% 4 F(w) . (10)
3. Delta=type incident puylse.
The solution to the problem when the incident wave is a

delta~type pulse,

o)
1. 5 P i
& L N Iklrcos(B=- 4‘) - ct
L‘l’ine(r’ 8; d, ©) = “g?,j a -.] dk

=0

= 3[r cos(6 =)= ct], (11)
can be obtalned from Sommerf¢ldis solution (5) for a monochromatic
plane wave { (k) by taking its Fourier transform:

2 o]
1
$(ry 0, ¢, t) = _2;»[ b Er, 0, ¢, £) ax.  (12)

=Q0

However, for negative values of k, we obtain purely imaginary

values for w, and w_. This difficulty can be overcome by separa=-
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ting the integral into two parts, each one from zero to infinity.

This procedure is suggested by the fact that, the result

real, {(11) can be written:

(s &
1
- (k)
qinc(r’ e’ Cb’ t) = ‘cl;?inc (r’ e’ ¢, t) dk +

o

1

+ —-J“P (o) (r, 8, $, t) dk.
ar 5 inec

Hence,

0
1
lP(ll.', 0, 4’, t) =;I¢ (k)(r, e, SP’ t) dx +
0

QO
1
+ --qu (X)*n, 0, ¢, t) ak.
S

Introducing
e—iTT/4 (s vk Wi 5
¢, (r, 8, ¢, t) = Jexp(ikY_,_)dkf eld dq
- 2."-3/2 -
-00

where
Y (ry 6, ¢, t) =r cos(® +P) ~ct,
o4

W, (ry, 8, ¢) = 3/2r sen ’
- 2

the result becomes

P (r, 0,P, t) = [q’_(r’ é: $, t) "‘T_* (ry 8, $, t)] -

being

(13)

(14)

(15}

(16)



- [‘P.,..(r’ e’ 4” t) +‘P+*(r’ 9,‘#, t)]- (17)

In order to evaluate

- Wk )
I(W,Y) =J‘te1kY dkf el g4, (18)
0 -0

we interchange the order of integration. If W<O0, this leads to

. 0o a®/w?
I(W < 0) =J’,,iq c't-"q‘f oY gy (19)
or, after integration in k,

o

1 Y T
I{WL0) = — fexp11+— adq--—ej‘"'/“.k .

i¥ we 2

-0

If Wl +y >0y we make the change of variable
Y
1 e mm—— qz = qu .
we ‘

Taking Into account (9), we find

1 W
I(W<O0, WC + YD>0) = — /7 ol™2 [ 1 4

—_— |, (20)
= Pere:

If WX + Y< 0, the change of varlable is
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Y

we

and the resulting expression can be obtained from (20) by

substituting

4 Y —— 1 /W + T, (21)
If W>0, the inversion of the order of integration in (18)
leads to
o o
I(W >0) = I(W<0) +f o1d” dqf 1T 4y, (22)
~00 qE/TﬂTZ

or

1 | V7
I(W>0) = — -Z—ei”/‘* <2 1im eikY-lj -

iy ‘_ k o P
0
T2
-fexpil+“ q dg ¥ (23)
WZ
~00

For W2 + ¥>0, we find

W
-2 1m el¥¥),

4;2_,_ v k—+o0

i
I(w >0, WZ+Y>0) ‘-*--—-./1?91"/4 G+
2Y

(24)
and for W2 + Y <0 1t is sufficient to make the substitution (21).

By means of (16) we obtain
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+ +

W2 +Y, =1 - ct (25)
and so, the four possibilities which occur for (15) are:

v b7 son ¥ [ 1 /5 s ]
t e —— (0 sen ——
2 {[2eRBaTor sen 2 4w[rcos(e + ) - ct] r-ct 2 J’

- r
r>ct,0,P,Fsen — 1+/2 sen —— =
‘P"' A 2 > 41r[rcos(9+1>)- ct] r-ct 2

-2 1im eiX :rcos,(,e:_"Q’ )=ct] (zé)

k= oo

and the two others that result from these by making the substitution
(21), which now reads

vVr-ct == fvet-r for r<cect. (27)7

From (26) and the analogous expressions for r <ect, we can

derive the value of the expression within square brackets in (17):

e+ * Chn g
Y. rs9,$st,¥sen _é— <0 |+ ¢ |r,6,pyt,7sen — 0 | =
s - 2
= Re [§+ (I',B,‘P,t)] s (28)
where Re stands for "the real part of",
ha
V2 [r sen =z~

‘:IB. (ry0,$,t) = + — ’
2r Yet-r rcos(8+ ¢)-ct
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and
oxb

aa * =
‘P.g. Ty 8y Py t Tsen — >0 +‘k+ ry 65 ¢, Fsen —> 0 | =

= 6[1' cos(6+$) - ct] - Re[:{’__l_ (ry, 8, P, t)]e (30)

The last result follows from

1 k (8+P) =ct
T k~~ o0 rcogs(6+$) = ct

In the geometrical shadow region,

oxp
Fgen -—2" <0 (8eg), (32)
so that
q?s(rs 6, ¢, t) = q’dif(r’ 8, P, t), (33)
where
lpdif(r’ 8y P, t) = Re[‘[’_(r, 8y Py t) - ‘I’.;.(Taes ¢, t__)_l
2n s, 24
V2 [T e ¢ r[a(cos 6/ 2=c0s"¢/2)+ 1)~ ct
= Re { — sen — COog— ™ - ' - .
T Vet-r 2 2 [ra(c:osaewsien‘?@« 2rcogbcosd et + cztz
(34)

Por r (ct, the expression within square brackets is'real. For

r>ct, 1t is purely imaginary, so that

wdif (r>et, 8,9, £t) =0 (35)

This result also follows directly from the causality prineiple, ag

cording to which there can be no diffracted wave before the arrival
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of the incident pulse to the half-plane.

In the incldence and transmission region,

0-¢ e+ ¢
> 0, = San
2

sen {0 (eeT),

S0 that the solution becomes

$plr, €, ¢, t) =, (T 8, Py £) +Payplry 8Py ¢),

where qlinc is the ineident pulse (11).
Finally, in the region of incidence and reflexion,

6 44
¥sen -—2—- >0 (eeR),

so that
LIJR(r,e,‘P,t) = q’ine(r’e"t”t) + ‘brefcr’9:¢lt) + ‘I‘dif(rse:‘i’:t):

where
Y. oo(Ts 8 Py £) = = 5[r cos(® +¢) - ct].

(36)

(37)

(38)

(39)

(40)

From the results (33), (37) and (39)y we can see that the

 solution is completely separated into geometrical opties terms and

& diffraction term which is common to the three regionsg. For

negative times, we have only the incident wave. For positive times,

we have all three waves: incident, reflected and diffracted.

In the particular case of perpendieular incidence, (11), (40)

and (34) are reduced to:
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$inc(Ts €5 12, t) = 8(y=ct)
Tref(r, 9, 17'/2’ t) = = 6(?"‘ Gt) 3 (41)
1 [T y c088/2 = ¢t sen®/2
Tdif(r, 0, ‘IT/Z’ t) = Re[; J-
et-r thZ_ya
e
Let
¥, ne(Fs @ $y £) = D[ct -1 cos(o-$)] (42)

be an incident plane pulse of arbitrary form, traveling in the $
direction. Such a wave packet can be expressed in terms of delta

-type incident pulses by means of

®

q’inc(r’ 0, P, t) = J Slrcos(e-¢) -ct-HEi D(¥) A% . (43)
-00

If we make ¥= ct_y we can conslder (43) as a superposition of

delta-type pulses incident on the half-plane at different instants
of time t,, distributed according to a "welght" D(T) = D(et,). The
solution can, therefore, be obtained from that derived in section

3 by substituting t by t- ¢, and by integrating over all °to‘ :

According to (40), the reflected wave 1s given by



154

q’ref(r’ e, 4’, t) = ~ DE:'b—I‘ cos(9+¢f):l. (44)

The diffracted wave follows from (34):

El’dif(r’ 8, ¢, t) =

]

Ctw-
ver e ¢ Y {ct-%- [2(cosze/a-sen2+/2)+1]r}D('K)d‘U
T

00 Vet—g-1 [( et=¥)%-2rco s8cogd(ct- ¥)+r%( cos 29'-39112!!’ )]

(45)

The upper 1limit et -r in the above integral ariges from the fact

that the diffracted wave is now zero for » et -7,

The solutions in the 8, T and R regions are given by (33),
(37) and (%9), where ‘kinc’ qrm and wdif are given by (42), (a4)
and (45), resgpectively.

For perpendicular incidence, the rasults reduce to

‘Pinc(r’ 9, W/Z’ t) = D(ct- y'),

ll’mf(r, 8y /2y t) = = D(ct+y) , (26)

ct=p

vr J“ [(ct-2) seno/z -y cos8/2]
™ /ETT [(ct-0)? - 7]

D(%¥)av.

lPdif(r, 9, TT/Z’ t)

-0

Bateman's solution 4

of the same problem differs from (46)
in the expression for lPdif’ which, according to Bateman, 1s given

by
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I_ -1,

Pigelrs € £) = -I_-I, inregion T, (47)

in region S,

- I +I_  in region R,

where
w/2

1
I, (ry 06, t) =~ I D[(ct +y) =-(rty) seczadb. (48)
- T
0
In order to compare (46) with (47) and (48), let us make the

substitution:
(et+y) = (rty) seci b = ¥,

Then, (48) becomes

ct=r
I 5 y vrt+y D(%) 4% (49)
T t) = 4
£ n Vot=t=r' [(ct:'_'y)-'t‘,]
)
so that
ct-r
1 (et=)Wr=y * /T+y) + yWWr-y 7 v/T+y)
1_¢1+=—J D(%¥) a¥
am oo Vet= g -r [(c’t:-'&)2 - yz:l
or, in terms of the polar angle 6,
I +I, =
ct~r i .
/FJ‘ (ct-v)[»/fiseneiu/f!-sene‘] + yiv1~sent =F~/3.+sen§] "-"( :
= e D(%) dv.
ew oo Yet-2-r [(ct— 9 - yz]
(50)

In region S, 0€ (0, w/2), so that
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T © T ©
vV1-senb + v1+senb = /2 sen(- - -) + /2 cos (-— - z\

/

4 2 4 J
e e
={(14+1)cos —=-(1+1) sen ~
2 2

The solution in this region, according to (47), is

ct=-r
vEY (et=-%) senB/2 - y cosd/2
I-I==~— p(e) at , (s1)
T Vet=t-r l:(ct-'t‘t)‘2 - yz:l

in complete agreement with (46).

In region T, € (w/2, 37/2), 80 that

[
v/1-sen® * v1l+send = - +/2 sen| — - — l+:/§'cos{—'-—\4
2 ) \¢ 2/

8 6

=(1l+1) sen= =« (1F 1) cos -

v 2 2

According to (47), we now have to take - (I_ + I ), so that we
find the same result (51).

Finally, in reglon R, 6€ (37/2,2r), so that

(n‘ 6:) / T
-2 sen| = = = T ¥2 cos| — =

4 2 4 2

v/1-senb + +1+send

_ 6 e
(1 +1) sen == (1 + 1) cos —
: 2 2
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and taking - (I_ * I ), according to (47), again ylelds the same

result.

Thus, our solution for perpendicular incidence is identical

to0 Bateman's one.
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