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1. INTRODUCTION

The nctions of topological spaces and of con
tinmous functions are to be considered as fertilely well estab}isﬁﬁ
in Hathematicsn The related concepts of differentiable spaces and
of differentiable functions have not as yet been ntroduced in a
compayrable broad and definitive form, as their study is classically
confined mostly to locally Buclidean spaces. The present work
arcge from wishes to extend part of the known results of the thsory
of differentiable. . manifolds, due to Whitney, to a larger class of
spaces whieh are not required to be locally Buclidean a priori. We
have been then lead naturally to a category of tepological algebras
which is likely te play a role in the theory of general diffeggnt;
able spaces. As this category of t@pél@gi@al algebras presents it
self as the largest one having'an operational @aléulus with ordinay
differentiable functions, in a sense made precise below, in order
to intraduce here such_a-distinguishad categery we shall adopt the
opeiatienal caleulus point of view, although it was not our main
goal. As a motivation +teo the question studied herey let us men

tion than an n - differentiable structure on a topological spa-
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ce X should be definable by a topological algebra A of real con
tinuous functions on X , such an algebra having to satisfy suit
able conditions, among them the requirement that € A be a loeal
property and that A has an operationmal caleulus with ordinary-dif
ferentiable functicns; f.e., that fe¢ A implies @{f}€ A for every
n-differentiable reai function ¢ on the real line R and that the
map (9 f) ——P{f) 4is continuous: and similarly for functions ¢ of
several variables. The local nature of A (rather its intinitesi-
mal nature) is éxpressed in a sense by the local convexity assump-
tions used in this paper. This article is devoted to the proof of
the assertion that, if ¢ is a category of pure separated algebras
whose radicals are nilpotent and n>0 is an integer, in order that
every topoiogical algebra which is locally convex with respect to
C should have a pre-operational caleulus with n~differentiable furg

tions[ll

2 it is necsgsary and sufficient that C be a subca?egery
of the category Dn%l of all pure separated algebras of differéntial
order n+l . The category of topslegical algebras, related to n=dif
ferentiable spaces, thus distinguished after this statement is tﬁat
of the topologisal algebras whiéh afé lécally convex with respect
Dn*l for some n>0 . The question dealt with in the present paper
was influenced by A. Weil's exposition of the infinitesimal calculws
on differentisblis manif@ld@&% We need, however, use here pure loecal
algebras with nilpotent radicals but free from finite dimensionalﬁy
or ascending chain restrictions imposed a priori; and, more general
1y, we have to accept in cur considerations semi-loeal algebras,

which are direct sums ef finitely many such local algebras..
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2. NOTATIONS

We denote by R and Z the systems of the real numbers
and of the integers. r* and Z* refer to the positive real num-
bers and positive integers. We shall denote by C™R) the topolo=
gical algebra of all real functions £ on R having”ecntinuous'
derivatives up to order n included (n.ez*ﬁg this algebra being
endowed with the topology of order n , that is the topology of the
uniform convergence of fgooogf(n) on every compact subset of R .
We shall also denote by P(R) the subalgebra of all real polyno-
miels on R . Si will represent the Kronecker delta. All vector
spaces consldered here will be over R . All algebras are assumed
to be commutative and have a unity. Every subalgebrs contains the
unity with the possible exception of the case ofkﬁn ideal. A pre-
-norm on a vector space E 1is a function miE—R* steh that
w(xty) «wl{x) + wly) 5 w(6x) = |xlow(x) . If, in addition, w(x) =
0 implies x =0 4, then w 4is said to be a norm. A pre-norm of
algebra on an algebra A has to satisfy alse w#{xy)< w(x) wl(y)
and #{I) =1 or O (y(I) = 0 implying w = 0 ). A topological al
gebra is assumed to have its topology defined by the continuous
pre=norms of algebra. If A 1is an algebra, TI{A) will denote the
set of all pre-norms of algebra on A . The natural topology of A
is the one defined by all = ¢ TI(A} » A is saild to be separated
if its natural topology satisfies the Hausdorff separation axiom,
that is, alternatively, for every Xxe¢A 3 x # 0 , there is W‘é
eTI{A) such that w(x) # O . The geparated algebra associated to
A 1is the quotient of A modulo the ideal on which all 1w ¢ TI{(A)
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vanish. If p¢P(R) and wa>0 ; we define
Ips A, w| = sup{w[p(x)]; X €Ay meTi{4), v(x)sw} o
More generally; if A 1is a topological algebra, TI(A) will repre-
sent the set of all continuous pre-norms of algebras on A . Assum=
ing that ScTI(A) defines the topology of A , we put |
ID; Ay S; wl = sup{'w[P(x)] 3 X €Ay WeS, w(x)sw]
An algebra will be called pure if all its maximal ideals are of co-
dimension ocne. In dealing with a category C , we shall assume that,
if UeC and U is isomorphic to V 4 then V¢ C . Except as sta-

ted otherwise,; we follow the terminology of Bourbakil and Jacobsonze

3. LOCAL CONVEXITY

Let E be a real topolegical vector space. We denote by
S & collection of wector subspaces of E . A subset XCE is
§-convexd> when X 1is comvex in the usual sense and X =[lg(x + 8)
for Se§ . It amounts to the same to say that X d1s the inverse
image of a product of convex sets in the product space T1SE/S o
The space E 1is S8-locally convex in case the 8-convex neighbor-
hoods of O form a basis of neighborhoods at 0 . This, of course,
implies local convexity in the usual sense. When we have two colleg
tion sl 9 SZ of vector subspaces of E and Sl is eontained in
$2 or, more genersally, every member of Sl contains some member
of SZ 3 then Slmconvexity and Slmlocal convexity imply Sz=conm
vexity and Szmlocal convexity. If $ reduces to, or rather cohw..
tains 0 , then S-convexity and 8-local convexity reduce to usual

convexity and local convexity, For E to be S-lpeally convex it is
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necessary and sufficient that the convex neighborhcods V of 0
such that ¥ = F]S?3§ form a basis of neighborhoods at. 0 . Such
a neighborhood V 1is clesed and &-convex and, conversely, if a
reighborhood V of O 1s closed and S-convex, then V = rwé?¥§
holds. There results that we may replace 8 by the eoliecti@n of
the closures of itz members without affecting local convexity; and
similarly, that we can omit from $§ +those vector subspaces which
are dense Iin E . Given 8 , if we denote by ¥ the collection of
the closed (if we want so) vector subspaces of B of codimension
one, each of which contains some member of $ , then 8-local conve=
xity and E-local convexity are identical. Alternatively, let @ be
the colleetion of the linear continuous (if we want so) functionals
on E eaech of which vanishes on some membsr of § . wotice that $
is not necegsarily a vector space, as we can assert only tha% R@CZ
- Cd d.ec 9ed implies »g9cd for any scalar A€R . The S-convex
'symmetric closed neighborhoods of 0 are the polar sets of the equi
gontinuous subsets of § . Hence E is $-locally convex if and enly
1f its topology is that of uniform convergence on the equicontinuous
subsets of § . If w 1is a pre-morm on E , ¥ is said tc be S-com
vex if its unit closed ball | x ¢Ej w(x)sl] 1is S-comvexz. = indu-
¢ces.on every E/S & pre-norm which, after being pulled back to E,
has the expression wgl{x) = inf {v(x@s)g se.s] o Clearly wgsT® o
Then = = SUpge for S¢S amounts to 7 being S-convex. Alse E
is S-locally convex if and only if the S-cenvez eontinuous pre-norms
determine the topology.

Let us now consider & commutative algebra A of @perators
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on the real topclogical vector space E . We always assume that A

contains the unity. Corresponding to every ideal ICA , represent
by IE the vector subspace spanned by the T(x) , with T¢I and
X¢E o Clearly IE 4is invariant under A . Letting & be a colleg
tion of ideals in A and $(@) = {IE; I ¢}} ; we shall say that a
set XCE 1is convex with respect to I when X is S(I)-convex;
and that E 1is locally convex with respect to T in case E is

$ (I) =locally convex. In further applications,; we shall make use
of thls definition in the following form. Calling C a category of
commutative real algebras with unity, then XcE and E are said
to be convex and locally convex; respectivelly, under A with res-
pect to € 1in case X and E are convex and locally convex with
respect to the c~liection I (€) of ideals ICA such that A/T ¢
€ C . When A 1is a topologicdl algebra, we may take E = A , consi-
der A as an algebra of operators on itself and apply the above
considerations. If I 1is a ccllection of ideals in A  I-convexi-
ty and I-local convexity have each two different meanings, which
agree in each case. A 1is I-locally convex if and only if its to-
pology is defined by the continuous pre-norms of algebra on A whi
ch are I-ponvex. We shall simplify slightly the terminclogy by saying
®econvex (locally convex) with respect to C * when we shounld say
®"convex (locally convex) under A with respect to C ¥ in the topo
logical algebra case. We notice that, if a topological algebra A
is locally convex with respect to a category C , then A is local
ly convex with respect to the category of the separated algebras as

sociated to the algebras of C .
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As two simple examples,; we mention the following ones.

Consider the topological algebra C™RT) of* n=differentiable real
funetions of m real variables. For every compact subset Kc R%

and £ ¢ C%(RM™) , we define

mg({f) = sup Z, lﬂ | Dif(x)h xeK
lilen 1s

(where Ai = (ilgooogim)g [1] = il+“.,+img Di = a!i!/axil Moax:m)
to get épreunorms of algebra which aefine the topology. Consideration
of the collection of ideals of all f ¢ C™®™) such that DIfF(x) =
=0 far li|l<n at a given point x ¢R® shows that CMRD) ig
locally convex with respect to the category of algebras isomorphic
to the local algebra Rg of real polynomials in m wvariables of
degree <n § and similarly for differentiable manifolds. Analogous=
1y, let LYB®) be the topclogical algebra of Lipschitz real funce
tions on RT ,of order 1. For every compact subset KCR™ and f¢

€ Ll(RmBS we Introduce

mlf) = sup{sup[f(x),£{y)] *'ini):féfjls Xsyeks x £ 5

(where x—Ix| 1is a norm on R®) to get pre-norms of algebra whi-
ch define the topology. Ll(Rm) is then locally convex with respect
to the category of algebras isomorphic to RZ 9 as it is suffiecient
to consider the collection of ideals of all fe Ll(Rm) vanlishing
at two points x , yeR® , x A Y § and analogously for Lipschitz
functions of arbitrary erder m on general spaces, with Rm'ﬂ’ in

place of Ra °
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4. MEAN VALUE LEMMAS

A divisor on the real line R 1is a function f:R—2Z
whose support {xj; f{x) # 0} is finite. The divisors on R form
an additive group, the “free abelian group® generated by R . Puk
=t = xzeh £{x) . We write fsg for two divisors if f(x) < g(x)
(x€¢R) and use the usual conventions about ordered sets. In parti
cular, the divisor f is positive if f£=20 . If ae¢R , we denote
by a too the divisor equal to 1 at a and to O everywhere
else. The points of R +thus correspond to certain positive divi-
sors. Notice that asf means that a belongs to the support of
f . We say that the divisor f is covered by the divisor g if
g-f = a for some ac¢R . A maximal chain of divisors is a finite
set C of divisors which can be indexed as flgono’fn in a unique
way so that fi is covered by fi+l if lsis<n-1 . To every po-
sitive divisor f we associate the polynomial pgf) or degree
Zf given by p(f£Xx) = T] (x= £)E(t) | This establishes a one-
=t0=0ne correspondence be:g:tfeien positive divisors and the monic non=-
~zero polynomials on R . To every positive divisor f on R 5 sve
ry a¢R and 1¢Z' , we associate polynomials and numbers as fole
lows. In case Osisf(a)=1 (which requires f(a)=>1), we denote
by pi(fga) the,‘ polynomial wﬁose oxact degree ig 2.f = 1 , satisfy
ing the conditionss at the point x = a ; all derivatives of order
js 0sjsf(a)=l 4 of the polynomial vanish, with the exception of
the i-th derivative whose value divided by 1! should equal 13 and,
at the points x # a whefe f(x) 21 4 all derivatives of order J,
Os jsf(x)-1 4 of the polynomial vanish. Such a polynomial exists
and is unique. If 1>f(a), we put pi(f',a) =0 , For any 120 ,
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we can alternatively define pj{f;a) , as the polynomial p. of dé=-

gree Zf = 1 characterized by the conditions that p(x) = (x=a)l
is divisible by (x-a)f{®) ang p(x) 1s aivisivie by (x=t)f(H)
for all t # a . We denote by wi{fya) the leading coefficient of
pi(f,a) (with the understanding that the leading coefficient of
the polynomial O 1is O© ). Therefore u&(fga) # 0 provided Osic
<sf{a)=1 and w(fsa) =0 if 1ixf(a) . It is easily seen that,
when Osis<f(al=1 , we have '
ot = T (T ) HCO-a)
ta\ g(t)

where the summation is extended over all divisors g =20 for which
gla) =0, Yg=£(a) =1 =1 3 and (’jf): X ooo{X=1+1)/1i! for x ¢
€R 4 1 EZ&'o We shall not, however, use this expliei. expression
for u&(f,a) and an analogue for pi(fga) 3 but rather prove direg
tly the elementary properties we shall need.

LEMMA 1 (First Lagrange's mean value theorem). Let £ >0
be a divisor on R and ¢ be a real function defined and having

derivatives up to order N-1, N =3f , in the least closed interval

containing the support of f . There exists a point & belenging te

this interval such that

(1) > > wy(£58) p(i)(t) qr(K“'l)(a)
ts? OSiSf(t)"’l ig = (H‘F'.l)g !

Proof. Let us introduce the polynomial

(1)
(2) P= 3 L)

- . P (f t) P
£t os<f<P(s)-1 1! 1"

It is immediate that ¢'37(t) = PLIN4) for O<jcf(t)-1 5 tef o
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The general form of Rolle's theorem implies the existence of Z , in
the least closed interval containing the support of f » such that
o2y = pN=1)(z) | ysing the fact that the degree of P is
N~1 and (2); we see that the leading coefficient of P is both equal
to P(Nﬂl)(c)/(ﬂwl)ﬁ and to the left-hand side of (1). This proves

(1),
Motivated by this lemma,; we introduce the notation’

(1)
(3) A(‘Psf) = Z + wi(fst) —cLi;M s

tERgiEZ
Then (1) can be written as A(Q,f) = ?’(le)(ﬁ.)/(ﬁal)i

LEMMA 2 - If £3>0 is a divisor, then 2. w(f,t) =0 ,
teR
with the exception of the case in which f = a for some & ¢R .

Proof, .he lemma is true if f =0 . Assume £ >0 and
exclude the case f =a ; a¢R . Then 5f>2 ., Take 9= 1 in Lemma
1 to get Lemma 2.

LEMMA 3 = Let fo = Osooosfyy = £ (N >1) be a maximal chain

of divisors on R and ¢ a real function defined and having deriva-

tives up to order supf(t)-1 in the least closed interval contain~

teR

ing the support of f . The coefficients in the polynomial
(4) . P= > Ap(fy)

OsisN=1
can be uniquely determined go that
(5) o e) = PI(t) for Oeger(t)-1, tef ,
and then
(6) A; =D(95f,,,) (OsisN-1) .
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Proof. There is a unique polynomial P of degree N-1

satisfying (5). Since the exact degree of p(fi) is i3 P has a

unique expression (4). To prove (6),; we proceed by induction. For
N =1 the lemma is true. Assume N >2 and the lemma true for N-l.

Let Q= > - Ap(f,) =P « A -plfy +) o Then (5) implies that

Q@ satisties ¢ 3(t) = QUIN(t) for Osjegy (8>, tefy .
By the induction assumption,; we get (6) for OsisN-2 . There
remains to consider Ay ; . We know that P is given by (2). By
comparison of the leading coefficients in (2) and {4), the proof is
completed,

COROLLARY - pj(fga) = o iZN lAip(fi) where A, =
£l N .

= ‘%(fiﬂ,a) for OsisN=1 3 j=0 and ae€eR »

Proof, If we take ¢= pj(fga) g then P = pj(fga) o Al=
so Ay = A(pj(fga)gfiﬂ) = u{j(fiﬂga) s since A(pj(fga)gg) =

= Wj(g,a) whenever Osgsf .

LEMMA 4 - {Second Lagrange's mean value theorem). Let

£, = Opooosfyy = £ (N21) be a maximal chain of divisors on R ad

¢ a real function defined and having derivatives up to order K-l

in the least closed interval containing the support of f . There

are éi belonging to the least closed interval containing the sup-

port of £,y (0<i=<N-1) such that the polynomial

p= . M p(£,)
OsisN-1 14 i

will satisfy ¢(3)(t):P(j)(t) for Osjsf(t)=1ly tsf .
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Proof. Apply lemma 1 to the coefficients of P in lemma %
LEMMA 5 -~ (Orthogonality relations). Let £, = 9,,”,:{'1‘; =

= £ (N>1) be a maximal chain of divisors on R . Then, for ajsa, ¢

¢€R and r, sez+ 3 we have
weygl{fsa) If ay = a, = ay

0 if a; # 8y s

Proof. We put gy = f - me;j (osjs<N) to get a maxi-
mal chain which satisfies g, = 0 gy = f fi + gy = f for 1=«

]

<1,j and 1i+j = N , By the corollary to lemma 3, we can write

Pr(f ’3“3.,) = 05%:-1311}(1‘1) where A; = wr(fi+lga1) (0sigK=1) ,

ps(fgaz) = quZstlij(g;i) where B3 = ws,(gj'?"lsa&) (0<jsN=1) .

We form the product pr(fgal)ops(fgaz), which will be a sum of terms
AiB,jp(fi+gj) o We denote by U the sum of these terms for Osi,J
and 1i+jsN=1 j and by V the sum extended over 1 < 1;)] and i+j=

?N. Therefore
(7) Pp(f3a1)0n (£5a,) = U +V ,

If 1,3 contribute to V , there are hyk so that lshsi , 1s
<k<j ; h¥ =N . Hence p(fy+g;) 1s divisible by p(fy+g,) =

= p(f) . This implies that V is divisible by p(h) . We now dis-
tinguish two cases. If a; = a, = a ; we know that pr(f,a)(x) -

= (x=a)F and ps(fsad(z) - (x-a)® are divisible by (iﬁa)f(a) o
Therefore pr(fga)(x)ops(f,a)(x) - (x=-a)¥?® ig also divisible by
(x=a)f(2) | This fact together with (7) show us that U(x) - (x~a)F’Ss
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1s diviaible by (xman(‘)o Moreover,; (7) implies that U(x) is di
visible by (x-t)f¢%*) for 211 & # a. Since U hes degree N-1, we
conclude that U = pr+8(fga)o By comparison of the leading coeffi-
clents in this equality, we get the lemma in this case. Assume now
aq # aye Since Pr(fgal)(XD is divisible by (x«t)f(t) for all
t #a, and Pg(f58,)(x) 1s divisible by (x-£)¥¢®) ror a1l t £
# a, 3 we see that pr(faal)(x)ops(fgazjﬁx) is ddivisible by
(x-t)T(¥) gor a11 t , that 1s by p(£)(x). Them (7) implies that
U 1is divisible by p(h) . Since U 1is of degree N-1 and p(h) is
of.exact degree N ; we conclude that U =0 , Writting down that
the leading coefficient of U is 0 ; we get the lemma in this case.

LEMMA 5“‘1&&% o<fl<ooo <-fN be divisers. Ij" elgooegeﬂe

¢R  and : .
(8) 1% ei w;}(fi Et) =0 for all t ¢ R5 J € 2 9
sisN

E.hen @l=ooo=QN;00
Proof. If N»1, we choose &t so that fy(t)>fy (%)

and put § = f{t)=1 , Then {8) gives ey =0 o Similarly, if N>2,
(8) will give oy, =0 and so on until we get eluﬁiflgt) =0,
Choosing t so0 that fl(t):>0 and j =0 , we get e =0

5. DOMINATION LEMMAS
In this section, we shall consider pre-normed vector spa-
ces whose prenorms will be denoted by the standard notations .l o
At the same timég we shall consider auxiliary pre-norms. It is to
be tacitly understood that the topological concepts will be taken

in the sense of the main pre-norms [.] -
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LEMMA 1 - Let V3, W be pre-normed vector spaces,

(1) HCV 5 My = VOM;Dooo DM, 5 KCW, N

be vector subspaces, ¢; a linear continuous functional on JH + My,

= HDHlDo”DK

o r ?

vy @ linear continuous functional on K + Hi (1si<r). Assume that

the ty are linearly independent on H and the Yy are linearly
independent on X , that ¢4(M;) =0 and y4(N;) = O and that M,,

N; are of co-dimension i respectively in H + Mg 5 K + Ny (1sisr).

Letting hlgoooghrg klgooogkr20 be real numbers, @all algougarg

‘Dl,.“gbr the largest pre-norms on V, W such that

ag(x)slog(x)] (xeH + M), ag(x)ehy lzll (xev),
by(ydslvy(yd] (yeK + M)y byly)sky Il (yew),

(2) (Lsisr),

Let F:V<W—R be a function such that F(xq%%,57) < F(x;,7) +
+ F(XZQY)» F(Ax,y) = |MF(x,y), Flx,yq+ YZ)*‘;F(XQYZL) + F(XaYZ) 9
F(xopy) = |plF(xs7).

Then

(3 Flx,yy)< p+qz=r+1 ap(x)bq(y) (xeV; yeW)

holds for hlgoooghrs kl,oe-o ’kr large enough if and only if

(4.1} F(x,y)s Z lo (X)l | q’q(y)l (xeHy, ye¢K) ,
ptgEr+l

(402) F(Migﬂjjs 0 f;O_I' i =+ j =
(4.3) F(x,y)<s L |xll « Iyl (xe¢Vy, yeW) for some constant L =0,

Proof. UNecessity of (4.1) follows directly from (3) and

(2)s Necessity of (4.2) results from the faect that if xe My, yeHw
i+ j>r 5 then in every term of the summation in (3) we shall have

e%thex)ﬂ i2p or ja=q ; hence either a (x} =0 or b (3’)=09 hence

E(x <0,

‘ff:ecessity of (4,3) follows from (3) and (2) with L = > o
P+g=r+l P q -
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For future reference , we notice that (4.3) allows us to write

(4.2) in the more general form
(5) F(M;,Ns)s0 for 1+ j=r ,
where the bars denote closures.

We now prove sufficiency and assume all (4). Since the
¢; are linearly independeﬁt on H , we can find ﬁl,ooogﬁ € H
3) = 5i o Clearly My =¢Pil(0)r]eoor]?il(0) s since
the inclusion of Mi in the right-hand side is obvieus and equali

such that @i(a

ty follows from a co-dimension argument. Therefore
(6) ﬁiﬁﬁi y Gy €My oo
Clearly H + M, is generated by algooagai and M, . Repeating
the same with the v; on K ; we find Clgou.,cre‘K having analog
oug properties.
Then (4,1) gives
(7) F(zg1%0s 6117
In facty, 4f 1+ J A r +1 , then either p#1i or gq#§ if p +
+g=r+1, g0 we get F(éi,cj)s 0 from (4.1). If 1 + J =
.+ 34y, then p #1 and q # j 5 except when p = i 43q9g=3 and so
F(éi,cj)s 1 o This proves (7).

In the proof of sufficiency, we proceed in three steps.
Firstly, we indicate an equivalent form for (3) to be used in the
third step of the proof. It is immediate from {(2) that

ai(X) = Df{ l’\il + hi "x = (Alal + soot E‘iﬂ)ﬂa 39°°°3 iERB .
ueMi} ’
bi(Y) = in—f{ !}Lii+k1“ Y“(}‘lal+ﬂaﬂ+f‘ici+V)u5}"13000s}‘ieﬂsveni} e

Therefore (3) amounts to
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. | . = >\ En +doo a +u
(9) F(x;y)<p+2;;4l{lkpp|+hp"x (pplyteeet pplptup)l e

o = : +ooo+
{Lrqql Y = Gragiates e ¥rgqtq*ve)ll
for all XeV 5 yeW kij » My g ¢R (1si,jsr)y uy €My, vieNi(lsisr).,

Secondly, we establish sufficiency in case Vy; W are fi-
nite dimensional, with emphasis on the nature of the lower bound
for the hy, k; which will assure (3). Assume that the dimensions
of Vy W are less than a given integer s . Since the éi_ and the
Ci form two sets of linearly independent vectors, we have T <8 o
We also assume that the fg9 Yty are linearly extended over the wheo
le V 3 W with preservation of their pre-norms, by the Hahn-Banach
theorem. We also let JF] = sup{F(x,y)s lxll< 1; llyl< 1} . We shall

prove that there is a lower bound

(10) 1 =£-'{53||FI|3 ﬂ¢il!9 "‘Piaz "‘:il’ I‘:il[ (lsis 1’)}
depending exclusively on the mumbers enclosed within patenthesis,
increasing with respect to [Fl,fp;lls llysls such that (3) will hold
provided hy, kiat(lsis r) .

To this end, we shall construct a topological direct de-
composition of V and W , depending on dim V, dim W<s 4, as fol-
lows. We shall deal with V and consider W as an analogous caseo
We have M,cH,_,N¢;1(0) . The left-hand side in this inclusion is
closed and has co-dimension less than s in the right hand-side.
By a known elementary fact, there is a projection p, of ﬁi 1 N
n ?il(o) onto a vector subspace 8; of it,; whose kernel is Ei
and such that '

(11) "pili s Wy 9
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where @y is an absolute canstant depending on s (2) . We have

— =,1 _

(12) M, 1N?y(0) =5, 8 M,
as a topological direct sum. Since

= =1
(13) My = Ry, 0 {®, N5 (0} ,
as a topological direct sum, by induction (12) and (13) give a
topological direct sum
(14) vV = Ral ® S, @ Riz @ oo B 8, @ ﬂr
and ; more generally,

(15) My = R&34q® 85,76 000 ® 5, ® M, (Osicr=1),

Every x ¢V can be uniquely written as
(16) X =Alal + Wl +0'00+ Wr * Wr+13 )\ieﬁg Wiﬁsi (l"iﬁr)’ wr+1EEr o
Therefore

(17) wieM; 5 (Ledicr#l) o
To determine expressions for the projections giving the
components in (16) as functions of x , we define :«igV—~+Si and

«igv——*Mi by induction as follows

o((g(x) = X (x)
o (x
(18) «3(x) = pi{“iml(X) =93 [*1-1 1iﬁi} ’ (lsier),
“f(x) = (T = pg) {ag g (x) =gy (<] &}

where I denotes the identity map of the vector space involved in
each case. We remark that

«f_q(x) = 9y [x]_1(x)] &5 € By, 0 ¢730) ,
so that the induction makes sense. Then it is immediate that
(19) Ay =9y [“{ml(X)]s wy = %(x) (Lsisr) ,

= ol
LAY r(x) o
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For future reference,; we determine now bounds for the pre-norms of

the projections «,;, 4 . Clearly (18) give

eyl Nog L + ogl o B2yl Ied_oll
IS0 + | og(L + Toghalz ) Net_o 0
Since ﬂ_ﬂfg{ 1 ; using (11) we get

(20) J=yli<a s Jaflica y where & = (1+¢)° T1 (1+leyl.120.

lsjer
We proceed similarly with W and introduce o33 Tys fys
875 B analogous to P40 Sigqigdig A for V ; so that we will
have properties analogous to those described explicitiy for V , in
particular every ye¢W will uniguely be

(21) v =}"’1:l + zl Fo00t B

T + Er.:e.l? ’uiéR’ ZjETi (1‘1‘1’)3 Zr__'.léﬁr °

*

To pruse f3) for large hys ky, we shall now prove an i-
nequality analegous to (3), but invelving auxiliary pre-porm§ .
aigoooaa%3 bigooogb% » Let higooo@h%a kigooogk;;ao and introduce

the pre-norms on V; W as folilows

aj(x) = {3 + by 2 "Wj" 9 .
(22) o) = iyl vk S el e A
= L= g J
EA 2V 1yGu a0

provided x eV , y¢W have the cxpressions (16),; {(21). We shall
prove the following properties similar to (2)

a{(x)slqi(x)l (xeH*M, ), a{(x)sh{ﬂxﬂ (xeV),

(23}
h{(y)slwi(y)l (yeK+N;), h{(y)ckglyﬂ (yeW),

(l-‘isr)g

where
by = ACloy |l + shi), kj = B(h«i[] +skj); (lLei<r) o
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The Tirst inequality for aj follows from (15) for Osigr~l and
s clear for 1 = r too. The second inequality for ad follows
'3 {19) and (20) by
ag(x)slogllollag ;o ixll + ng E; by ¥ - Ixb<nylxll -
lsjsi

Similarly for bj . From (23) =nd the definition of ags byy it T
sults that

{24) aj<a; 5 bleb; provided hy>hf§ 5 ky>ki (leier) o

We now prove the following relation analogous to (3)

(28} P{x,¥)s al{x)bi{vy) {xeV eW)
0¥ p*qzzrﬂ, B qY s ¥

provided higenoghgg ki?“ogk“ are large enough. Taking (22) into
accornt and by simple substitution in (25), we remark that (25) is

equivalent to
(26 Flx,yls el e +
(26) (x5y :H;N Dyl eyl

+ Z g !)\il “Z ﬂ + Z hr-ﬂ-]_mjll"‘jl l‘g""

{orfepel Er1-

+ ‘ hoko
micr+l | pri=r+1 P ¢
pamygan

b ez, 1] 5

where l1si, jsr and l<msnertly, x and ¥y having the expresg

ions (16} and (21}. Also cleariy

(27) Flxyy) = FEME+Tw s T G Tz de X g o IF(2y 50,0 +
*LAgIFlzgaz,)) + 2] pglFluy0) +TF(wy0z,) o

Uzing (7) to dominate the first summation in the last side of (27)

and making use of (17) and its anmalogue in W , (&), (6) and its
aticlogie in Wy (1) and the definition of [F| to dominate the re
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maining three summations, we get

(28) F(x,;¥)s i+;r+1 gl oo fugl +

I NEVR CR RN S I NP R AR LT

Imcr+l N

£ 5 Lzl -

m¥sT
Comparing (26) and (28), we conclude that we shall have (26), that
is (25), provided
N “FE"EZi"‘k%.g.lmi'B IFH*‘"C-j"‘hf.q.lmj (Lsisjer)
(29)
iFll< Z hﬁka (1lsmyn; m¥n s T+L) »

ptqer+l
pamLqan

Since (29) is compatible for large higo”ghlig kigo”,kxﬂ, 9 We are
done. To be specific, let C 20 be the least number such that (29)
holds if higooo?hlgg kigooo,ké >C o Notice that C depends on
IFl, lzglls 124k (1sier). Put then all h{ = ... =hi = ki =

= 00 = qu = C and define

(30) { = sup{A( ll‘?il+30)3 B{ Jvsll +sC);5 1sisr } 9

which has the nature 'indi;:at,ed in (10), by the definition of 4B,
C, and is increasing in its arguments. Then we have (25) and (24},
hence a fortiori (3) for hjsecesh s kjsecosk 2! 3 as we wanted in
the finite dimensional case.

Finally we prove (3) for large hi ”ki in the general ca
se. As we already know; this amounts to (9) for large hi’ki o
et X eVy, yveW 4 uj €My, vieN, (1sier) be givenarbitrarily. Call
v* the vector subspace of V spanned by x and the Z;,uy (lsicr);
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and W* the vector subspace of W spanned by y and the Ci’vi

(lsisr). Then dim V*< s , dim W¥s s, where s = 2r+l by definit-
fon, Define H* = HNV* , M = M,nV* , K* = knw¥, N} = N 0wk
Define 9] as the restriction of ¢, to H' + Hi and w; as
the restriction of y, to K' + H; . Call F* the restriction
of F to V¥xW® . The analogous of the assumptions for V, W
hold for V¥, W* . If we denote by 83 300028%; D¥j000sb%  the lap
gest pre-norms on V¥, W*¥ such that

a¥(e) ¢ Jef(x¥)|  (xreEeag),  af(x*) e by fx*| (x* Vo),

bY(y*) « [y3(y*)]| (y*ek*+N%),  bHy*) s ky ly*]] (y* ewr),
we shall have the analogue of (3)

F*(x* ,y?ﬁ‘)s Z a*(x*)b*(y’*) (x* ¢ V*g y* e W¥)
A SR

prOVided hlaoo,o ’hr3 klgaoe @'kr /{* and

1% = & { e, IF* s lot s lletls bzg lallag ) (1eten)}
according to (10). This shows, by the first step in the proof, that
the analogue of (9)

F*(x"‘ay*)sw;ﬁl{i R AR Lt

A *m a OOG C -Pv*

{Igq! e dr* =ty By peo st B )

holds for all x*e¢ V¥, y*cW¥*, Aijg P € R (lsi,jsr), u’{emg, viel\q
(lﬁiir) PrOVided hlgooa 3111.:9' klae&o skré_ {* ° Putting x* = Xy y*;Y’
‘a;{ = Uy v’{ = vy 1in this inequality, we get (9) provided hygooee
‘°°’br? klgasogkr?—’z 34 where

Ead {area,lFlalloglls Tyglls Hzgls gyl (Qeismd}

since {>{* ., The bound { does not depend on the X,y,A's 9 FSHUTS
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vig, hence we have proved (9), that is QBV) for large By gki(ISiEf)g

QED .
LEMMA 2 - Let E ©be a pre-mormed vector space EICE

and SCE vector subspsces, w a prenorm on 8 . Assume that E?

35 closed and of finite codimensjon in Et + 8 ., If a® is a given

pre-norm on E! and, for h=20 ; a is the largest pre-norm on E

such that alx) < «lx) (xeS) and a{x)shlxl (x ¢eB) ; then at{x)s

calx) {(x eE") will hold for h large enough if and only if

al(xdsw(x) (xe¢BE'NSY and ax)s Lixl] (x<Et*)} for some const

ant L20 o
Proof. Necessity is clear. To prove sufficlency,; we no-

tice that alx) = inf {«{s) + hix - al; s ¢S} {xeB). If SCE® ,
then a'(x)<al(x) {(xeB') if hsL . Assume then S € E' . Let
$q 900095y, be a basis for S mo&ulé E‘NS . We shall prove that
a{x)e wls +2XA;e,) + hix - (s +Zr\isi§)l| for xeE! 3 5<EINS,
Ai ¢ R provided h is large enough, as this inequality will imply
ai{x)salx) {(xe¢E!) for h iarge erough. To this end we write
at(x) <at(s) + ar{x-g)s w{g) + Lix=sil< w(s+Z>\isi)+u{2>\isi)*LExmsEo
It is then sufficient to assure that (X /\isi)+Ll!1ms < hlx -
(s+Z>\isi)Ho Dafine ?r('\lgeoog)\n_) = inf { ﬂy’=~2)\isiu5 ye<E!} . Then,
assuming h>L; it is sufficient to assure that «©(ZA;s;) +

L !]ZXisigs(th) w(klaa“ﬂn)o Since B! is closed in E? + Sy
7 3is a norm on R® . Hence there are x3f >0 such that w(ZAisi)s
<eam(Xqgoocsiyls agxisi- s pmlhyseossiy)e It is then sufficient to
take h > x +H1+g)L .

LEMMA 3 - Let A be a pre-normed aslgebra; B a subal=
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gebra, M OoeoDM SN, .55 N Deoo N ON 4 (r>0) be vector subs-
paces of A, where B, = A, BN, = A4 and Mrﬂ, = gr*l {(call P

this vector subspace). Let ¢y be a linear continuous functiomal

on B+Hi and Yq be 2 linear continucus funcetional on B+Ni (0<is

<r+l), where Prs1 = Ypaq (call ¥ thig funetional). We assume that
M; is of codimension i+l in B+M; and N; is of codimension
i+l in B+Ni (Osis<r); that fPi(Mi) =0 aid wi(Ni) =0 (0<is
<r#l); that ¢, (1) =1, YolI) = 1 94(1) =0 and y4{I) = 0
(1si<r+l); that the 2 (Osisr) are linearly independent on
B and that the vy (O0«i«<r) are linearly independent on B .

We also assume that

1 B

(1) x(xy) = p+qu+l ?,(x) ¥ (y) (xs7 eB),
Ps4q >0

(2} f’gcz’ (O<izjs i+j = 1) «

If hgseooshyyqs Kygooosky gy >0 where h ., =k . (call { this

number), let Bp9e00 98499 b@ 9000 9br+l be the largest prenorms on

A such that

ay{x) < Icpi(x)l (x eBM,); a(x)s hiﬂx! {x €Ay

(Osisr'ﬂ.)g
byly) < lyy ()] (v eBH,)y bylydsikylyl (geads

{since a = b s call ¢ this pre-norm). Then, given { , the
T+i r+l

ineguality
(3) elxy)s p+<;r+1 ap(x)‘bq(y) (x,¥ ¢ 4)
P3q =0

will hoid for hegooe ghrg K 9000 9kr large enough.

Proof. Put ¥V =M, W =N, and notice that M_ =¢71(0),

o?
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— ‘='1 £ e A ] : 2 - —
N, =%, {0} since M s N, are of codimension 1 in B#M, = BH =

o
= A , The Py (L<isr) are linearly independent o H = BNV
and the Yy {(lLsisr) sre lireariy independent on K = BNW . Also
M; CHHM,; = iBfMi)ﬂ?;l(O) ghows that M; 1is of codimension 1 in
H-I‘Mi (0sicr)s Similarly Ni is of codimension i in K*Ni °
Putting F{x,v) = e(xy) (x eV, ye¢W) , the conditions {4) of Lemma

1 are satisfied, in view of the above conditions (1}, (2). Hence

(4) elxyls > ailx)bily) (xeVyye W
prgrsr P4
Pl > <

holds 1if hnggoooghzﬂag kif\ooogkiﬁi;@ are large enough, where aigooo

000933[; 9 b-é?gooog)bli re Jlargest prencrms on Vg, W such that

af{x) < ﬂcpi(_zc)ﬁ (x B, 1, allxls hiilxﬂﬂ (xe¢V)

’ ) ‘ (}_Siér)o
pilyd s lyyydl ty ekl iyl killyll tyew) o

We fix the values of the h{; k! {isi«r) so that (4} holds.
Since V., W are clcsed and of codimension 1 in A . we may apply
Lemna 2 #d say that alea,. Bi<bg iLsisr)on V, W, provided

the hj sk, {l<ic<r) are large enough. Therefore

(5) e xy )< Z a (x)b (¥ {(x eV, veW)
proFpiz ¥ 4
Psg 21
holds provided the hys ky {1<i<r) are large encugh. Finally,
if x, y<¢A ; we remark that a (x} = }qJG_i{xH (xeld)y b ly) =

= |¥ (y)] {yea) provided k_>le fs k > ly Il and that xy =

(x= ?0(x)I)(Y° YAFII) v P ixdy + ¥ (yix + ¢ (x) Po{¥}I . Since
X = 9, {x)T eV, ¥ =4 ly)leW ; we conclude that {5) implies (3},

as wanted.
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6. ALGEBRAS OF FINITE DIFFERENTIAL ORDER

A local algebra is an algebra with a unigue maximal ideal [5].
An algebra is said to be of finite differential order whenever A is
a direet sum of a finite number of ideals AlguaogAS which are lo-=

n
¢al algebras whose maximal ideals Mlgonogﬁs satisfy Mll= coe =

= M:s = 0 for some integers nlgoaognsé-l o Such a direct sum de-
composition is unique; apart from the order in which the compeonents
are indexed. Assuming that By jeeo g, are the lsast integers satigf
ing the above conditions; the sum n =§3ni is called the differen-
tial order of A (330 An alternative way of defining an algebra of
finite differential order consists in requesting that the algebra
should have a finite number of maximal ideals and a nilpotent radi-
cal [3] .

We call attention to the fact that, in applications to al
gebraic geometry, a local algebra A is usually csalled separated
in case the intersection of the powers M® (n = 1,2,...).0f its na
ximal ideal M 48 O . Such a meaning for the concept of separated
local algebra should not be confused with the one needed in this pa
per (efr; §2 for the concept of separated algebra), as it is possio.
ble to give an example of a pure local algebra A which fails to
be separated in the analytical sense used here, but has a2 maximal
ideai M that satisfies M3 = 0 ; hence is separated in the other

Sense.

LEMMA 1 - Let A be a pure separated algebra of differen

tial order n+l (n>0). For p¢P(R} and w >0, we have
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NN ED i
(1) sup S5 1PV )5 20, [t HW} s Ips Ay wl<
O<isn
i R
< (2w) sup [lp(l)(t)l; | t] < w} o
O<iscn i3

Proof. Let A = A, & ..o e Ag be the direct decomposit
ion of A into a sum of ideals AlgooogAs which are pure local
. n
algebras whose maximal ideals ngoooaMs satisfy Mll = sp00 =

n
=M° =0 ;s where Dy 900050 >1 are the least integers satisfying

s s
such conditions and Zn,; = n+li ., We denote by I = I1 +ooo*AIS the
decomposition of the unity of A ., We also denote by Ty 900050
the suitably indexed homomorphisms of A onto R . We shall firsi
1y establish the final part of (1}. Let 7 ¢TI(A) and ¢ be a 1f
near functional on A whose pre-norm with respect to # satisfies
()<l that is 'HMx)l< w{x) for all xe¢A . By the Hahn-Banach

theorem, the final part of (1) will follow from

. (zmix))t (A)eeyl: |l
@ lepe)le 50 CEEES sup { a5 (e nta ]

To prove (2), we write ¢ = = ¢4 o where Qi is the linear functig
nal given by @i(x) = @(Ifx) (xch) o Then.'r($i)€‘w(Ii) s showing
that ¢i is continuous with respect to w7 . We now show that, for
every 1 such that ®i # 0 5 the homomorphism Ty isreontinuqus
with respect to 7 . In fact, for every X,yc<A we have

$i {(..K = G"i(X)I)niY} = 0 ¢ that is
"4 8473 o (xdv) =
(3) og%;n (57)= o4(x)) dy(x%y) = 0 .

n
Choosing y¢A so that ,(y) = (<1) * ; we see that G(x) is a
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root of an algebraie equation of degree ny whose leading coeffi-
cient is 1 and whose remaining coefficients tend to O as w(x) tends
to O. Hence ©;(x) tends to 0 as =(x) tends to O, that is oy 1s
contimous with respect to w . It then follows from an elementary
remark in the theory of normed algebras that |o;(x)]< m(x) (x c4).,

In proving (2), we may assume that § # 0 . Let x ¢A be
fixed and consider the finite set T formegd by the distinct values
of o,;(x) for which $i #0 . We define a divisor f on the real
line R by letting f(t) =sup{ny j oy(x) =t , ¢, £0} if teT
and f(t) =0 if ©¢T . We then apply Lemma 4 of §4 by choosing
a maximal chain f0 = Ogooogfx = £ of divisors. Take the function

¢ of the lemma to be p and determine P, &y (0<41i<N-1) as in-
dicated, We shall prove that

(4) ¢ (p(x)) = §(P(x))

To this end, we shall establish that ¢i(p(x)) = ¢i(P(x)) for eve
ry i, l<i<s . This is clear if Qpi =0 o Assume then ¢, # on.
It is then sufficient to prove that p(x) = P(x) = (x - oy (x)1) iyi
for some ¥; ¢ A . To obtain such a relation,; we remark that the
polynomials p and P have at the point @, (x) the same derivaz
tives up to order ng=1 at least; hence p(t) - P(t) = (tmﬂi(x)).;
2;(t) (teR) for some polyhomial Q; and then it suffices to ta
ke yy = Qi(x) o Having proved (4}, from it we get

()¢
(8 10Rta =BG | < mirae, > 1) e o)

If @i £ 0 , then Iwi(x)lsv(x)g hence w(x- ¢4(x)I)< 2m(x) . It
follows that W[P(fj){x)]s (2m(x))3 . Moreover all the ¢; belong

%o the least closed interval containing the support of f and, a
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fortiori, satisfy ]éiis w{x) . Since clearly N =Zf¢ Zni = n+l ,
(5) implies (2}, as we wanted in proving the final part of (1).

We now prove the initial part of (1). Consider real num-
bers tlgo”gts whizh are assumed to be pairwise different. We
shall keep them fixed until almost the end of the proof y, when we
shall use their arbitrariness. We then call f the divisor on R
equal to ny at ti (l=issg) and to 0 everywhere else.
Clearly f>0 .

We assume given a correspondence assigning to every di-
visor g on R  0<g<f ; a2 prenorm ag on A . We shall choose
such a correspondence later. Define

% {x)

wx) = «g{x) for x ed
Lsientan ~

Then the oy (1 si<n+l) and 7 are pre-norms on A . Notice that,

sup{ag(x)§ O<gsfyZg =1] for lsicn+l,; xch

ir ag(I) =1 for 2Zg =1 and ag(I) =0 for Zg=:2 ; as ve
shall assume; then #7{I) =1 .

We also agsume that to every diviser g 43 O<gs<f , we
have associated a maximal chain C{g) of divisors, whose first
term covers 0 and whose last term is g itself; this choice being
made once for all but arbitrarily. For every d¢C(g) , we denote
by d* the predecessor of d in C(g) , with the exception of the
ease in which 4 d4s the first element of C{g) , as then we put
a* =0 .

We find it comvenient to divide this part of the proof
into few steps for proper reference.

(1} If every 8y O<gsf , satisfies
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(6) ag(,x;yk ecZég) ad(x)agcé*(y) (x57 € A)s

then wsx—w(x) is a prenorm of algebra on A . In fact, the cor-
respondence 4 ¢C(g)—1i =Zd is one-to-one between C(g) and the
integers from 1 to j =ZXg . Moreover (g=d*) = j = (i=1) . So
ad(x)agmd*(y)s “i(X)qjmiﬂ(y) . Therefore

“3(12’:9')5 szicj “i(X)ani-v-l(y) (xyy ¢ Ay lsjentl)

. which suffices to prove thé statement,
‘ n,-=1
(i1) There are &, ¢M; such that ¢, #0(lsiss) .

Therefore, since A 1is separated, there is a pre-norm of algebra
x —llx|l on A such that léziMlll A0 (1<i<s). The topological
notions on A will be understood in terms of thi. pre-norm. Without
loss of generality, we may assume that A is topologically the di-
rect sum of Algo@ogAs as we may replace the pre-norm of algebra
x—lx] on A by x—»supi{ Ixi] + ﬂuiﬂ} 1P x =Z;(0I+ug)
where my ¢ M, (L<iss). Notice that 0;,;00050, are continumous.
(1i1) If, for some 1, lsi<s, and some ny, lsns<nyg,

we have

(7) 3;0 @j(aj)j € M?: ?

where (éi)o = Ii 9 the bar denotes closure in A and cj = 0 for

almost all J>0 ; then ej =0 for Os<jsn=1 . In fact, multiply-
],

ing (7) by (ai) 1 we get ¢, =0 o If n>2 , mltiplying {(7)

n
by (a)i we get ©; =0 , and so on until ¢ = © ., There re

nel
sults, in particular, that the vectors (4,)7 for Osjsmg=l ,
1lsiss 5 are linearly independent.
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{iv) We shall dencte by B the vector subspace of A ge
nerated by all (éi)j s lsissy; Jj20. B is a subalgebra of A .
For every divisor g ; O<g <f , we denote by B the vector subs~

g
pace of A generated by the (éi)j 3 O-Sj:;g(ti)mlg l<is<s. By

the remark at the end of (iii), these generators of B_ are lineayr

g

ly independent; so dim B, =Xg , We also introduce the following

g
vector subspace of A

= glts) MO =4 .
Ag lgg;s Mﬁ { 1 i)
We notiece tnat B + Ag = Bg + Ag - Also Bgn‘p:g =0 3 by (iii), whe
re the bar dencteg clcsure in A . In particular, Bgflag =0 ,

hence Ag is of codimension g in B + Ag » This allows us also
to define a linear functional Tg on B + Ag by requiring that

T lA,) =0 *rg[a&iij] = wlgsty) for O<j<gltyd=ly, leics
(where “3(g9ti) is meant in the sense introduced in §4). Since
BgFNEg = 0 4 this linear functional Ty is well defined and contin
uous. We note that; more generally

(8) [(209] = wigst;) for iei<s, §20.

Remark that, if g =1 i.e. g = ti for some i . then we shall

have Tg = T 3 B+ Ag = A . In this case rg(I) = 1 . We 2150 remark

that =g >2 implies ﬁg(I) = Q; by the Lemma 2, %4.

{v¥) We now indicate how to choose the a, s O<gsf . We
to
assume that every divisor g , O<gsf , there is assigned a number
g
(¢) a,(x)s'hzgmlelT (x)] (xeB+a ), a (x)sh_ fxl (xeay,
4 g g g g

where MA20 is fixed,

h_=>0 and that ag is the largest pre-norm on A such that
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If £g =1, that is if g = t’i for some i ; since

[7;(x)| < k]l for all x <A ; we see that we shall have a.g(x) =
= lo,(x)| (x<A) as soon as h,>1 . In particular, ag(I) =1 .

We note also that g2 implies that ag(_I). =0 .

{vi) Since all “cg 3 O<g=<f 4 are continuous and their
number is finite; by the Hahn-Banach theorem there is a number hisl
such that

0 = AZ8=l 1y - +)
(10) ag(x) | g(x)l (xeB Ag)
hold for O<gs<f, provided all hga h' ; as we shall assume.

(vii) Given g , O<gs<f and h, , the expression for

a, when £g = 1 indicated in (iv) shows that (6) holds if h >1,

as we assumed. Let us then consider the case g >¢ . Then theie_ is
a number Zg(hg) >0 depending on hg such that, if all hy , d¢
€C{g) 3 d #g satisfy hdazg(hg) 3 then (6) holds. To show this,
we shall apply Lemma 3 of §5 as follows. Denote by dlgooogdm = g
the elements of C(g) in their natural order, hence m =XZgs2 .
Then, in Lemma 39 take A and B to be the present algebra A

and its subalgebra B ; A being endowed with the pre-norm of algew

bra mentioned in (ii). Let r = m-2, M, = A s Ne = A .
i di+l | g=dmmi

9, = ¢ s ¥s = Y .4 o We then have M. N, = A A x =4
i di+l i gmdmmi" i”3 di+l g (3.111:_2i :4
if 0<i;j and i+j = r , We also have

Tlxy) = X0 v dxy_Wy) = Y ¢ (v (y) (xyyeB) .

£ aeclg) ¢ 84 ptq=p+1 P 4

psq >0

In fact, it is sufficient to verify this for x = (ai)j y ¥ = (&)Y
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and make use of the orthogonality relations given by Lemma 5 of §4.
The fact that the ¢; (Osisr) are linearly independent on B fol
lows from Lemma 6 of 84, Similarly for the y; (Osisr) o The
application of Lemma 3 of § 5 is then legitime as all the remaining
conditions are satisfied.

Having established these remarks, we start from ap and
determine 11f and succesively all the hg 9 O0=<gs<f 4 in the back
ward order so that all (6) and (10) hold. 7 is then a pre-morm of
algebra on A . We consider x =Z(tiIi + 2:1) « For any polynomial
p ¢ P(R) , we have

(x) (t.I, + 2,) Pt 9e) (2,)3
p(x) = P + = —— (&
12@3 A T L 1

where the summaticn with respect to j 1is finite. There results
from (10) and (8) that
a (p(x)) = A¥E7L | A(pse)]

according to the notation introduce in (3) or §4, hence

(1) wlptx)] = 2. 37 sup{|Alpsg)l; O<g<fy zg=1).
l<icn+l

In particular w(x) = sup(|t;|; 1<iss) +A, Now, if w >0 and
lt]| + X\ «w ; we may choose the £y » 1si<s, pairwise distinct
satisfying lti! +Asw (lc<iss) and let x = S(tI +38) .
Since w{x)<w , hence x[p(x)]< Irll, 5 if we apply Lemma 1 of §4

to each A(pyg) 5 then (11) will give us, as every ty—t , that
S
37 0] < tps 4, vl
lsisn+l -°

from which the initial part of (1) follows in the case w>0 . If

w =0 5 what we have to prove is [p(0)| < |pll, 5 which is clear.
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So the proof is completed.

7. OPERATIONAL CAILCULUS WITH—BIF?ERENTIABLE FUNCTIORS

A topological aigebra A 1is said to have an operstional
caleculus with C™(R) whenever A satisfies the Hausdorff separat
ion axiom and there is a contimucus mapping C®(R) x A—A denoted
by {(fo,x)—f(x) such that, in case I’eP(R) 5 T(B) = a, +ooo*

+ a,mtm (t eR) 9. then f(x) = a, +ooot amxm for xe¢A . The Weier
strass approximation theorem implies that such & mapping is necesss
rily unique. More generally, we shall say that A has a pre-opera-
tional caieulus with C™R) provided the natural mapping P(R) x

x A—A pgiven by (f.x)—f(x) is continuous as soon as P(R) is
endowed with the topology of order n induced on it Ty C2(R) . Of
gourse, In case A satisfies the Hausdorff axiom and has a pre-o-
perational calculus, then 4 will have an operational calculus if

A 1s complete in the sense of Cauchy-Weil, or even in a weaker sense.

In case; for all w=0 , the pre-norms of algebra on P{(R)
given by p —/[lps A,S;wll are continuous with respect to the topolg
gy of order ny where S 1is a collection of continuous pre-nerms of
algebra on A determining its topology, then the topological alge-
bra A will have a pre-operational caleculus with CMR) .

THEOREM = Let C be a category of pure separated alge-

bras whose radicals are nilpotent and n=>0 an integer. In order

that every topological algebra A which is locally convex with

respect to C should have a pre-operational calculus with CZ(R)

it is necessary and sufficient that C be a subcategory of the
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category Dn+1 of all pure separated algel'fara of differential order

sn+i ,

Procf. In proving sufficiency, it is enough to consider
a topological algebra A4 which is locally convex with reﬁpeet to
Dn £ and then show that A has a pre-operational calculus with
C¢™R) , since Ccb, 4y by assumption. Let & be the set of all
continuous pre-norms of algebra w on A which are convex with
respect to the collection In*l of ideals ICA such that A/T ¢
€D 4y o For 7e¢8 ; we have (1) ¢(x) = sup{-;rzix)g Ie¢ In+l} s Whe
re wylx) = hlf{v(me)s ¥ € I} 3 X6A o Letting I €I,47 » We con-
sider the natural homomorphism A—A/I , denoted by x—%; , and
the quotient pre-norm of algebra Tp dinduced by 7 on A/1 , whe
re EIQEI) =1wy(*) (X €A) . By applying the final part of (1) of
Lemma 1, §6;, to A/I , we see that

5 [ertxp] 1

o2e. 1 s V015 ltlergap)

Telp(x)]s<

for peP(R) . Since 7y(%) = m(x)s w{x) and 7elp(z)] =
= rl[p(x)] s we gety in view of (1) and using the arbitrariness of
I,

i
Ips 45 8, wle o%n%é’?— sup{lp(i)(t)is |t] < W}

for w>0 . This shows that the pre-norms of algebra p—|p; A4S gwﬁ
on P(R) are centinuous for the topology of order n , hence A
has a pre-operational ealculus with CB(R) 9 Since S5 determines
the topology of A

Conversely,; let C be a category of pure separated alge

bras with nilpotent radicalg having the property that loecal conve- .
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xity with respect to¢ C implies a pre-operational calculus with
¢™R) . Take A¢C and call C(A) the category of all algebras i
somorphic to A . Since C(A)CC , we see that, a fortiori, C(4)
has the property that local convexity with respect to C{A)} implies
a pre-operational caleulus with C™R) .

We shall prove now that every pre-norm of algebra
p—1lp; A5 w | on P(R) ; for w>0 ; is contirmous for the topo=
logy of order n . In fast, let A% be the algebra of all funcﬁﬁns.
f defined on A xTI(A) , with values in A ;, such that

e} = sup { r{f{xew)] s xehy 7w e (A)} <+ .

On this algebra A* ;, the function f —|lf]l is a pre-norm of alge
bra. For every x,€A; w, e M{(A} ; the functions f ¢ A* such that
£lx, 9;!!"0) =0 form an ideal I(x yr,) in A* . The nomomorphism
f—""f(xeg‘ﬂ‘o) of A* onto A has I(x ,m,) as its kernel, hence
A*/T{x_swr,) ¢ C{A) . Since the pre-norm of A* 1is convex with res-
pect to the collection of these ideals; a fortiori A* ig loeally
convex with respect to C{A) . There results, by our assumption,
that A* has a pre-operatiomal calculus with C™R) . For every
w=>0 3 we introduce the subset L{w) of A xTI(A} defined by
w) = {(xgﬁr)@' e TI{AY, m{x)< w} and consider the function £y
on A xT(A) with values in A such that f (x,) is equal to
x 1f (xyw)el{w) and to 0 if {(x.r) ¢L{w} . Clearly £q €AY -
Since the mapping (p,f)—p{f) from P(R) x A* into A* is con
tinmuous; P(R) being endowed with the topclogy of order n , we
see in particular that the mapping p—qp(fw) from P{R) into A*
is continuous for every w>0 . Hence the mapping p—l|p(f£ )] is

-~
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continuocus too., It is then sufficient to notice that Ep(fw3“ =
= |ps A; w]| to get our assertion.

We now proeve that A has at most n+l maximsl ideals.
In fact, assume that A has at least m>1 maximal ideals. A be=-
ing pure; it has at jeast m homomorphisms onto R . The homomore
phisms of A onto R are linearly independent. Therefore there
exists a homomorphism of A onto RT . The existence of such a
homomorphism implies that [p; R™; wi <llp; A; w] for peP(R) ,
w>0 . Since K™ has finite differential order equal to m 5 We
may aﬁply the initial part of (1) in Lemma 1, §6; by replacing 4
by B™ and assuming w>1 , ) =1 , as the arbitrariness of ) is
not essential here. Then we get

(2) sup{ ST e N fhyewer | < ps agwll .
Osism=1 i.

This inequality together with the continuity property of

p —llps 4, wl| with respect to the topology of order n implies
that m=l<n ; hence A has at most n+l maximal ideals. The fi-
niteness of the nnmber of maximal fdeals of A jointly with the
nilpotency of its radical show us that A has finite differential
order M . If we apply again the initial part of {1) of Lemma 1,
§€, this time to A itself with wa1l , A =1 , ve get again the
inequality (2) with m replaced by M . The same contimuity ar-
gument allows us to say that M-=lsn , that is M< n+l s hence

A€ D 4y o We thus conclude that Ceb,yy o as wantedo
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(1) We shall restrict curselves to the operational ecaleuwlus with
the topelogical algebra CR(R) of all n-differentiable real functions
on the real line BR. Since the topological algebra c™(R®) of n-diffe
rentiable real funetions of several (finitely or infinitely many)
variables indexe® by A is the topological tensor preduct of C™R)
by itself ANA=times in one of the two extreme senses considered by
Grothendieck [2], existence of the pre-operational caleulus with
G™R) under the local convexity assumptions employed here implies
existence of the pre-operational calculus with C™(R®) for all A

{€) For every integer s >0 , there is an absolute constant
wg;;@ depending on s such thaty, if E 1is a pre-normed vector
space of dimension <3 and FCE is a closed vector subspace; the-=
re exists a projection of E into itself whose kernel is F and whose

pre-norm is less than u%',

(3) In view of the statement of the theorem of §7 and the ter-
minology adopted by Weil [6], it might seem more adequate to call
znicl the differential order of A. We prefer the terminology adopd
ed here as then the differential order of a2 direct sum is the sum
of the differential orders of the components.



