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Abstract

We furnish an algebraic understanding of the inequivalent connectivities (com-
puted up to N ≤ 10) of the graphs associated to the irreducible supermultiplets of
the N -extended Supersymmetric Quantum Mechanics. We prove that the inequiv-
alent connectivities of the N = 5 and N = 9 irreducible supermultiplets are due to
inequivalent decompositions into two sets of N = 4 (respectively, N = 8) supermul-
tiplets. “Oxido-reduction” diagrams linking the irreducible supermultiplets of the
N = 5, 6, 7, 8 supersymmetries are presented. We briefly discuss these results and
their possible applications.
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1 Introduction

The superalgebra of the Supersymmetric Quantum Mechanics (1D N -Extended Super-
symmetry Algebra) is given by N odd generators Qi (i = 1, . . . , N) and a single even
generator H (the hamiltonian). It is defined by the (anti)-commutation relations

{Qi, Qj} = 2δijH,

[Qi, H ] = 0. (1)

The knowledge of its representation theory is essential for several applications ranging
from understanding features of higher dimensional supersymmetric theories from their
dimensional reduction to one-time dimension, to the construction of off-shell invariant
1D supersymmetric sigma-models associated to some d-dimensional target manifold.

The structure of the irreducible linear representations of the (1) superalgebra has been
substantially elucidated in recent years. On the other hand, some open questions remain.
This paper addresses and solves one of these issues.

In this Introduction we briefly recall the state of the art concerning the irreducible lin-
ear representations of (1) and explain this paper’s results. We postpone to the Conclusions
all discussions on their relevance and their possible applications.

We recall that the irreducible linear representations we are interested in (the irreducible
supermultiplets) are given by a finite number of fields, bosonic and fermionic, depending
on a single coordinate t (the time). The generator H is represented by the time-derivative,
while theQi’s generators are linear operators (matrices) whose entries are either c-numbers
or time-derivatives up to a certain power.

The program of classifying such irreducible supermultiplets starts with [1], whose main
results can be stated as follows. All irreducible representations of (1), for a given N , are
obtained by applying a dressing transformation to a fundamental irreducible representa-
tion (nowadays called in the literature the “root multiplet”), with equal number of bosonic
and fermionic fields. The root multiplet is specified by an associated Clifford algebra. As
a corollary, the total number n of bosonic fields entering an irreducible representation
(which equals the total number of fermionic fields) is expressed, for any given N , by the
following relation [1]

N = 8l +m,

n = 24lG(m), (2)

where l = 0, 1, 2, . . . and m = 1, 2, 3, 4, 5, 6, 7, 8.
G(m) appearing in (2) is the Radon-Hurwitz function

m 1 2 3 4 5 6 7 8
G(m) 1 2 4 4 8 8 8 8

(3)

A mass-dimension d can be assigned to any field entering a linear representation (the
hamiltonian H has a mass-dimension 1). Bosonic (fermionic) fields have integer (respec-
tively, half-integer) mass-dimension. Each finite linear representation is characterized by
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its “fields content”, i.e. the set of integers (n1, n2, . . . , nl) specifying the number ni of fields
of dimension di (di = d1 + i−1

2
, with d1 an arbitrary constant) entering the representation.

Physically, the nl fields of highest dimension are the auxiliary fields which transform as a
time-derivative under any supersymmetry generator. The maximal value l (correspond-
ing to the maximal dimensionality dl) is defined to be the length of the representation (a
root representation has length l = 2). Either n1, n3, . . . correspond to the bosonic fields
(therefore n2, n4, . . . specify the fermionic fields) or viceversa. In both cases the equality
n1 + n3 + . . . = n2 + n4 + . . . = n is guaranteed.

The admissible fields contents were classified in [2]. The complete list of the allowed
fields contents was explicitly produced for all values N ≤ 10. Some corollaries follow
from the [2] construction. N = 1, 2, 4, 8 are the only values of N such that all its irre-
ducible representations have length l ≤ 3. Conversely, starting from N ≥ 10, irreducible
representations with length l = 5 fields contents are allowed.

A graphical presentation of the supersymmetry transformations was introduced in [3].
It was later pointed out in [4] and [5] (some specific N = 5, 6 examples were given) that
the fields contents alone do not necessarily uniquely specify the finite linear irreducible
representations of (1). This result was based on a notion of class of equivalence of the
irreducible representations of the 1D N -Extended Superalgebra motivated by the set of
moves acting on its graphical presentations (see also the comments in [6]).

In a previous paper [7] we classified, up to N ≤ 8, all inequivalent irreducible represen-
tations admitting the same fields content but differing in connectivity of their associated
graphs. The notion of connectivity, describing how vertices and edges are linked together,
was made precise by the introduction of the so-called ψg symbol, whose definition will
be recalled in the next Section. A particular consequence of the [7] results is that, up to
N ≤ 8, inequivalent connectivities are only encountered for N = 5, 6.

In [7] no attempt was made to explain the motivation of the found results. In this
paper we address this issue. The N = 5 irreducible supermultiplets contain twice as many
fields than the N = 4 irreducible supermultiplets (2). It is therefore natural to decompose
a given N = 5 supermultiplet into two N = 4 supermultiplets whose respective fields are
linked together by an extra, fifth, supersymmetry transformation. The decomposition
of an N = 5 supermultiplet of given fields content can be performed in different ways,
according to the fields contents of the two composing N = 4 supermultiplets. Since the
overall fields content of the N = 5 supermultiplet is fixed, we find equalities (see (7)) such
as (n, 8, 8 − n) = (k, 4, 4 − k) + (n − k, 4, 4 − n + k), where each inequivalent value of k
produces a different N = 4 decomposition. To each such decomposition, an inequivalent
ψg connectivity symbol for the overall N = 5 supermultiplet is associated. This result is
not trivial. Without the analysis of the connectivity we could have easily thought that
the different decompositions into N = 4 supermultiplets (which can also be described, in
the superfield language, as different decompositions in terms of N = 4 superfields) would
produce equivalent results. This is not the case. The analysis of the connectivity proves
their inequivalence. Conversely, the whole list of N = 5 inequivalent connectivities is
completely specified by the inequivalent N = 4 decompositions.

This result opens the way to extend the analysis of the inequivalent connectivities to
the N = 9 irreducible supermultiplets. The reason is simple. They are constructed in
terms of two irreducible N = 8 supermultiplets and an extra supersymmetry transforma-
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tion connecting them. The complete list ofN = 9 inequivalent connectivities is reported in
Section 4. We further analyze the inequivalent connectivities of some N = 10 irreducible
supermultiplets which can be obtained from two irreducible N = 9 supermultiplets linked
together by an extra supersymmetry.

The results of this paper are further complemented by the presentation of the “oxi-
dation diagrams” which provide the following information. The irreducible N = 5, 6, 7, 8
supermultiplets admit the same number of fields. An oxidation diagram describes whether
an N = 5 irreducible representation can be lifted (“oxidized”) to an N = 6 (and to which
N = 6, in the case of fields contents with inequivalent connectivities), an N = 7 or an
N = 8 irreducible representation. All length-2 and length-3 N = 5 irreducible represen-
tation can be oxidized to N = 8 irreducible representations. On the other hand, certain
N = 5 irreducible supermultiplets cannot be oxidized to all the inequivalent N = 6
supermultiplets with same fields content, as shown in figures 3, 4, 5.

The structure of the paper is as follows. In the next Section, to make the paper
self-consistent, the graphical presentation of the supersymmetry transformations and the
notion of connectivity is briefly recalled. In Section 3 it is shown that the inequivalent
irreducible N = 5 supermultiplets with same fields content are due to their different de-
compositions into two N = 4 irreducible supermultiplets. This construction is extended
in Section 4 to prove that the inequivalent N = 9 irreducible supermultiplets with same
fields content are obtained by their inequivalent decompositions w.r.t. the N = 8 super-
fields. In Section 5 inequivalent N = 10 supermultiplets are constructed. In Section 6 the
construction of oxidation diagrams, expressing the lifting of the irreducible N = 5 super-
multiplets to irreducible supermultiplets of the N = 6, 7, 8 extended supersymmetries, is
discussed. In the Conclusions some comments are made on various applications of these
results. The paper is integrated by 5 figures, two of them graphically depicting an exam-
ple of decomposition of the supersymmetry transformations, while the three remaining
ones present oxidation diagrams.

2 Supersymmetric graphs and their connectivity

Some technical issues which will be used for later computations (e.g. the dressing trans-
formations which progressively lengthen the irreducible supermultiplets, the constraints
that they have to satisfy, etc.) have been discussed at length in [2] and [7]. To save space,
they will not be repeated here.

In this Section we describe, largely based on [3], the graphical interpretation of the
irreducible supersymmetry transformations and discuss, based on [7], their connectivity
properties.

An association can be made between N -colored oriented graphs and the linear su-
persymmetry transformations. The identification goes as follows. The fields (bosonic
and fermionic) entering a representation are expressed as vertices. They can be accom-
modated into an X − Y plane. The Y coordinate can be chosen to correspond to the
mass-dimension d of the fields. Conventionally, the lowest dimensional fields can be as-
sociated to vertices lying on the X axis. The higher dimensional fields have positive,
integer or half-integer values of Y . A colored edge links two vertices which are connected
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by a supersymmetry transformation. Each one of the N Qi supersymmetry generators
is associated to a given color. The edges are oriented. The orientation reflects the sign
(positive or negative) of the corresponding supersymmetry transformation connecting the
two vertices. Instead of using arrows, alternatively, solid or dashed lines can be associated,
respectively, to positive or negative signs. No colored line is drawn for supersymmetry
transformations connecting a field with the time-derivative of a lower dimensional field.
This is in particular true for the auxiliary fields (the fields of highest dimension in the
representation) which are necessarily mapped, under supersymmetry transformations, in
the time-derivative of lower-dimensional fields.

Each irreducible supersymmetry transformation can be presented (the identification
is not unique) through an oriented N -colored graph with 2n vertices (see (2)). The graph
is such that precisely N edges, one for each color, are linked to any given vertex which
represents either a 0-mass dimension or a 1

2
-mass dimension field.

Despite the fact that the presentation of the graph is not unique, certain of its features
only depend on the class of the supersymmetry transformations. We introduce now,
following [7], the invariant characterization. An unoriented “color-blind” graph can be
associated to the initial graph by disregarding the orientation of the edges and their
colors (all edges are painted in black). For simplicity, we discuss here the invariant
characterization of the graphs associated to the length l = 3 irreducible representation that
will be discussed in the following (the generalization of the invariant characterization to
graphs of arbitrary length is straightforward, see [7]). They admit fields content (k, n, n−
k). The corresponding fields are denotes as xp (for 0-mass dimension), ψq (for 1

2
mass-

dimension) and gr (the 1 mass-dimension auxiliary fields), where p =, 1, . . . , k, q = 1, . . . , n
and r = 1, . . . , n− k.

The connectivity of the associated length l = 3 color-blind graph can be expressed
through the connectivity symbol ψg, expressed as

ψg = (m1)s1 + (m2)s2 + . . .+ (mZ)sZ
. (4)

The ψg symbol encodes the information on the partition of the n 1
2
-mass dimension fields

(vertices) into the sets of mz vertices (z = 1, . . . , Z) with sz edges connecting them to the
n− k 1-mass dimension auxiliary fields. We have

m1 +m2 + . . .+mZ = n, (5)

while sz �= sz′ for z �= z′.
The connectivity symbol is an invariant characterization of the class of the irreducible

supersymmetry transformations.
The connectivity symbol ψg can be used to induce a map ψ̃g from the set of graphs

Gr into the set of integers Z (ψ̃g : Gr → Z) s.t. W ∈ Z is given by

W =
Z∏

z=1

(pmz
2z−1)(p

sz
2z), (6)

where the pw’s, w = 1, 2, 3, . . ., denote the ordered set of prime integers (2, 3, 5, . . .). With
the above definition two inequivalent connectivities induce two distinct integers W,W ′

(W ′ �= W ).
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3 N = 4 decompositions and connectivities of the N =

5 supermultiplets

The N = 5 irreducible supermultiplets contain a total number of 8 bosonic and 8 fermionic
fields. The N = 5 supermultiplets can be decomposed into two sets of N = 4 irreducible
supermultiplets (superfields), whose vertices (component fields) are linked together by
the 5th supersymmetry. The N = 4 superfields contain 4 bosonic and 4 fermionic fields
associated to different mass-dimensions.

The length-2 and length-4 N = 5 supermultiplets admit a unique decomposition into
N = 4 supermultiplets. The situation is different for the length-3 N = 5 supermultiplets
whose fields content is given by (n, 8, 8−n), for n = 1, 2, . . . , 7. They admit the following
decompositions in terms of (k, 4, 4 − k) and (n− k, 4, 4 − n + k) N = 4 supermultiplets:

(n, 8, 8 − n) = (k, 4, 4 − k) + (n− k, 4, 4 − n + k). (7)

It is convenient to express n as

n = 4 + εm, (8)

where ε = ±1, while m = 0, 1, 2, 3.
The inequivalent values of k are given by the integers

k =
1

2
(1 + ε)m,

1

2
(1 + ε)m+ 1, . . . ,

1

2
(1 + ε)m+ [

4 −m

2
], (9)

where the square brackets refers to the integral part.
The ψg connectivity symbol can be easily computed for each such decomposition. We

obtain, in terms of n and k,

ψg = (4 − k)5+k−n + (k)4+k−n + (4 + k − n)5−k + (n− k)4−k. (10)

For any given n, the ψg connectivity symbol differs for inequivalent values of k. This
implies, as a corollary, that the decomposition into N = 4 supermultiplets specified by
different, inequivalent values of k produces inequivalent N = 5 irreducible supermultiplets
(no matter which supersymmetry generator is picked up as the “fifth”).

We define as “∆” the number of degeneracies, i.e. the number of inequivalent super-
multiplets with the same fields content. ∆ is computed to be

∆ = [
4 −m

2
] + 1, (11)

The results for the inequivalent N = 5 length-3 supermultiplets can be summarized
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in the following table

fields cont. N = 4 decomp. ψg connectivities labels
(1, 8, 7) (0, 4, 4) + (1, 4, 3) 35 + 54

(2, 8, 6) (0, 4, 4) + (2, 4, 2) 25 + 24 + 43 A
(1, 4, 3) + (1, 4, 3) 64 + 23 B

(3, 8, 5) (0, 4, 4) + (3, 8, 5) 15 + 34 + 42 A
(1, 4, 3) + (2, 4, 2) 24 + 53 + 12 B

(4, 8, 4) (0, 4, 4) + (4, 4, 0) 44 + 41 A
(1, 4, 3) + (3, 4, 1) 14 + 33 + 32 + 11 B
(2, 4, 2) + (2, 4, 2) 43 + 42 C

(5, 8, 3) (1, 4, 3) + (4, 4, 0) 43 + 31 + 10 A
(2, 4, 2) + (3, 4, 1) 13 + 52 + 21 B

(6, 8, 2) (2, 4, 2) + (4, 4, 0) 42 + 21 + 20 A
(3, 4, 1) + (3, 4, 1) 22 + 61 B

(7, 8, 1) (3, 4, 1) + (4, 4, 0) 51 + 30

(12)

The last column specifies the labels assigned, in terms of increasing values of k, to each
inequivalent N = 5 supermultiplet.

For the sake of clarity we show here two unoriented graphs (the figures 1 and 2 in
the tables attached at the end of the paper) associated to the two inequivalent N = 5
supermultiplets (A and respectively B) with same fields content (2, 8, 6). Contrary to the
graphs already presented in the literature (see [5] and [7]), the figures 1 and 2 stress the
N = 4 decompositions of the overall N = 5 graphs. Similar graphical presentations can
be straightforwardly drawn for all other inequivalent N = 5 supermultiplets.

4 N = 8 decompositions and connectivities of the N =

9 supermultiplets

The treatment of the inequivalent N = 9 irreducible supermultiplets is made in parallel
with the N = 5 case. The reason is that the N = 9 supermultiplets contain 16 bosonic
and 16 fermionic fields which can be decomposed into two sets of N = 8 irreducible
supermultiplets linked together by a 9th supersymmetry. Just like the N = 5 case, the
N = 9 length-2 and length-4 irreducible supermultiplets (given in [2]) admit a unique
decomposition into N = 8 supermultiplets. For length-3 supermultiplets (n, 16, 16 − n),
with n = 1, 2, . . . , 15, we have the decompositions

(n, 16, 16 − n) = (k, 8, 8 − k) + (n− k, 8, 8 − n+ k). (13)

We express n as

n = 8 + εm, (14)

where ε = ±1, while m = 0, 1, . . . , 7.
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The inequivalent values of k are given by the integers

k =
1

2
(1 + ε)m,

1

2
(1 + ε)m+ 1, . . . ,

1

2
(1 + ε)m+ [

8 −m

2
]. (15)

The computation of the ψg connectivity symbol gives us

ψg = (8 − k)9+k−n + (k)8+k−n + (8 + k − n)9−k + (n− k)8−k. (16)

At a fixed value of n we obtain distinct ψg connectivity symbols for inequivalent values
of k.

The “degeneracies number” ∆ is now given by

∆ = [
8 −m

2
] + 1. (17)
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The results for the N = 9 length-3 supermultiplets are summarized in the table

f.lds con. N = 8 decomp. ψg connectivities labels
(1, 16, 15) (0, 8, 8) + (1, 8, 7) 79 + 98

(2, 16, 14) (0, 8, 8) + (2, 8, 6) 69 + 28 + 87 I
(1, 8, 7) + (1, 8, 7) 148 + 27 II

(3, 16, 13) (0, 8, 8) + (3, 8, 5) 59 + 38 + 86 I
(1, 8, 7) + (2, 8, 6) 68 + 97 + 16 II

(4, 16, 12) (0, 8, 8) + (4, 8, 4) 49 + 48 + 85 I
(1, 8, 7) + (3, 8, 5) 58 + 37 + 76 + 15 II
(2, 8, 6) + (2, 8, 6) 127 + 46 III

(5, 16, 11) (0, 8, 8) + (5, 8, 3) 39 + 58 + 84 I
(1, 8, 7) + (4, 8, 4) 48 + 47 + 75 + 14 II
(2, 8, 6) + (3, 8, 5) 57 + 96 + 25 III

(6, 16, 10) (0, 8, 8) + (6, 8, 2) 29 + 68 + 83 I
(1, 8, 7) + (5, 8, 3) 38 + 57 + 74 + 13 II
(2, 8, 6) + (4, 8, 4) 47 + 46 + 65 + 24 III
(3, 8, 5) + (3, 8, 5) 106 + 65 IV

(7, 16, 9) (0, 8, 8) + (7, 8, 1) 19 + 78 + 82 I
(1, 8, 7) + (6, 8, 2) 28 + 67 + 73 + 12 II
(2, 8, 6) + (5, 8, 3) 37 + 56 + 64 + 23 III
(3, 8, 5) + (4, 8, 4) 46 + 95 + 34 IV

(8, 16, 8) (0, 8, 8) + (8, 8) 88 + 81 I
(1, 8, 7) + (7, 8, 1) 18 + 77 + 72 + 11 II
(2, 8, 6) + (6, 8, 2) 27 + 66 + 63 + 22 III
(3, 8, 5) + (5, 8, 3) 55 + 54 + 36 + 33 IV
(4, 8, 4) + (4, 8, 4) 85 + 44 V

(9, 16, 7) (1, 8, 7) + (8, 8) 87 + 71 + 10 I
(2, 8, 6) + (7, 8, 1) 17 + 76 + 62 + 21 II
(3, 8, 5) + (6, 8, 2) 26 + 65 + 53 + 32 III
(4, 8, 4) + (5, 8, 3) 35 + 54 + 43 IV

(10, 16, 6) (2, 8, 4) + (8, 8) 66 + 61 + 20 I
(3, 8, 5) + (7, 8, 1) 16 + 75 + 52 + 31 II
(4, 8, 4) + (6, 8, 2) 25 + 64 + 43 + 42 III
(5, 8, 3) + (5, 8, 3) 64 + 103 IV

(11, 16, 5) (3, 8, 5) + (8, 8) 85 + 51 + 30 I
(4, 8, 4) + (7, 8, 1) 15 + 74 + 42 + 41 II
(5, 8, 3) + (6, 8, 2) 54 + 93 + 52 III

(12, 16, 4) (4, 8, 4) + (8, 8) 84 + 41 + 40 I
(5, 8, 3) + (7, 8, 1) 14 + 73 + 32 + 51 II
(6, 8, 2) + (6, 8, 2) 43 + 122 III

(13, 16, 3) (5, 8, 3) + (8, 8) 83 + 31 + 50 I
(6, 8, 2) + (7, 8, 1) 13 + 92 + 61 II

(14, 16, 2) (6, 8, 2) + (8, 8) 82 + 21 + 60 I
(7, 8, 1) + (7, 8, 1) 22 + 141 II

(15, 16, 1) (7, 8, 1) + (8, 8) 91 + 70

(18)
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We use roman numerals (in the last column) to label inequivalent N = 9 supermulti-
plets with same fields content.

Like their N = 5 counterparts, inequivalent N = 9 supermultiplets can be straight-
forwardly presented in terms of graphs stressing their decompositions in terms of N = 8
superfields.

5 On decompositions and connectivities of the N = 10

supermultiplets

The irreducible N = 10 supermultiplets contain 32 bosonic and 32 fermionic fields. They
can be decomposed into two N = 9 irreducible supermultiplets or four N = 8 irreducible
supermultiplets. We describe here their decomposition into N = 9 supermultiplets with
an extra supersymmetry connecting the fields belonging to the two different N = 9
supermultiplets.

For simplicity we limit our discussion here to the length-3 N = 10 irreducible super-
multiplets with fields content (k, 32, 32 − k) and k given by k = 1, 2, 3 (the general case
is conducted along the same lines).

For k = 1 the decomposition into N = 9 supermultiplets is given by

(1, 32, 31) = (1, 16, 15) + (0, 16, 16). (19)

For k = 2 we have three types of decompositions, namely
i) (2, 16, 14)I + (0, 16, 16),
ii) (2, 16, 14)II + (0, 16, 16),
iii) (1, 16, 15) + (1, 16, 15).
The ψg connectivity symbol can be easily computed and the following results are

encountered:

(1, 32, 31) : ψg ≡ 2010 + 109,

(2, 32, 31)case i : ψg ≡ 2010 + 49 + 88,

(2, 32, 31)case ii : ψg ≡ 1410 + 169 + 28. (20)

In the third case iii) we are faced for the first time with a new feature, the fact that the
decomposition into N = 9 supermultiplets doesf not determine, alone, the connectivity of
the N = 10 supermultiplet. Indeed, the two N = 9 (1, 16, 15) supermultiplets admit N =
9 ψg connectivity given by 98 + 79. The extra, 10th supersymmetry, can be implemented
in two inequivalent ways. In the case α the unique 0-mass dimension field of the first
N = 9 supermultiplet is linked with one of the 7 fermionic fields of connectivity 9 of the
second supermultiplet (as a consequence, the unique 0-mass dimension field of the second
N = 9 supermultiplet is linked with one of the 7 fermionic fields of connectivity 9 of the
first supermultiplet). In the case β the unique 0-mass dimension field of the first N = 9
supermultiplet is linked with one of the 9 fermionic fields of connectivity 8 of the second
supermultiplet (as a consequence, the unique 0-mass dimension field of the second N = 9
supermultiplet is linked with one of the 9 fermionic fields of connectivity 8 of the first
supermultiplet).
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The β case produces the same ψg connectivity symbol as the one given by (2, 32, 31)case ii.
On the other hand, the α case produces a new, inequivalent, ψg connectivity symbol given
by

(2, 32, 31)case iii,α : ψg ≡ 1210 + 209. (21)

The list of the admissible N = 10 ψg connectivity symbols for the (3, 32, 29) fields content
is given by

(3, 32, 29)I : ψg ≡ 1810 + 69 + 87,

(3, 32, 29)II : ψg ≡ 1310 + 99 + 98 + 17,

(3, 32, 29)III : ψg ≡ 1210 + 109 + 108,

(3, 32, 29)IV : ψg ≡ 1010 + 149 + 88,

(3, 32, 29)V : ψg ≡ 710 + 219 + 38 + 17,

(3, 32, 29)V I : ψg ≡ 610 + 229 + 48. (22)

6 Oxidation properties of the N = 5, 6, 7, 8 supermul-

tiplets

The analysis of the algebraic understanding of the connectivities would not be complete
without the investigation of the liftings of the N = 5 supermultiplets to N = 6, 7, 8
supermultiplets. This situation differs from the cases treated so far since all irreducible
supermultiplets of the N = 5, 6, 7, 8 extended supersymmetries admit the same number
(equal to 8) of bosonic (and fermionic) fields. The lifting N ′ → N ′′ of an irreducible
representation of the N ′-extended supersymmetry to an N ′′ > N ′-extended supersymme-
try will be referred to as “oxidation”. Originally, in the superstring/M-theory literature,
the term oxidation was a pun applied to the lifting of a lower-dimensional theory to a
higher-dimensional one. The application of this term in our context is justified since a
supersymmetric theory in higher-dimension produces, when dimensionally reduced, an ex-
tended supersymmetric quantum mechanical model in one time dimension. For instance,
the N = 2 D = 4 superfields entering the N = 2 Super-Yang-Mills theory project to
irreducible supermultiplets of the N = 8 Supersymmetric Quantum Mechanics (see, e.g.,
the discussion in [8]).

The complete list of the N = 5, 6, 7, 8 irreducible supermultiplets have been produced
in [7]. Inequivalent connectivities are only found for certain length-3 supermultiplets of the
N = 5, 6 extended supersymmetries. The inequivalent N = 5 irreducible supermultiplets
with same fields content have been rederived in Section 3. The inequivalent N = 6
irreducible supermultiplets, specified by their ψg connectivity symbol and label, are listed



CBPF-NF-010/07 11

below:

f.lds con. ψg connectivities labels
(2, 8, 6) 26 + 64 A
(2, 8, 6) 45 + 44 B
(3, 8, 5) 25 + 24 + 43 A
(3, 8, 5) 64 + 23 B
(4, 8, 4) 44 + 42 A
(4, 8, 4) 83 B
(4, 8, 4) 24 + 43 + 22 C
(5, 8, 3) 43 + 22 + 21 A
(5, 8, 3) 23 + 62 B
(6, 8, 2) 62 + 20 A
(6, 8, 2) 42 + 41 B

(23)

When the fields content uniquely specifies the irreducible N = 5 supermultiplet, the
oxidation is given by the following diagrams (the maximal value of the extended N , the
“oxidized supersymmetry”, is underlined):

(1, 5, 7, 3), (3, 7, 5, 1) : N = 5,

(1, 6, 7, 2), (2, 6, 6, 2), (2, 7, 6, 1) : N = 5 → N = 6,

(1, 7, 7, 1) : N = 5 → N = 6 → N = 7,

(8, 8), (1, 8, 7), (7, 8, 1) : N = 5 → N = 6 → N = 7 → N = 8. (24)

For what concerns the irreducible supermultiplets with inequivalent connectivities, the
corresponding oxidation diagrams are given in figures 3, 4, 5 in the tables. In each diagram
a dot specifies the N = 5, 6, 7, 8 irreducible supermultiplets (together with their label) of
a given fields content. A line is drawn between dots (supermultiplets) admitting an N ′ →
N ′ +1 lifting. All supermultiplets can be oxidized to the maximal N = 8 supersymmetry.
On the other hand, the absence of a line connecting, e.g., N = 5 (2, 8, 6)B and N = 6
(2, 8, 6)A in figure 4, means that one cannot directly lift N = 5 (2, 8, 6)B to N = 6
(2, 8, 6)A.

Notice that the oxidation diagrams respect the duality property of the irreducible
supermultiplets (n1, n2, . . . , nl) ↔ (nl, . . . , n2, n1) discussed in [2] and [7].

7 Conclusions

In the Conclusions we discuss various setups where the results of this paper can find
applications. We mention at first the existence of constraints for higher-dimensional
supersymmetric theories. These constraints can be recovered from the dimensional re-
duction to one-dimensional supersymmetric quantum mechanical systems (see [8] for a
broader review). In this context, various identities in [9] and the works there cited find
a natural explanation in terms of the representation theory of the 1D N -extended su-
persymmetry algebra (1). The 10 dimensional Super-Yang-Mills theory admits 9 off-shell
supersymmetries (the 7 extra supersymmetries which add to the total number of N = 16
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supersymmetries close on-shell). The supermultiplet carrying the N = 9 supersymmetry
representation is given [10] by 9 physical bosons, 16 fermions and 7 additional auxiliary
bosonic degrees of freedom. It corresponds to the length-3 (9, 16, 7) field content of N = 9.
We proved in this work the existence of four inequivalent N = 9 irreducible representa-
tions which correspond to the (9, 16, 7) field content. Since the seven auxiliary fields
in [10] are associated to the imaginary octonions and are all on equal footing, it turns
out that the irreducible supermultiplet corresponding to the 10-dimensional SYM theory
is the (9, 16, 7)I of formula (18) (namely, the one obtained from the (1, 8, 7) + (0, 8, 8)
decomposition in N = 8 supermultiplets).

The physical content of the 11-dimensional supergravity is given [11] by a set of fields
entering different representations of the so(9) transverse algebra. We have 44 fields asso-
ciated to the traceless symmetric graviton, 128 fermionic fields for the gravitino’s degrees
of freedom, 84 fields for the antisymmetric 3-form. They give rise to a length-3 irreducible
multiplet of field content (44, 128, 84). It carries (see (2)) an off-shell representation of
N = 16 supersymmetries (the remaining 16 supersymmetries which add up to the total
number of N = 32 supersymmetries of the maximal supergravity, close on-shell). In this
work we have shown that, starting from N ≥ 9, inequivalent length-3 irreducible rep-
resentations with the same field content can be found. The correct identification of the
(44, 128, 84) irreducible representation of N = 16 which corresponds to the 11-dimensional
supergravity multiplet has to be determined.

It is worth to spend some words on the connection of the irreducible supermultiplets
here discussed and the superfield formalism. In [12] the superfield descriptions for all
the irreducible supermultiplets of the N = 8 extended supersymmetry were produced
(the N = 4 superfield descriptions can be found in the references given in [12]). For low
(N ≤ 8) values of N the analysis of the irreducible representations is essential in order
to determine the complete set of superfields and the constraints that their component
fields have to satisfy. In any case, both the superfields formalism (once introduced) and
the informations contained in the irreducible supermultiplets are equivalent, even in the
construction of supersymmetric invariant actions. This was proven in [2], where a new
N = 8 off-shell invariant action, later discussed also in [13], was found by taking into ac-
count the properties of the N = 8 irreducible representations, without explicitly using the
superfield formalism. On the other hand, for large values of N , the superfield formalism
becomes impractical, while the irreducible representations of the N -extended supersym-
metries are available and algorithmically constructed with the method described in [2].
Let us discuss a relevant example. An off-shell formulation of the N = 32 supersymmet-
ric quantum mechanics requires (see (2)) 32768 bosonic, as well as an equal number of
fermionic, fields. A corollary of the (2) formula is the existence of a necessary condition
on the minimal number (32768 + 32768) of fields which would be required to produce
an off-shell formulation of the 11-dimensional maximal supergravity or the M-theory. A
superfield description with 32 Grassmann parameters is highly reducible, containing 231

bosonic and 231 fermionic degrees of freedom. To extract from them an irreducible repre-
sentation, more than 4 × 109 constraints have to be imposed. These constraints have to
be imposed for each inequivalent N = 32 irreducible supermultiplet (we recall that there
are 32767 inequivalent fields contents of length-3).

The supersymmetry transformations investigated in this paper are linear. In the liter-
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ature, non-linear realizations of the N extended supersymmetry algebra (1) are also dis-
cussed. As recalled in [14], the one-dimensional supersymmetric off-shell invariant actions
constructed with linear representations of the N extended supersymmetry (such as the
ones given by supermultiplets with (k, n, n−k) field content), correspond to sigma-models
whose k-dimensional target manifold possesses a conformally flat metric. Supersymmet-
ric, non-conformally flat sigma-models are obtained from the non-linear realizations of
the (1) supersymmetry algebra. At present, the nature of the non-linear supersymmetry
transformations is not understood, since they have been produced using a large variety of
methods. Recently, an interesting attempt at unifying these procedures has been made
in [14]. It amounts to produce non-linear realizations of the N = 4 extended supersym-
metry by suitably constraining the fields belonging to two N = 4 extended irreducible
linear supermultiplets. Some similarities of this construction with the decomposition of
an irreducible N = 5 supermultiplet in terms of two N = 4 irreducible supermultiplets
should be noticed.
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Tables:

Figure 1: presentation of theN = 5 (2, 8, 6)A supermultiplet as unoriented graph. It shows
its decomposition into two N = 4 irreducible multiplets, (2, 4, 2) and (0, 4, 4). The N = 4
supersymmetry transformations are drawn with black edges. The 5th supersymmetry,
connecting vertices belonging to the left and right N = 4 supermultiplets, is given by the
blue edges.

Figure 2: presentation of theN = 5 (2, 8, 6)B supermultiplet as unoriented graph. It shows
its decomposition into two N = 4 irreducible multiplets of (1, 4, 3) type. The N = 4
supersymmetry transformations are drawn with black edges. The 5th supersymmetry,
connecting vertices belonging to the left and right N = 4 supermultiplets, is given by the
blue edges.
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Figure 3: N = 5 ⇒ N = 6 ⇒ N = 7 ⇒ N = 8 oxidation diagram of the dually related
irreducible supermultiplets with (2, 8, 6) and (6, 8, 2) fields content. It can be read in
reverse order as a reduction diagram. The identification of the N = 5, 6 supermultiplets
with A,B labels and the connectivity of the irreps graphs (related to the decomposition
into N = 4 supermultiplets) is explained in the main text.

Figure 4: N = 5 ⇒ N = 6 ⇒ N = 7 ⇒ N = 8 oxidation diagram of the dually related
irreducible supermultiplets with (3, 8, 5) and (5, 8, 3) fields content. It can be read in
reverse order as a reduction diagram. The identification of the N = 5, 6 supermultiplets
with A,B labels and the connectivity of the irreps graphs (related to the decomposition
into N = 4 supermultiplets) is explained in the main text.
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Figure 5: N = 5 ⇒ N = 6 ⇒ N = 7 ⇒ N = 8 oxidation diagram of the selfdual irre-
ducible supermultiplets with (4, 8, 4) fields content. It can be read in reverse order as
a reduction diagram. The identification of the N = 5, 6 supermultiplets with A,B,C
labels and the connectivity of the irreps graphs (related to the decomposition into N = 4
supermultiplets) is explained in the main text.


