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ABSTRACT

The space-time connections giving rise to the same cur-
vature tensor are constructed and the corresponding geometries com
pared. The notion of gauge and non-gauge copies in the context
of tetrad formulation is elucidated and illustrated by an ex-
plicit calculation. Some comments are made on the copies in

Einstein-Cartan and Weyl-Cartan geometries.



1. INTRODUCTION.

In gauge theories gauge equivalent potentials (gauge cop-
ies) are very useful in handling certain problems. In connec-
tion with non-~-abelian Yang-Mills theory[ﬁl, for example,the
calculation[?] of topological number of the multi-instanton so-
lution can be carried out as an application of Gauss' theorem
if we use t'Hooft'"s solution[}] together with another compact
and gauge equivalent solution[?]. For the abelian case an im-
portant application was found by Wu and Yang[:{l in their for-
mulation of Dirac monopole[pl theory. Each monopole divides the
space in two overlapping sections. Regular potentials in each
of the sections can be defined such that in the intersection re
gion the two are gauge equivalent.

In the non-abelian case we may also obtain two oTr more
potentials not related by any gauge transformations associated
to the same gauge covariant field strength. These 'field strength
copies' have been studied in several recent papers[}J.

For an affine space-time manifold,likewise, the curvature
tensor does not determine the (non-tensorial) space-time con-
nections uniquely. The gauge transformations or local coordi-
nate dependent transformations corresponding to the tangent
space group arise naturally in the tetrad formmulation[7] used
in gravitation. We now also have gauge or spin connections corre-
sponding to the local Lorentz (gauge) rotations of the tetrad
frame. A gauge covariant field strength, spin curvature tensor,
with two local indices and two coordinate indices may be defined.

The two curvature tensors are related by eq. (20) in Sec.3.

We discuss in this work the construction of curvature ten



sor copies in the context of the geometry of affine space-time
manifold. The notation is defined in Sec.2. In Sec.3 the curva
ture tensor copies are constructed and the corresponding geo-
metries compared. The notion of gauge copies is also eluci-
dated. Finally, Sec.4 contains explicit calculation and de-
scribes briefly the procedure to follow in the case of  Weyl-

Cartan geometry.

2. NOTATION

A local frame of reference is specified by giving a set

of four linearly independent tetrad fieldsD:I eﬁ(x) and their

pom o _ 4 TR N |
) eu 5m. . € 6v' Here

the Greek letters u,v,..=0,1,2,3, label the curved space (world)

inverses ez(x),e.g.,e This leads to e
vector indices while the Latin letters 1,m,..=0,1,2,3 indicate
the vector indices in the local tangent space. The local tan-
gent space group will be taken to be the Lorentz transforma-
tion groupJC. In order to define covariant derivatives we in-

troduce as usual space-time affine connections Fg and local

A
gauge spin connections wi m corresponding to the lLorentz gauge
transformations. The index XA in w is tensorial while wxz(wing
as a matrix transforms under li as a gauge connection, The

covariant derivative of a local four-vector ARDO (wor.t. L )is

defined by
% m
o A (1)

The transformation of W,y then follows to be

L

W
u

-1 =1
> Aoy A= (3 M)A (2)



where A(x) = (A2 o ) 1s Lorentz transformation matrix, €.8.,

p 4 = i etric tensor and A2
A 2 A n npq ngm where nzm 1s constant metric "

are real. Requiring that (A£B2)°A= BA(AZBR) we derive

-o™ A (3)

23 A AL

Vv 2 a 2 L m
v “miaT 92T preu+ “% mCy (4)

These definitions are consistent with the definitions

AM= ez AR, Au= eﬁ AQ etc... The symmetric space-time metric ten
. - _ Q/ m 3 =
sor g, 1s given as guv_ Nom eu e, and we check easily Au
F 8y AV, The guv is defined to the inverse of & We also note
that
- . m - (2m) (5)
nlm(w);k wa(zm) 20 (w);k wa
. . 2m mi :
vanish only if wy” =-w,”. For completeness sake we also consid
er the covariant derivative of (local) Dirac spinor field
written as
Vo= (3,+T 0 (x) (6)
L

We find that for ¢ > S(A(x))y(x)

roL s FUS-I(A)- (5,5(1)) sty



. . & _ k.2
For infinitesimal transformations A = St AL

_'1 f2m - 1 2m
8T, =5 A [om,ru_l- = Tm (A (8)
where o, = 1 Y. v_|. On the other hand
tm 4 [ 2, HJ
Dm]=kﬁ [nm]  [en], m _ 3 An 9
éwu n ) W >\n Bu (9)
It is then easily shown that we may write T = 1 o meﬂ= laj wmm.
Y u 2 m Ty 2 mp

. . L .- .
The constant Dirac matrices Yy~ remain invariant under local gauge

transformations

2 L L -1
Yl Ve o sy Y sTh (10)
It is also clear that the coloumn (spinor) matrix index in
Y2 transforms contragradiently to the row (spinor) index. Hence
it follows (axy£=0)
2 2 B %
vio= b e ) oY (11)
n 1 n, L " -1 ~
From YO (x) = ey Y and YU (x)—> S(A)Y"(x) S (A) we obtain
T M, pH 0 u
Y A BAY + FpAY + [FA’Y ] (12)

Using the identity

rvt= Lot -ty (13)



we find

v e, My (14)

It follows also that

{yu(x),yv(x)}= Zet e;nzm1=2g”v(x)1 (15)

For the covariant derivative of metric tensor we have

_ a0 a
guv;x(r)" BA Euv FUA Eav vlgua

2. m L m_ _fm
ngm;k(uﬁ)euev+‘nmn{eu;A(F,w)evﬁ-euev;x(r,w)}
(16)
We note in passing that the usual metricity condition of

Einstein-Cartan geometry, g“v;A(F)= 0, may be obtained by suita
ble adjustments in the values of nzm;A(w) and eﬁ;l(r,w).We}wye
rather elaborated on notation to make clear thatno restrictions
on the symmetry properties of wim are imposed by the definitions
used above. For example, in the case of Weyl-Cartan geometry

(see Sec.4) it has both symmetric and antisymmetric parts.



3. CURVATURE TENSOR COPIES. GAUGE COPIES.

The space-time curvature tensor is given by

= H H B _
p(F)— akrvp+ FBA Pvp (A<>p) (17)

-We may also define field strength PAp(w) from the local

connection w, which transforms covariantly w.r.t. the local

A

gauge transformations

(w) B w -9 w + ﬂ»k,w ]

-1
Pyo@)— APy (@) A (18)
Then the indices in local or spin c:urva1:ure|:7:l tensor
2 - L .
R mkp(w)“‘(PAp)m are all tensorial and

- £ e - _pt m _ a _ 0 L
A o A ;px] Rmkp(w)A (Fxp FOA)A o (19)

The two curvature tensors are connected by the following

equation

%

_ a _ L0 L
np (708 = e op (Thw) + (Ty = T05) e (Tw)

Ry (el - RY, (w)el (20)

Consider the set of affinities (I',w) satisfying e (Ft@ 0

so that

\(T) = Ry (w)elled (21)



and the set (T,w) satisfying

2 - 2 m
= - 2
eU;A(P,w) K, ny (22)
or
X (F,o)=0 (23)
uyA s ?
where W,y = wA+KA‘ We then have
o =y _ pl —, m o
Rulp (T)"Rmkp(w)eu e, (24)

Substituting eq.(22) in eq.(20) we find that the term in-
volving torsion (T;p-'fgk) cancels out obtaining the result
£

. - L2 _ SO =
{PAQ(K)+ E»A,KqJ- [mp,KA]}m = Rukp(r)eu e Rmkp(w) (25)

It follows that if K, satisfies (independent of T)

gl ][] 2

we will have

o =y _ p¥ m o
Rukp(r)"RmAp(w)eu e,

a

=R
BAD

(r) (27)

while the eq.(26) is equivalent to Pkp(5)= Pkp(w). We may find
T from eq.(23)

o _ 0
HA Fuk * ux’

!



e el (28)
u

Moreover, we have

(29)

= -y 2
guv;k(r)_-nﬂm;k(w)en

The corresponding expressions for guv(P%ﬁetc. are obtained
by setting KA=O and the two space-time geometries corresponding
to T and T may be compared. Thus we have constructed curvature
tensor copies obtainable from eqns. (26)-(29). A solution of
eq.(26) gives rise to a'gauge copy' if BA and w, are connected
by a Lorentz gauge transformation,e.g.,

. =1 -1
Ky= Awy A0 -0y - (3,M)0 (30)

As expected,;eq.(26) for this case implies /\P>\p(cx))/\_1 = Pkp(w)’
It is also worth pointing out that the last term in eq.(30) is

always antisymmetric and that w, may be decomposed | into its

irreducible symmetric and antisymmetric components. Thus, for
example, if Wy is antisymmetric, say, corresponding to Einstein-
Cartan geometry, a symmetric K, cannot correspond ;to a gauge

copy and a copy with antisymmetric KA corresponds again to Er

C, geometry.



4, ILLUSTRATIONS OF SOME CURVATURE TENSOR COPIES

An obvious symmetric solution of eq.(26) is sz —I(axx),

Tr KA= —4(axx), where x(x) is an arbitrary scalar field and
K§m= K?g. It corresponds to
=0 _ L0 _ o
Fuk_ Fuk éu(akx)
= 2 m
gU\);K(T) = Zgu\)(%x) - zwk(zm)eu e\) (31)

A more general solution may be obtained with the ansatz
KA= a(x)akx
3ya(x) + Euk,a(x)]=0 (32)
where a(x) may correspond to a symmetric or antisymmetric so-
lution.

For an illustration we will consider a metric space de-

fined by the following 1line elementl-8:1

ds?= dt?-2A(t)dz dt- C*(t) (dx™ dy?) (33)

_ _ o 2 - Z 03 _ -1 11 22 -2

We have gOO—]_, gll_ g22 c-, go3 gSO_ A, g =-A ,g =g =C ,
g-33= -A"% and v=g=AC® for the non-vanishing elements. A set of

tetrad fields is easily found with the non-vanishing elements

given by



- 10 -

e§3)= e§0)= -A,

L

e£0)= 1, e£1)= egz)= C

(34)

-1 -1

o _ 0 _ 3 _ 1. 2
elo)” Te(z)~ 1y syt AT eyt &7 ©

where the indices enclosed inside brackets are the tangent
space indices. We also assume, for definiteness sake, I''s to
Ao A . . _
w " {UV}° The internal spin con
nections determined from, eﬁ,x({},&)= 0,are anti-

be Christofell connections, T

symmetric and found to be (wAE&\),

0 1 0 0 0 1 0\
&gz 0, &1= & 1 0 0 - , &2= & 0 0 0 )

0 0 0 1 0 -1 /

0 1 0 0 0 1 /

0 0 -

0 0
0 _ 2 ,=1 o 0 0o 0o _
W= A A 0 0 o0 W WS wzwl—O (35)

-1 0 0

A traceless symmetric solution is found to be a(t) = A*M

where the non-vanishing elements of M are MOO= M30=—M03=-M33=éL

Since w, are antisymmetric this cannot correspond ‘to the case

of a gauge copy. We find

=K _ s M u 0
Toa= Tt + A X685 8
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a2 0 .0
Eu0:n (1) = 2A%(3,08 8 (36)

. o = a
i i R T')s= ).
and verify by direct calculation ulp( ) RUAD( )

An antisymmetric solution is found to be a(t)=(é‘)&1 and
C
corresponds to
Moo My [Aen 50 sk 4l
Toa™ toad+ | T 81 8,7 085 5\):'(BAX)
v (1) =0 (37)

However, this case can be shown to correspond to a gauge copy.

) _ .. c A 0,0 4,0 2 - -
We find Pxp— ( Er + 7r)[6p(wlax+-wzdk) (A++Q)J so that in or
. .0 -1_ 0 . 0 ..1= 0
der to satisfy APAp(w)A = Pkp(w) we require Awl,zA “ﬁ,z
apart from the restrictions that A be a Lorentz matrix. Add-

ing to these the restrictions arising from eq.(30) a tedious

calculation shows that the Lorentz gauge matrix A(x) is given

by
1
1+ §* -V 0 sl
-y 1 0 14
Alx) =
0 0 1 0
> N = 0 1- 27
where Y= A(t)x(x).
The case of Weyl-Cartan geometry may also be discussed,

The geometry is characterized by guv‘A(F)= Zguv¢k where oy is

Weyl field. Since we require eﬁ,x= 0 it follows that nzm,x(w)=
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