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ABSTRACT

The path integral formulation of quantum mechanics 1is
generalized to any arbitrary infinitesimal generators. It is
shown that, iﬁ the case of Cartesian coordinates, the path
integral formulaﬁion reproduces Weyl's quantization rule. It is
also shown that, if a set of classical generators of infinitesimal
canonical transformations forms a Lie algebra of a group, then
the path integral amplitudes corresponding to these generators
form a representation of the group.

A geometrical interpretation of the quantum process of"

measurement is discussed.

1. INTRODUCTION

Postulates of quantum mechanics are classified into two
categories: one is concerned with dynamical principles such as
definitions of dynamical variables, commutation relations and
equation of motion, and the other with the statistical interpret-
ation of the physical observations. The former one, i.e.,the
dynamical structure, is closely related to classical mechanics

through its canonical formulation. The latter introduces the



stochastic nature of the quantum process of measurement., This
stochastic character of quantum mechanics differs es§entia11y
from that of classical statistical mechanics. There have been
through discussions on the physical interpretation of the
principles of quantum measurements. No attempt, though, has been
successfull in constructing a further microscopic theory, e.g.
hidden variables. On the other hand, the usual formulation of
gquantum mechanics in terms of operators and Hilbert space
somewhat bypasses the discussion of the physical details of
quantum processes of observation. On this aspect; it is always
tempting to formulate quantum mechanics in a different way
than the operator formalism, in spite of its firm basis.

In 1948, Feynman1) proposed the third formulation of
quantum mechanics by means of path integrals, and showed that
this formalism is equivalent to the operator formalism. One of
the important aspects of path integral formulation is that it
gives a geometrical insight into the quantization procedure
which may help us to understand some characteristic concepts in
quantum mechanics, such as the relation between spin and
statisticsz). We also expect that semfc]assica1 phenomena are
adequately described in such forma]ismB).

Today, the method ofvpath integration has been proved
to be a powerful tool in almost every field of theoretical
physics4). In fact, areas for which path integral technic is
applied cover quantum field theory, nuclear physics, solid
state physica, plasma physics, statistical mechanics, hydrody-
namics, diffusion equation, etc.

Sometimes the path integral method provides a beautiful

solution permiting an heuristic arqument of its mathematical



properties, such as 1in renorma]ization in quantum field theory.
However, in most cases, exact evaluation of the path integrals

is extremely difficult. Mathematical efforts are now overcoming
some of these difficu]tiess).

Originally, the path integral formulation 6f quantum
mechanics was applied to the Green function of the time develop-
ment of the system. However, in order to make explicit the role-
of path integral method as a basic procedure 6f quantization,
it is desirable to generalize the path integral formalism to
any kind of physical quantities. Such an attempt'was done by
Campbell et a1.6) and they showed that the path integral method
also provides an interesting way of obtainihg eigenfunctions of
differential operators.

In this paper, we try to formulate a generalized
version of path integral quantization procedure in an explicit
manner, especially for a set of generators of a Lie algebra of

transformation group.

2. PATH INTEGRAL QUANTIZATION

Classical mechanics is constructed on a set of canonical
variables (qi,pi) for which a simplectic algebraic structure,

i.e, the Poisson bracket, is defined:
{qi’pj}PB =855 - (1)

Any physica] observables are functions of q and p.
Let G = G(g,p) be a physical observable. We may define

a canonical one-parameter transformation by
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where o is the parameter of the transformation. The formal solution

to Eq. (2) corresponding to the transformation from o = 0 to

o = 0 is written as
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where D is an operator defined by
[Gj p )

for any arbitrary function f of g and,p. If G is taken to be the
Hamiltonian of a system, Eq. (2) describes its time development,
and the parameter o is identified with the time.

| In quantum mechanics, the time development of the system
is described by an amplitude, or Green function, KH(q',q;t), and
the probability of finding the system, whose .initial configuration

was {q}, in the final configuration {q'} after a time t is given by

PH(q',q;t) = !KH(qlaq;t)lz . (5)

The phase-space path integral formu]ation4) of quantum
mechanics gives the following expression to the probability

amplitude:



Q' L st pg-H(a.p]dt
. Ky(a'sast) = I p? 2——9] e 0 (6)
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where JJ D? 9:P1 denotes the double functional integration over
Zﬁﬁ_
the phase space.
The above formulation of the quantization procedure can
immediately be generalized to any arbitrary continuous canonical

transformation given by Eq. (2). Let us define an amplitude for

a generator G of an arbitrary classical transformation by

. dq

- q ) %—fg [} T - G(q,p{] da
,n- .

Now we demand the probability of finding the system in the final
eonfiguration {q'} after the transformation generated by G from

the initial configuration {ql to be

Pela’saia) = [Kg(a'.asa)|? . (8)

One of the interesting applications of the above general-

ization was first pointed out by Campbell et é].ﬁ

) to obtain eigen-
functions of differential operators. For simplicity, let us
consider 2-dimensional phase space. If we find a classical gener-
ator G(q,p) that transforms (q,p) > (q',p') = |Q(q,p).P(a,p)],

then the path integral expression for G fs an eigenfunction of the
quantﬁm mechanical operator 5 whose classical correspondent is

Q(q,p). This result is heuristically plausible since our path



integra] gives the transformation function from the basis |g>
to |q'> where |q'> is an eigenfunction of the operator Q with
' eigenvalue q'. When the operator 6 has a discrete spectrum, the
path integral exhibits poles at eigenvalues of Q, and its residues
are eigenfunctions.

Another interesting application is found in the following.
The eigenvalues of a physical observabie G in the path integral

formulation may be defined as poles of the Fourier transform of

the amplitude KG(q',q;a),

. Wwa

1T —

FG(ql’q;w) = J do KG(CI'aq';O‘) € .h . (9)

This definition of the eigenvalues enables us to calculate them,

for some cases, without any knowledge of group theoretical methods.
For example let us consider one of the components of

angular momentum L, say G = L_ = xPy - yP*. The corresponding

z
amplitude 1is

{ D [r:l{ D

r

i

Ki (r',rsa)
Lz

r
dz X | d
|

where we have introduced the functional § defined by

a
if  xf da

This functional & has the property

s L[]
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where ¥ is an arbitrary functional of x = x{a), x =
.,,x(n)) and F(a) is the solution of a coub]ed differential

equation

ar (1)
do

=t F0)y, =1, .0 . (13)

with initial condition F(a=0) = Xo

Using Eq. (12), we get

KL (r',rsa) = 6(2'-z)@(x'~xc05u+ysina)6(y‘—xsinu-ycosa) . (14)
z

Eigenvalues of LZ are them obtained from the poles of

iow

Tr [%L (m',m;wi} = Tr {Jda KL (r',rs;a) ei%_ da } .
bd : z

As a function of a, _Tr[:KL (r,r's;a) | behaves as
z

1-cosa sina 1. -1
det =5 (1-cosa) s

-sina l-cosa

so the Fourier transform of such a function diverges. However,
as we'are interested in the behaviour of the Fourier transform
only as a function of w, only the o = 2nw pole contributions are

important. Thus, apart from an infinite constant factor, we get



iZnmw

~Tr [%Lz(r‘,r;w{] « nz—w e H

which has poles at w = 0,zh,+2h,... . The observed values of

z-component of angular momentum are restricted to integer multi-
ple of H. Of course the same result is obtained using polar
coordinatesg). . |

In a similar manner, we may ca]tu]éte eigenvalues of

1°.

Path integration necessary for this problem was carried out
by Marinov and Terentyevg) and we see that the Fourier transform

of the expression

r 1% (par-L
sz(r',r;a) = J D [ r] J D E“%]Qﬁ °

has poles at w = ﬂ22(2+1), 2: positive integer.

2)dOL

r

The above scheme may also be applied to the theory of
fields. For simplicity let us consider a scalar field Y. We
assume that the dynamics of the system is described by the field
variable ¥(x) and its canonical conjugate w(x). The charge of

the system may be defined as

Q = %% J [%*w* - né] a3x (15)

where e is the unit of charge.

Then the path integral for charge as a generator is‘*)

*)

When the dynamical variables assume complex values, we use their real and

imaginary parts as the path integral variables. Namely,

1 . 1
I ( + 2 P = -1 > - .:: i .
q 7 49, 1q2) 7 (p1 1p2) 35?4 real
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Eq. (16) shows cléarly that the charge Q defined in Eq. (15) is
precisely the generator of the gauge transformation of the field,
Y >yl = €0y, Eigenvalues of charge are calculated in a manner

analogous to the > case, and we get

Q/e = 0, 1, *2, .... (17)

Now théré arises a very interesting question: Is it
possible to intérprete the process of quantum measurement in terms
of a geometrical point of view ? Egs. (15)—(17) are very suggest-
ive that the quantized value of electrical charge is closely re-
lated to the gauge transformation. Unfortunately, we don't have
any clear answer to the question. However it may be worthwhile to
note that the bﬁéééés of quantum measurement can be expressed
in the following manner. Let G be an observable and {q} be the
initial configuration of a given system. Assume that we get a
value g for G by a4 measurement; then the probability amplitude
of finding the system after the measurement in the configuration
{q'} is given by

iwa

Ag (9';q) = 7%7 dw I do e b KG(Q',Q;G) (18)
0
g

0
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where the complex integration on w is carried out around the
observed value 9o°
It is more convenient to express such a complex inte-

gral in terms of a real integral as

4} dw f(w)= 2mi { J'd(Re w) d(Im w) 3f(w) . (19)
g Q

0

where 2 is a domain which contains 9q° and we define the "Cauchy

derivative" 3 by

1 3f1 3f2 i 3f2 Bf]
af (w) = VI (SET - 3——) oo (SBT + =) (20)

U)z 30)2
where f = f]+1'f2 and o = w]+iw2. If f(w) is analytic, 3f(w) = 0.

At poles of f(w), af(w) behaves as a é-function. More precisely,

af = § - § - R f R 21
(w) po%es (w] mo]) (wz woz) es (wO) ( )

Using the above definition, we may rewrite Eq. (18) as

iwo

. | L |
Ago(q ,q) = L}J dw]dw2 3{—Jdu e KG(q ,q;u{l . (22)

b

Now consider two successive measurements of a single observable
G, the first around the value 90 and the second around the value

gy - The final amplitude for such a process is given by

(a',q) = | dq" Ag (a',9") Ag (a"sq) =

A
9079 J 1 0
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2349, Q'=9,
o'w' oL
1 1
x [ da' e h { da e KG(q',q;uw')
% (850 )%" - . ~ (23)
= dw dw, 3 | e do Ago(q »q)
Qag]

where we have used the property

’_KG(q’,q";a‘) Kg(a"sqsa)dg” = Kg(a',asata®)

It is easy to see that

l dwgdu, 3. | e h da' =
=49,

so that

9,79 9,

This implies that a consecutive measurement of a physical obser-
vable gives the same result as the former one. This fact will

be discussed further in Sec. 3.
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3. SUCCESSIVE PATH INTEGRAL AND GROUP PROPERTY

What would be the consequences if we applied two diff-
erent transformations successively ? This is particularly of
importance when we consider a set of generators {Gu(q,p); p =1,

...,m} whose group properties are given. Namely, suppose we are

given the Lie algebra

\ .
C1 8y - (25)

ft ~13

(6,26, 3pp =

A=1

where Cﬁv is the structure constant of the group. For -each

Gu(q’p)’ we may define an amplitude

i Lo .
q' %'fo [pq—Gu:]da
Kg (a',930) ={ D [Cq] JD Fﬂ% e
u q _gn%
= Ky (a'sa31) . (26)
U

To discuss the group prdperty of the set of amp]itudés {KG } o, it

u
is convenient to define infinitesimal path integrals

Tim Ko (a'sa30) > 8(q'~q) - = e M (q°,q) (27)
o>e u h H

where € is an infinitesimal positive number. From Eq. (26) we
get

i1 s
- fo pgqda )

. Q T
Mu(q‘,q) = [ D[ q] ] D[}Rij e .J G (q,p)dB; (28)
q 2#5 o H
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In the case of Cartesian coordinates, Eq. (28) can also be

written, using the mid-point rule, as

® L p(a'-q) .
‘ = L8P , 9.*9
M(a'sa) = [_m o3 G, (F5—sp) . (29)

The quantity Mu(q‘,q) can be'identif{ed with the matrix

element of the quantum mechanical operator Gu corresponding to

G, (q,p), namely

1t

M (a'hq) = <q'[G o> (30)

Such an explicit relationship between the classical quantity

G, (q,p) and its associated quantum mechanical operator éu can be

7,10

"
regarded as a special type of the general quantization scheme

).
In fact, Eq. (29) (consequence of Cartesian coordinates and the

mid-point rule) coincides with Weyl's quantization ru]e]]),

m n 1 m m, -m-k -n -~k
gp »>— 7 ()a P q (31)
oM k2o K
with.
y | = ‘E 1 d
<q'lple> = 7 8(a-9") gor .

From this direct relationship, we can readily verify that a

"commutator" of two generators is calculated to be

- A def
<Q'l[§u,6;}lq> = ’dq" M (a",a" )M (a",9)-M (a',q")M (a",q)}
S
, Q' i o Pade .
= i p[q pl-P—| & {6 ,G },, d 32
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In other words, the path integral formalism establishes the corre-
spondence between the quantum mechanical commutator and the class-
ical Poisson bracket, [A,B ] «— ih {A,B}pg-
Let us introduce the Feynman graph technique to symbolize
the somewhat cumbersome notations of path integral. First, we

assign a graph

to the quantity

The quantity

'
Q' ﬁ fo pada
{ JDZ 9—3_{ e J A(B)dB
2T »
q — = 0

is represented by a graph

Note that the quantity

q' $ X
2m
q 0 .

is prpportiona] to x. The product



. . ‘ ) irqnd
q' r w fpado (1 q [ F apca 4
dq" p? |LP| ¢ AdB. D mpm e
n_... _:IN.:.T .‘O. q IN.:. 0
is written also as
q' w /pada 1 *
p2 |a:P| ¢ aQe da, >AQ~vaQNV >
q 27h o o
so that its graphical representation is
_ Q:
. >AQAV
ﬂ—ﬁ_: > X w = .
mﬁgmv
Lo 1
We may also confirm the following rules hold:
i) X x M A+ y x B = (xA + yB)
. . A A ﬁ>
ii) - & N
(B+C) 4B C
1
iii) A = (-A)

Using these diagrams, we express Eq. (32) as

G G mc,qumt =1 h{6,G,}pp
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We note that the rules for these dfagrams are exactly the same

as those of the algebra of non-commutative numbers. For example,

consider a multiple commutator of two non-commutative numbers

R and B, say,

E\E\Bﬂ_ AZE - 2RBR + BAZ

The right-hand side of this expression

representation;

(if)? {A,{A,B}PB}PB

which corresponds exactly to the left-hand side

Now, consider an amplitude KG(q‘,q;a).

presented graphically as

T 7 o 7 ]
' 1 ] ] b 5506 f 706
K '5q; = — L 1
la'>a:0) Progges gy ] * 3T ] oTEee
1
[ R ——

of Eq.

(33)

may correspond to a graphic

A

(33).

This can be re-

.....

Ly



,_]7_

By the graphic technic, we can calculate the product of two

amplitudes corresponding to two successive transformations.

KG]+G2(q|sq;a:B) = I dq"~ KGz(qI"q“;B)_KG-‘ (q'sq;a)

b

(34)

where B = —EG an& A =-2G. . The above expansion is completely
ih 2 ih]

analogous to the expansion of two exponentials of non-commutative

numbersz)

" B_A _ =1 =2 . 1 a2 T
e e = [E + B + 51 B™ + '.:]><’E + A + T AT + ;l
and if the series converges, we get

-

where

C=B+ A + Vi [%,6] + 17 [% A,[%,Aj} +

13

(Baker-Campbell-Hausdorff formula 7)).

In our case the product Eq. (34) is expanded as

1 18 [ Y 1
dq" + 4B + 5T +oee x + ‘A'+ T

|
B } U

A
+ e =

I '

T
!
I

s

(35)

(36)
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—

¥ 'y ] "B TB : A
= ‘B £ tA + —2—.- T+ + —z—r 4 esee
* 1B A

-+

* 1A

I+

N - .
T (hep) + b (A+B)
2. L(A+B)

"yl
.
ro]—

ih{B,Alpg + -

XL L
We vérify the &ollection of fhese diagrams to be exactly the

$ame as the quantity
q" : i1 5s R
I { 152 /s pqda F fo Gda
q

e

8:p| ¢
kLl

E
]

Sax = K (9',q357)
G

A
o (o J] & 7i(pd-B)da
2mh

whéré

_ - — . b\ 3 :
= ool T 1 a2 . (if)
G = 1ﬁ[§+él P (ih) {B,A}pg * 73 {B-A,{B,A}PB}PB +
1 7 1 _ .
(37)

Thus we havé éstablished the relation

.q. = - . B e " . .
q" LZTT-H q ‘2TTT1‘

RN T S Y | .
. [ } 2 {;iél R /4 (pq-B)da ‘ | (38)
: 2m
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The generator G is precisely the classical generator
of the two successive transformations generated by G] and GZ‘

This can be seen as follows: The first transformation
G
(q,p) > (9",p") generated by G] is written as (Eq. (3)),

D D
C58 1 ' 36,1
q e = e b

qll = @

The second transformation (q",p") -~ (q',p') s then

r

D~1 D1 Dr—1
ET.‘BG :[ I——"‘BG :[ !_TOLG
q' = e 172 Q" = e — 1772 e ]jq

"Cles, T "Clos, ] .
= e e p

Now applying the Baker-Campbell-Hausdorff formula to the operators

D d D s
E%‘G1 ] an E‘?Gz ] the product

D1 - D=1
o ETBGZ_l . I__TOLG1 1

is expressed as

Since the commutator of the two operators DF'A:] and Dr—B:I is re-

produced to7) .

EEA],D[B j} BRIy
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as a direct consequence of the Jacobi identity for the Poisson
bracket, and since the Baker—Campbe]]—Hausdorff formu]a is

written as a sum of successive commutators, we conclude that

'iD[:BG]:[ ‘—iDEaG‘]] -i0-5
e e .= e | |

(40)
where G is again given by Eq. (37). Therefore we get
' -iDE_G_]
q = e q
D —— (41)
I 1D[Gj
p' = e P

Eqs. (38) and (41) suffice to see that the association

6 (classical generator) «— KG(q’,q;a)

forms a representation of the'group whose Lie algebra is determined

by the Poisson bracket

- Al

Also as a straightforward consequence of Eq. (38) we have

[ dq" KG](q',q";u)KGZ(q",q;B)

= I dq" KGZ(q.,qu;B)KG] (quaql;a)s. if {G];GZ}PB = 0 ¢
(42)

The above property is essential to discuss the relation between
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symmetries and conserved quantities in terms of path 1ntegra1
formalism. For example, let us‘consider an observable G whose

Poisson bracket with the Hamiltonian vanishes:

{6, Hlpg = 0 . (43)

In other words, G is a conserved quantity in a classical sense,
and the system is invariant under tHe transformation G. At t=0,
suppose that we observe the quantity G and get the value 90 Then

the amplitude after the measurement is given by Eq. (18);

iwa
Ay (q',q)=%§ do e K(a',aza) . (18)
o
gO

At time t = t, the amplitude deve]ops with the time and we have

A(q',q;3t) K,(a',q"3t)A_(q',q)dq"
H _ g

Jqu 0

= A I’ H K ll, d 1
gO(q q")K, (a",q)dq

where we have used the property Eq. (42). In an analogous manner
to Eq. (24), we conclude that the observation of the quantity G
after time t = t will certainly gives 90 again. -Thus G is a

conserved quantity also in a quantum mechanical sense.

4. CONCLUDING REMARKS AND OUTLOOK

We have discussed some interesting aspects of the ge-

neralization of path integral quantization scheme for arbitrary
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c]assicai generators. 0f course, these properties'of quantized
amplitudes are also derived, even in an easier way, by the
operator formulation. However, as Feynman stated in this original
artic]e]), it is always interesting to look at old things from a
new point of view. In thfs paper we made explicit how the quan-
tization of a physfca] system is pérformed by means of the path
integral formalism. Specially, we have shown that, if a set of
classical generators belongs to a transformation group in
classical mechanics, path integral amplitudes .for these quantities
form a representation of the group.

The concept of path integral quantization for an arbi-
trary transformation may be extended to a wider region than
described in this paper. For example, it will be worthwhile to
reconsidér thé concept of relativistic invariance in view of an
amplitude associated to the Lorentz transformation. _

It was also suggested the possibijlity of formulating
quantum mechanical concepts like eigenvalues, eigenfunctions,
and conserved quantities without introducing operators. It would
be extremely interesting to investigate a possible physical
interpretation of the quantum process of measurement in terms of

such a formulation.
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