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ABSTRACT

The criterion for magnetic instabilities in disordered systems
within the coherent potential approximation as derived by Hasegawa and
Kanamori is extended in order to include hybridizations in two-band
. transition metals and actinides. In the last case the effect of

intra-d-band correlati;ns is treated approximately, thle the disorder
within the f band is fully taken into account. We recover the one band
‘results and one shows that in the case of transition-like metals, s-d
hybridization leaves the instability condition formally unaltered, just
modifying the values of the functions involved. However, in the case of
actinide metals, new terms appear directly connected to d-f hybridization
and Coulomb repulsion in the d band which may considerably modify the

condition for magnetic instability.
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I - INTRODUCTION

The‘problem of magnetic instabilities in disordered systems
has been discussed by sevelr'al.authorsl’z»’a within various
approximations to deal wfth Coulomb correlations. In these works,
tHeimetallic systems were always assumed to be described by a |
single non degenerate band. It is known from previous works that
the existence of hybridized bands“’s’s’7 modifies the conditions
for magnet%c instability reépect to one-band systems. In particular,
the case of actinide metals is a typical situation where d-f
hybridization plays a central fo]e in disCUséing the behaviour of the

magnetism along the series of these metals8 .

In this paper we intend to discuss a simple model for dealing
with the magnetic instabilities in disordered alloys which may be

described by a hybridized two band system (transition or actinide metals).

‘We adopt here the Hartree-Fock approximation to treat Coulomb correlations,

consequently this calculation is to be compared to that of Hasegawa and
Kanamori * » Which describes a one band system within the Hartree-Fock

approach.

The model we consider includes the important assumption that no
disorder exists in one of the bands. For transition metal systems this
is precisely the model used by Brouers et al. ’® !!' in the context of
discussing transport properties of transition metal alloys. In the
actinide metal case it is assumed that the f band, which is the narrowest,
is the only one which exhibits randomness. It is hoped that this

approximation (which considerably simp]ifieé the calculation) will not

ool Wonr,
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destroy the main idea of disorder in such systems. In fact, cne

expecfs that the d band in actinides acts 1ike a source of

hybridization, shifts in-the atomic levels of A and B atoms being | .
expected to have a larger effect in the f states. In these metals

we also neglect the existence of the broad s band, since its

. inclusion just renormalizes the d and f states through s-d and

s-f mixing . As a last remark about actinide systems, in this

;alculation we approximately describe the d occupation numbers

. which appear in the d-d correlation introduc%ng self-consistently

the alloy occupation . numbers, in order>to restore the simple idea of

one band randomness.

The plan of thi; work is as follows: 1in Sec. 1I we describe
the model and obtain the relevant propagators and CFA (coherent
pbtentiaI approximation) conditions. Sec. IIT s czvoted to
calculate the first order corrections due to the external magnetic
fields and finally, Sec. IV diséusses applications of the results to

transition and acfinide systems.

II - MODEL HAMILTONIAN AND CPA EQUATIONS

Consider a binsry alloy system of the type Ax B]_X descfibed
by two hybridiced o und B bands which may correspond to situations
encountered in transition or actinide metals. We assume, as discussed

in the Introduction, that disorder exists only within the u band.

The one-electron Hamiltonian may be written in the Wannier
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representation as

.7 (e @) o o @) o 4
#, igc Ti3'8io Bjc+£icaio %30 iot 1§c T %4 %o *
+ L\ +
* ;o VaB aicBic * VBa Bic % ’ (1a)

B;O(Bic) and u:c (aio)  being the creation (annihilation) operators

of B and o electrons respectively with spin o at the ith lattice
site. e§“) is assumed to take on values e&a)‘, eé“) depending

on the kind of related at?ms, while the hopping integrals ng) and Tgﬁ)

and mixing matrix elements VaB‘ and 'VBa’ which for simplicity are

-supposed to be k-independent, involve no randqhness at all.

The Coulomb correlation terms are

. : . )\ .
Foa =1 U ol oo o o f® ) i

(A =aor B), (Ib)

where "the Coulomb interaction parameter Ugu) may assume values Uﬁa)
(@) L
or UB .

Finally, the interaction with the external magnetic fields is

described through

i i o AL PO 2 T TSR
. .

B 1 -
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Toag = =08 Lol -V y onl® . o)

c'{ = r/. | T ‘ "_'ﬁ“ '
b= P+ “eour * ¥ ' (2)

" We follow now the equation of motion mej:hodz’3 to obtain the

coupled set.of equations for the relevant propagators 3 (w) and

136
iao(w) Within the Hartree-Fock scheme one gets for the o -o propagator

v ngd(m) i ,61' * 2 T(u) 2Jo(w) ¥ Sfa) 1Jo(w) * U(a) <"$a3 g Gaa olo) *
+ Vg ,j(,«»)—h(“) 5  (3)
and °
w G??c(w) Z T(B) Ggﬁc(w) + U(B) <n(B)> G?gc(w) + v 1JG(w) -
_ W(B) . aBa '
g ' 536(0) (3b)

while the B - B propagator satisfies
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W G%\B]«O‘(m) = ,. + Z T(B) GE:?O'(&) + U(B) <n(B)>G°‘B (0) +
* Veo G:Jso(w) h(B)c foc(w) , (4a)
and

0 655 (u) = ], T(“) 6% (w) + & 688 (0) + U{Da{®)> 628 (u) +

+v_ 68

o 6w - ne W) ()

1JO

At this point we introduce the approximation of supposing that as far
Coulomb terms are concerned the occupat1on numbers <n(B)> will be

replaced by <n(6) . Th1s quantity will be self consistently |
alloy

_determ1ned from the solution of the configuration average of 658 (w)

ijo
and corresponds physically to say that an 8 electron of spin o

interacts with the "effective occupation numbers of spin -o" . Such
a procedure neglects the site dependence of the occupation numbers
involved in the Coulomb terms. Since no disorder is present in the B
band and disorder associated to the a é1ectrons connects to the B8

band only through mixing, we expect that this will not be a very drastic

approximation. It should be noted that in the absence of U(B) Coulomb

interaction our procedure is exact. Introducing the Hartree-Fock

renormalized energies

Al
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and effective hopping energy

g B B) ..(B B
T =) {U( P nl®) 1y f"hc() )} 8 (b)

. the equations of motion determining the o - o propagator become

(w-e (a) )63%

@) = o5+ 1, T 6500 + Vg ol (62)

ijo

and

T ON

@ " Ty ) G () = Voo GRE i (@) (6b)

Eﬁg) being defined through

-_ ik. (Rs-Rg)
B =L TH) e

Transforming back equation (6b) to site representation and defining
mi x
-Tm0 through
_ e-ik.(Ri-Rl)
mix o _ )
iLo k —(B) i
UJ'E

one finally gets for the o - a propagatqr
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e S 65, = o5+ 1 T 6 (72)
where
. A VIR e | (75)

4 : s
or introducing the locator Fi(u» R

1¢

SOR R (7¢)

one arrives to the standard form of Ref’

( w) =

[.. + ], T(“) Gi?o(w% , (7d)
F (w). v .

where we emphasfze that no disorder is present in the "effective hopping"
Configuration averaging equation (7d) one has

Flw) <63, (w)> = JTEN Tio) e (w)> (8a)

and Fourier transforming (8a):

(8b)
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where E&ﬁ) is the B -'a_ renormalized o energy

Vgl ?
) L () . (8)
- e(B) _ (B (B) (8)
w - gy Ut "<n’g >aHOy +0 hO
In the site representation it follows that
ik.(R:-R:)
e i)
< G??o(m)> = I (8d)
Fc(w? - ség) :
or in particular
Qo 1 g 8
<Giiglw)> = Iy o ay (@) - (8e)
Fo(w) - g |

L 4

The self-consistency condition is derived in the way obtained in Refs.?

namely

o <Cpiolwl>py + cp <Gpjilw)>g = <Gpsolw)>, cp =%, cp= 1 - x

(9a)
where
Fo(w) - Fplw)
B (0)op = B () + <6 (w)> A <637, (w)>s

- 1-[F7(w) - Fr(w)] <635, (w)>
- (9b)
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and

F(w) ~ Fy(w) o
(0)> + <Gys (w)h <G??O(w)>.
: 1- [F(o) - Falw)]<aif,(@)>

<Gg§o(m)>

230
(9¢)

From equations (9) the self-consistency equation is easily derived. One

obtains
Ia) = e§ @) . (‘(“) z‘za)) H‘Zd)(w) (Eég) _' z‘ga)) (10a)
where we defined

- Eéa) = cp Eﬁg) + g eéa) (10b)

and introduced the self energy Z?a) through

Fw) = w - z‘(’a)

Now we solve the equations which determine the g - g propagator. From

equations (4) and using (5a) one gets

(w-U‘B)<n > + h(B)c) 68 8o G??c(

= (B BB
-g alloy ijo(w) 83 +Z iy Gpjolw) +V

w)

(11a)
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.GoaB f

(a) 230 (w) + Vg G??o(w)} - (11b)

" Configuration averaging equations (11).and Fourier transforming one gets

(w-u®) <nS§)>a110y + 1o - cfF)) <G§§é(w)> = 1+ Vg G2y (110)

- and
- 79 o ela)y o8 o B8
(0= Tia) = &) <Gip(0)> = Vog <Giyg@)y (114)
where Zz 5 was determined already through equation (10a). Recalling
a _

. the previous definition of e(B) one finally obtains

B8 S = ' '
<Gij0(m)zk = . . . (12)

These results complete the determination of the propagators G??c(w) and

BB
G1J0(w) .

IIT - FIRST ORDER CORRECTIONS IN THE MAGNETIC FIELDS.
Next, we follow strictly Ref.'  and collect first order terms in

the magnetic fields. To do that we define
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e |
Tta) = Lio) =98 Lo

(@), (@), _ s (@)
<ni_03- <n; >p od nj s

<n£§')>a”-°y = én(6)>p - ad n(B)

el s ol o ) el - )+l
Co uf®) o) g p@)

 E£g) = eés) + U(B)<n(6)>p -0g U(B) Gn(B) - dhgs)‘ . (13)

From equation (8e) and using definition of the self-energy one has

©r- eéB) - ute) <"S§?>a1loy te hée)
Higy @ = I '

(- T(a) - e e - “(B)<"£§)>an.oy |

+.°h<§8)) -I'VaSI
(14)

At this pbint it is useful to introduce the model of homothetic bands

proposed by Kishore and Joshi“ , namely

(8) _
*% T %
(@) |
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since this simplifies te calculation of (14). If p (c) is the density
of states associated to the dispersion relation €y equation (14)
can be rewritten as

w =g - u(§)<nﬂﬁ)>d] +o hés)

loy

H?a)(w) = [ d = p(€) .
aslz_

¢ on{B))-1y

{w= Z?d)" Ae - B)(m-e-U(B) <n£§)>a110y

(15)

Now, using définitions (13), we collect first order terms in the magnetic

field and expand equation (15). One §ets_
My (@) = Fylo) - c{hgﬂ)|vas|z+ u(B) gn(8) |va812} H, (w) -

- 08 Jigy Hplw) s (16)

where we defined

w- € - U(B) <n(8)>p

Fo@) = [ de oy(e) ' . (7a)
(w-Zéa) -Ae -B)(w-e-U(B)<n(B)>p) - |v

]

H, (w) = f deop,(€) - (17b)
[tw- 1{)-ne-8) (w0 (Bl (B) y -y 1]
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: (w-E-U(B)<ﬁ(B)>p);
_ Hp(w) =4J d= oc(e) - P . (17¢)
[}u-zéa) -Re-B) (w-e- U s oy

_—

_Using the resuit (16) and definitions (13) .ie r:rs1 order contributions

to the self-consistency equation reads .
820y = Kyl U on®) + gty o) enf? < [yt ¢ kgte)] 0 -
- IV g1 7K () (n(E) + u(B) 5nlB)) | . (18a)

where we defined

RERES <€§B" )

Ki(w)~=

1+ (ef) - 20yy) Hylw) (ef) 2B ) 1F o) () vef)-228 )
(18b)
J#i33,1=A,8
and
| (e(a) - z?a)) H,(w)(eég)- Mgu))
K((D) = —

o+ (egg) - P

P ) B - ) F (e 2P )

() “Bp
(18¢c)

the self-energy in the paramagnetic phase, }? .» Satisfying

.l.l
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Ry = "(“) - (e(“) - 20,) Fo@) (eég)

2 (18d)

Za))

and

Eéa) = ¢, egg) + cg eég) | (18e)

Whence the result (18a) {s obtained, one needs to obtain explicit expressions
for Gng?) and Gnéa) in terms of the magnetic fields, . Gn(e) and the
change az(a) in the self-energy. One starts from thelresult (obtained

from (9b) and (9c) taking 1=j=i):

o
- KON -
<6jig(w)>4= (19a)
| | - (a) -
1 (e Z(a)) H(a)(w)
Collecting first order terms, which we denote by <8 no(w)>, one gets
(a) _ o .
sny”! = ,fu’<6G11U(m)>i] , i=A,B | (19b)

wherp

<Gi5(w)>y = <Gii (w)>h + 0<663T (w)>

iio iio i i

and f}m denotes
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% G‘;,“;.‘c'(w)] = 12; radw f(w) E;‘;“;‘d(me) - G??o(w - ieﬂ, e+ 0

f(w) being the Fermi distribution.

The result of the explicit calculation of (19b) using (19a) is

| sn{®) = u{®) (R -8 anf\"‘)} 0l (2B - a5y anf{*) + ul®) g, .5n1§°‘) "

A, B_ .A_ B (a) . (8)
B T A AR ) T+ [Vel® (ng -y + Ty (R +

"+ u(B) (B (20)

where’the quantities cgz Ag s Tis Ei’. Ty and hi are defined
explicitly in the Appendix. Equatibn (20) is quite similar tb that
obtained by Hasegawa and Kanamoril. with the difference that now, due
to mixing effects, the contribution of the change in 8 occupation number
éppears explicitly. As shown in equation (12) the B occupatibn number
involves,through the changein self-energy, the quantities GnAQ) ~and
Gnéa) . So in order to obtain the coupled linear equations determining
dnga), one must firstly obtain explicit results for the quantity én(B).

From equation (12) one has
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- - (a) - P 2 |
5688 () - (e = Eg)) <) g(8) h(B)} .
< W= (B) (d.) p )V az 0
[}w-ekp Wumep™ = Tigy | g
|V l?
% ( ) s - (21a)
l:(w- ))(w eka) - Zp -[Vasl]
where we used
<G§§c(w?$ = <G§§c(w)>p +~c<6GBB (w)> . 7 (21b)

8
From on{f)<Z tg <GG1JG(w)>_‘, using the result (18a) and the definitions

in the Appendix, one gets

(a) A
U ¢ )
A
5n(3) = lva 2 2 , 5n£a) +
1- 0B -y wal” 95

(o) B

+ V|2 *: sn{®) +
e (8) 4 B

V- URe, - Vgl 0, )

oh + 40 8, ~IVygl? 0,
* Vgt — nfe) 4 ()
of 1 U(B) 4 ° ]_U(S) -|v lb )
S0 e, -Vel" 9, (¢,-[Voal® ¢4

(22)
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It is clear from {22) that the last term of it corresponds to the response
of B8 electrons to the magnetic field héB) (as renormalized through Vas
mixing to o electrons which move in bresence of the paramagnetic self-

-energy ‘It will be assumed that the B band do not develop a

( )’
magnet1c 1nstab111ty in the Stoner criterion, namely 1 # U(B)(¢ -IVQBI“ ).
Now we are in position to get the coupled equations determining the

dquantities Gngu) and Gnéa). Combining equations (22) and (20) one obtains

8) .j v
U( ) ¢g(ni' “i+ Pi)

onf{®) = % ul) Jed - ad s |va8|“ B snl®) 4
Y = B '
S BRI M R
" U(a) # Gn(a) [g + cB A? - x? +E; 4
VB (n, - mg + 1) (oF+ 0By -
|V BI“ . héa) +
1= 0o, v g1t 6,)
| 2 ! (8)
* [Vgl? |(ng - my +1y) h™ . - (23)

1- U)o, - v g1%,)

Taking i=A and B in (23) and collecting terms proportional to G"Xa)’

'Gnéa) and to the magnetic fields one has the coupled equations



175

O ) o) ) 0D )

- U g an®) 4 (1 - uf) wg) onf®) < gp () (g g )L (20)

where we defined

i

| B 6, - w, v 1))
i o i )
T A+ g+ Vgl . i=A,B  (25a)

My =
1= U)o, -1V g1t 8, )
o uB) ) n.- mi 4 1)
= - 4 y - .
Ny =23 Ay + |Voz_8| ” - » 1,J =AB; J#i
. ] - U (¢l-lva6' ¢3)
(25b)
™oC Ty + I‘_i

01 - IvaBIZ » 1 =A, B (ZSC)

1= e, -V 1t e, )

From (24), solving the linear system and recalling the definition of the
"partial static susceptibilities"

(a) (@)
aB _ Gni . xaa=‘ 6ni , i=A,B

‘i N
héB) hga)

S
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it follows that

- ul® yle)
Q;(1 - U3 My) + Qg U N

X?B = s, 1, =A 6r B,
1 - ly(®) (@) a) (@) - '
1 [gA My + Ul g+ uf®) ol Ny NG - My ) e
» (26a)
and
: (a) [ - :
y R A Y N
0= ‘ . ' » "1, = A or B;
: ) (@) w4 ple) y(@) - j] ‘
1 - [9& My + U8 Mg+ u{®) ul oy NG -y g Ch
(26b)
Ftbm‘(26f'the condition for magnetic instability turns out to be
o (@) (@) (@) - - |
uf® My o+ ul® g+ o U (N Ng - My M) = 1. (27)

IV) APPLICATION TO SPECIFIC CASES.

£)  Reduction to one band model

Here we recover the result obtained by Hasegawa and Kanamori'®

namely the condition for magnetic instabilities 1in a disordered
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binary alloy described by a single band. To do this we switch-off the
mixing (VQBI2 and the external magnetic field hés) (which acts on the
B states). So it'remains only an a band with diagonal randomness and
the external magnetic field héa)o In this case equation (18a) reduces

to-
65(ay = U Kp) enf®) « 1) kgto) onf®) + [yto) + ko] W (28)

and the terms which appear in the definitions of - KA(w) and KB(m) . become

(cf. equations 17a, 17¢c)

!

Fp(w) = [ d’é P, (€) - . (29a)

-and

) d -
Ho(w) = [ d ep,(€) \ | (230)

o-hy - @)

Hence, our expression for § X(Q) agrees with that obtained in Ref. 1.

On the other hand, in this special case, the terms involved in the
condition for magnetic instability (see egs. 25, 27 and the Appendix)

turn out to be

g s 5 B iai o i



*3U02
(G- [ (Pl - @ - -
X + - < - - wl 3p(s)4 %w +=
. L (%) + (™) ) -(")H] [(™) 8+ () %) ot |

L i (Pla - @) - o L
a0 ol i 4 v AR A S
H A(m92) + (MM - (M) R
M pue
(e0¢) . S 2 B R R
w , ol+3=m . . , | | - A\
7 (% (Fla- (1) N-Eg v (0% (Plaz - Bar Ha)-1|
oo . wr x
T Tﬁsv ) - ?V @ (f aw-?vuzA vw-?a v ."

. . A .. Q
| ] o r N:%m- Emvn 2 £, =
A - x 3p(3)4 — 5—-
| , P _

(0)., .
N:3v 4 A N A.Dv v o L

(@ (m%) - Eaa_

8L1
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(efe) 2Ry () -20 ) () ~(F ()] l

X

1- (e(a) + e(%) -2 Zpa)) Fo(w) + (Egp) 'Z?a))(e(a) - Z?G)) “p(“2J

w=e+1i6

(30b)

Then, the condition (27) for magnetic instability in the case of a single

band reduces to the previous result obtained in Ref. 1.

L) Transition metal allloys

Now the o and B bands are fhe d.and s bands respectively. In
this situation, except for fhe approximate Hartree-Fock treatment of the
d-d Coulomb correlations, our procedure is exact within the framework of
CPA. This follows from the fact that Uga) = U§d) and U(B) =0 since
Coulomb interactions are completely neglected within the s band,
which is commooly described in OPW (orthogonalized plane waves).
Consequent1y our drastic approximation <n(s)> = <n£§) a110y is no
1onger present and randomness is completely removed from the s band. It
should also be noted that no'exchange enhancement associated to the s band
is present (cf. eq. 22), as expected. Hence, we recover the same model

adopted by Brouers et al, °* !!

to describe transition metal alloys,
although the spirit of our formulation of the problem is to obtain a
criterion for magnetic instabilitities. The role of s-d mixing in this

criterion is to modify the functions Fp(w) and Hp(m) which appear

o e s PR gt | 7i 4 s, . e T
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explicitly in the result of Ref. 1, so introducing a departure from their
result but conserving the formal equivalence to the one band problem.Another
feature, ihtrinéic to a two-band problem is to introduce cross partial
sta;ic susceptibilities as x?B ='f(ni, Hi’ Ti)'= f(Fp, Hp, Hl); i=A, B,
(see eq. 26a) where new functions Hl(w), ng s I and T, appear

(cf. eq. 17b and the Appendix) which are completely absent in the result

obtained by Ref. 1.

i) Actinide alloys |
In this situation the o and B bands are the f and d bands
respectively. As discussed in the introduction, we have assumed that

disorder exists only within the f band, the d band acting as a source of

- hybridization. HoWever; through the approximation <n§?g> = <nf§)>a11oy-

and since U(d) # 0 1in actinide metals, the d band influences the
criterion for magnetic inétabilities exp1icit1y,. In fact, recalling the

definitions of the functiens M Ni appearing in the criterion for magnetic

1'3
instabilities, one obtains

d) (i)

i i u by (N, -m.4T.)

= b o) u 2 i i il (k) 4 (d)

M. = Gy = Ayt £; + [Vdfl = Mi + Ivdfl U 6Mi’

1
d 4
10D (g, - Vel ,)

(31a)

and

W Vi

Y R 1N

Dl W



181

u(d) (D oer 4, )
N,o=cd - ad v N gy g uld) gy
i 75 TN Y e ) — N df i’
1-U (q)l'lvdfl ' ¢3)

(31b)
i,j4= A, B, i# J.

The quantities Mgk) and Ngk) emphasize the fact that the functions

involved are simply corrected by hybridization effects (namely Var mixing).

Another Eemark refers to the enhancement factor which appears in the
denominators of GNi -and SMi, It is assumed throughout this work that

| the d band does not sustaih magnetism independently of the f band.

Then the zeros of 1 - U(d)(¢1 -ivdfl‘ ¢3 )} do not exist a}though this

quantity may assume small values giving rise to exchange enhancements that

may attain the order of 10 in favourable cases. Consequently the corrections

associated to the quantities GNi and GMi may be of critical importance

in the magnetic instabilities. Substituting (37a) and (31b) in the

general instability condition (27), one gets

uff) i) + 0l k) 4 ufF) y (D) [@gk) NED - mk) Méki] +

+ Vel u(® {Pﬁf) oty + USF) amy + uff) (") [%NA NK) + ony Ngk) -
- (o MEK) 4 o Mgkzﬂ £ o([Vyel®) =1 | (32)

Hence one sees from (32) that the first term including only hibridization
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L]

effects behaves Tike a transition metal in presence of hybridization and
for simiiar_va1ues of hybridization parameters one gets identical results.
The essential characteristic of actinide metals lying in the existence of
correlated d bands which hybridize with the "magnetic band" is then
clear]y 1ncorporated1n the second term of (32) and it may act as a

dec1s1ve term in.the occurrence of magnetism.

APPENDIX

L) Definition of the functions cJ, AJ 51, Tes I and n..

These functions are defined as follows

| How) k(o)
23 = -1, C o hieABs i43 (AD)
0= (ef3) - R F, @3]

. (Fp(0))?K;(w) » .
M=-F - , (A.2)

(- 2 -2R ) Fen? |

_ (l"(w))2
£, = = : R ‘ (A.3)
P (@) - 5 1) P2
(E (a)) p( )

£
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- H ) K@)
mosF | (A.4)
“I 1 - (ﬂ(“) - 20 ”_]
| - (F)K) -
ri=-T i (A.5)
o (e](;) - 20y F ()}
and finé11y
| Ho(@) T |
B “"ﬁ; [ (1) - (A.6)
o . v 2 .
0= (=) - 2ay) Fplo)}'
~ 4L)  Definition of the 6unction§ &1 s 1 =21,2,3.
(w - eéa) - Z?a))2 -
. _Go
¢ ~T,\L — | (A.7)
Lo e - H(f) " o)) T et B |

It should be noted that in the absence of vaB mixing (A.7) reduces to the

- pure B band susceptibility.
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€
=~

(A.9)
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