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1. INTRODUCTION

The problem of describing the magnetic properties associated to the interaction
between localized and conduction electrons envolwves essentially two steps ;' 2.
Firstly one should dbtain the cne—electron states (both localized and conduction)
fram a band theoretical calculation. Secondly, ane should derive an effective
Hamiltonian, written in terms of spin variables (the relevant parameter defining
the localized state), describing the Coulamb scattering of these conduction states
by the localized electrons. This effective Hamiltonian rmust incorporate Pauli-

principle requirements.

The general philosophy of the second step is discussed in a quite simple way
by Caspers >. It should be emphasized however that the second step involves to a
certain extend the first one in the sense that the one—electron states (conduction
and localized) used in the oconstruction of the effectiwve Hamiltonian should be
derived from the same ane electron Schrodinger equation. This remark concerning

internal consistency of the equivalent Hamliltonian approach becomes more clear
if one notes that it is crucial in this model to have well energy separated solu-
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tions of the crystal's one-electron prdblem, in order to be possible a clear dis-
tinction between cnduction and local states. The case where the one-electron
potential is not strong enough to bind the magnetic electrons, and resonance phe-
namena occurs, must be discussed within Anderson's approach 4; In particular in
the present case the orthogonality condition (apart fram these energy considera-
tions) between localized and conduction states will play an essential role in dis
cussing the exchange potential. Once the effective Hamiltonian is cbtained, per-
turbation theory is commonly applied to get the magnetic properties, for instance
the spin polarization. It should be mentioned that in applying perturbation
theory in this last step, one needs wunperturbed Bloch states corresponding to the
solution of the first step mentioned above, and which usually is dbtained through

a rather laborious numerical calculation (for instance G4, 2) . Recently >

, the
method of pseudo potentials has been widely applied in one-electron calculations,
since it enables the used of simple perturbation methods. It is the purpose of
this note to introduce the pseudo-potential picture to describe the scattering of
conductions electrons by localized spins in presence of the periodic crystal po-
tential; we hope that in doing so, both steps of the calculation can be solved
within the framework of perturbation theory, gilving then an unified view of the

problem. In the first and second partsof this note we rederive Casper's 3

effect
ive potential, paying attention to the precise formulation of one-electron
states. The rest of the note is devoted to the pesudo-potential formulation of
Casper's approach and the interpretation of the results as campared to usual

results.

II. FORMULATION OF THE TWO ELECTRON PROBLEM

We start assuming that the self-consistent one electron crystal potential V(r)

is given.  The conduction and localized states satisfy respectively: .
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T+, (x) = B, ¥ () (1-a)
(T+V)Yg (x) = Eg Uy () (1-b)

Fram the hermeticity of TV it follows the orthogonality condition:

.<1pk|q;8> =0 for any k, Elc: #"EB (1-¢)

This equality holds because of the explicit assumption that the localized state
(carrying the magnetic mament) is well separated in energy fram the conduction
states y, . We wish to emphasize this point, since for same rare-earth metals
(like Cerium for example) the incomplete f-shell emerges into the conduction
band, invalidating then our approach. In the following it will be assumed that
the localizeq state is occupied by a single electron. Starting fram \pk(r) and
Vg (r) obtaifxéd in (1), it is possible to write down the zeroth-arder wave func-
tions for the electron pair (which serve as a basis set for the calculation of
the Coulonb scattering):

® ) m e T (5) ) + B (2] o s, > )
K8, 717 T2 7 Vi (rp) Vglry) 29, (rp) g (ry il

ls(i) M > being the normalized spin. functions for the singlet (+) and triplet (-)

spin states of the pair, with campmnents- (respectively OA, and 1,0,-1) specified
by M. In this way, taking the Hamiltonian for the pair as given by?

2
' ' . e

‘H,= T(rl) + V(rl) + T(rz) + V(rz) +'m12, %12 =

|r1 - r2| (3)

calculating its matrix elements between states (2) and approximately diagonilizing
the secular equation d)tai;xed, it is in principle possible to get approximate
solutions of the Coulanb scattering prablem. However it is also possible (and
more simple) to work with unsymmetrized coordinate wave functions, incorparating
then the exclusion principle requirements into an effective hamiltonian. One
proceeds as follows: firstly e defines the cawlete set of unsymmetrized



8B L@ 1) = e v s, us (4)
W (s 1) =Wy )

Secondly cne determines the effective hamiltonian ‘if: such that:
(+)
<"’(+)B' M’ W"’Sg w = T o mwk ©)

At this point it is useful to introduce a special notation; one defines operators

Pr andys- as follows:
12 12 :
r

1’12 w(rl, rz),. for any function w(rl, 1-2) (6—-a)
PP -5+ 28.5 : (6-b)
12 1 2

§l and §2 being r4spectively the conduction and localized electron spin operators.
From definition (6-b) and the form of the spin states |S'"), M > one gets:

?° (O - - |s®rus . (6-)
12 +
Using these definitions, it follows that:

1, o7 *
) ‘llk 3,M (rl, rz) 8'7—;4 (1 P1 )fﬁk (rl, rz) (7)
Fram (5) and (7) it u turns out that a campletely equivalent formulation of the
initial prablem is provided by:

¥, (r , r) =P P°)Y0. (r, r) , (8~a)
A T e 12 127 A 1’ T2
iﬁx (r;, r,) being the solution of:
i WA =E, ‘P)\ (8-b)

where f1s defined by (5) and ¥, is in general a linear conbination of the unsym-

metrized fmetims (4i - In order to cbtain the explicit form of fane firstly

calculates ﬁw,f*é yi USing equations (3), (2) and the natatims (6) cne gets:
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+) o _pf o8 ' o 8] 3@

il W [(Ek+EB) (-2 P )+ &1.2 a-r gz)] = Ek»”B,M . 9)
Using explicitly the orthogmality condition (1-c) it follows fram (9) that:
< P (219, G =5y, an@%wsw.wmwﬁJw>1¢mwﬁJw>](ma
where the states |k,B> are simple products quk>|w8> and the matrix elements of
#'  are defined by:

12
' B ) Vr2) b (@) vy (r2)
<k182 Iﬁlélkaﬁf = e . . - ————— . dr; dra 7 (10b)

|r1 = r2|

Since ¥, is spin independent and using equaticns (6), equation (10a) may be
transformed to:

+) ) *)
<wk'§l ’Mlﬂlwk§M> - Gm' [(E +EB)6kk' BB' + < kTBva I” (1 PIZPI )“hk. ] (11)
Introducing now the one electron hamiltonian ¥ by:
H =T v V() + T + Vr,) (12a)
one gets finally:

Camparing (12b) to (5), and using for Pié its explicit form 6-b one gets for
£

~ ] 1 1 r
R + 8, =8 + 8, a5 - 28, P, 5,5, 13)

Expression (13) concludes the derivation of the effective hamiltonian for the
electron pair case, and shows clearly the two effects introduced by the
exclusion principle requirement:: Firstly one has a spin-independent term

1812 (1-5 12) which contributes together with the one electrcn terms to the
average energy of the two possible states of the pair (singlet and triplet) and
secondly the spin dependent term which splits in energy the singlet of the
triplet. Now we intend to apply these ideas to the case of an electron gas in
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presence of a localized spin.

III. THE OONDUCTION EIECTRON GAS CASE

'Ihecorxdtlctimele::trmgasinpreéenceofalocahzedspinhasin
principle quite different aspects fram the preceding case, since cne wants to
consider it separately fram the localized spin. More precisely, what one wants
is to describe how conduction states (a filled band up to the Fermi lewvel) are
perturbed by a localized spin in a definite spin state (say 4). In this sense,
one needs to have control on the spin state of the localized electron, and ane
asks for the response of the conduction electrons to the previously stablished
orientation of the local moment.

In this situation the classification of spin in singlet and triplet states
is not the more convenient one for this purpose. It is necessary then to adapt
the previous formulation to this situation, and this involves several remarks.
Firstly one remenbers that in the equivalent fornulation apprc:ach develloped
above, all Pauli principle requirements are already incarporated. Although the
sbove analysis involves the states [s'2), >, we consider equation (13) as
describing the essential features of the complete coulcub scattering prablem.
Next step is then to relax the condition of firstly coupling spins (according to
usual rules) and then calculating spatial parts, substituing this procedure by
another cne which seems more suitable for polarization calculation purposes. One
proceeds as follows: firstly one searches solutions for the problem of determin-
ing W)(rl, r,) in the form:

Gy, 1> = ¥ > e (>[50 (14)

where lsB(2)> is a definite spin states (say +) of the localized electron, and
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now because of the coupling between itinerant and localizedstates, oconduction
states become a linear oobination (with different spatial parts) of electron
spin states. This means for instance that IwM (x,)> is a stat.:z‘a;f spin mainly +,
involving also a contribution from ¢ spin states (cf. belal) The general hamil-
tonian (13) will then be used in order to determine |wm>vs:vl.1‘mce it is as@ed

(and this is consistent with the fact that the cne electron potential is strong
enough to well separate in energy the locai state fram the cmductiag states)

v thatthespatialpartofthé localstate’remains the same even in presence of
Coulonb scattering. The usual approach at this point is to use perturbation
theory, expanding the spatial parts of |wm(r1)> in terms of eigenstates of
the cne electron problem (cbtained from a previous band-theoretical calculation).
It is precisely at this step of the polarization calculation that the pseudo-
potential approach of one—electron calculations plays the important role of
transforming both steps of the approach in a perturbation prablem.

IV. FORMULATION CF THE PROBLEM IN A PSEUDO-POINETIAL SCHEME
7

The basic idea of the pseudo potential method consists in finding an

equivalent one-electrm.ham\:l.ltdxian, which reproduces correctly the one-electron
eigenvalues and eigenfunctions by the use of a perturbation approach. Although
these ideas are commonly used in one—-electron prablem, through the hypothesis
sumarized in (14), they can also be applyed here. Within the spirit of (14)

the prablem can be formulated as follows: the pseudo wave function > ( this

ENS
corresponds more precisely to a mainly o pseudo wave function) is introduced:

19 (r1 £2)> = |9, r)> |Yg(r2)> [55(2)> (15a)

. EA - EB +;EM. (15b) |
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9o = (1—2a|o‘><a|)|¢m> (15¢)
Some conments are necessary at this point; in equation (15b) it is emphasized
that the main effect of Coulanb scattering is felt by the conducticn states, the
energy of the localized state réﬁainingv the same as in (1-b); the states {|o>}
are all the core states, incyuding the mégnetic state ws, and the quantum nurber
a includes the spin also. It follows then fram (15¢) that the conduction states
(even. in presence of Coulatb scattering) are autamatically orthogonal to inner
shell states. Next step is to substitute equations (15) in (8~b) to get:

X +85) (=L |alD)><a() ) ¢, (1)>[y5(2)>[s5(2)> =

= (Bg+E, ) (1-E [a(1)><a(D) ) ¢, (1)>[¥,(2)>] 55(2)> (16)

Remerbering that care states satisfy:
(1+V) |o> = E [a> (17)

ane calculates:
: x°(1—>:d|a(1)><a(1)|)|¢m(1)>lw6(2)>|se(2)> = {(T+v)I¢M(1)>}|w8(2)>lss(2)>’

fngpl@Xo(l)flwe(z)>|s8<z>> - I (BB |a(l)>[9,(2)>5,(2)><ald) > (18a)
Substituing (léa) :Ln (16) one cbtains:

{(T+v) I¢M(1>>}|w8(z>§|se(z)> = Iy B, Ja(D> |9, (2)>]85(2)><al9, >
1, (175 [a(D)><a(D) ) |6, (1) l4g(2)>[55(2)>=e, (1-Z[a(1)><a(D) ) [, (1)>]
a

¥g(2)>[55(2)> - (18v)

which can be rewritten as:

@) [0, (1> (>[5 (2)> + I (e, ~€ ) [a(1)>|¥5(2)>|Sg(2)><aldy >

A0 o
+ %;2 (1—Zd|a(1)><a(1) D |¢m(1) |1p8(2)>lsB (2)>=¢, _ | %S> | ¥§2)> | Sé (2)> (18c)

Now cne multiplies (18c) by |¢B(2)>|ss(2)> to get:
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(T+v+§(Ew-Ea>|a><a|>l¢w> +<Pg (2) sB<2)H€12(1—§l |°‘><°‘)|¢xc(1)‘l’e(?> 83(2)>

€550y (1> o (19)
Now we rewrite in a more convenient way the last term of the left hand side of
~ Yy
(19) ; using the explicit form of ‘1812 one gets:

Pg ()85 (2) Ky, (1T |o><ar]) 9, (114 (284 (2)>=<h, ()5, (2) [, 16, (DY (2)84(2)>

~I Vg ()55 (2) |8, |a (D) (2)85(2)><a] 9, >

] l.r "
=Yg ()85 (2) [f), (1521,) [, (D)o, (2)84 (2)>Z<hg ()85 (2) 12, 0~325) |

(1) ¥g (285 (2)><a|d, > = 2{<Yg (DS () |£1,,_ 1.8 §ZI¢M(1)wB(2)s (2)> -
- z<wB(2>s @ %,,°5,5,. 8, la (g ()55 (2)><ald, >} - (20)

Within the spirit of pseudo-potential theory, ane searches solutions for ¢, (1)
as linear cambinations of plane waves. Now due to the coupling between
localized and itinerant electrons, contrary to one—electron calculations, one
searches far solutions which are also linear cambinations of spin states; more
precisely, taking k as the A.quantun nunber one has:

- o ' | ’ ’
|¢k0(1)> - qzc' aqo,]k+q,0 (1)> (21)
’

where |ktq, 0(1)> stands for the simple product |k+q(1)>|S_(1)>, o being + or¥.
The coefficients ago.
means in powers of Harrison's pseudopotential W = WI (B -E ) |a><a| and the

will be determined in powers of the perti;rbations, that

Coularb coupling. These remarks and equation (21) enable us to rewrite expres—
sion (19) in a quite useful way:
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g
I a,.,

qo
',O'q

@ 3 el [k’ ot (> {2 [, ] ks (Do 1y 20>

q ., q

- Z<alkeq"><Ug (2) [£,, 1-321,) [a(1)0" (1¥, (2)>)
Q .

g ' _r ' 'or
-2 .q'fd' a1t [V @) [H 2], [keq(Yg(2)> - §<a|k+q ><Yg (2§ ,P 1, [0 (D, (2)>)

X < 84(2) §1.§2|q'(1)s8(z>> -c I

ko q' ’01

agigr [k*a', 0'(1)> | (22)

V. SOLUTIN CF (22) IN PERTURBATICN THEORY

Now we cbtain the coefficients aq.éj.') where (1) means the i-th crder in the

perturbations (W and Coularb interaction), and the energies are written as:

o] (1) :

The zeroth order terms is simply giwven by:

: gy el v o
k O,
where e]c: =3 and |¢k> = |k>|o>, which corresponds to
(o) _
aq'c' - Gq'o 600, (24b)

The first order term is cbtained from (22) as:

o(1l)

qucnaqv " le"'Q',U"(l))"' ) o(0) W|k+q' ,a"(1)> +
1 ] 9

a'30"%", 0"
+E e % U@ IR,(nF P]) lkea (Y2 >|a" (1>

-z 8 ign <alkeq’><yy(2) I8, (17 1) [ayg @)> o™ (D) >

"2 T (O (b @I, P e’ D905 -
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- §<a|k+q ><q (2) %, Plzla(1)¢8(2)>}<se(2)|§1.82|c (Ds(2) >

N aﬁ?”ll«q 0" (1)> (25)

q' O"

e "
kO' 'z " aq'c lk+q o"(1)> + €
qQ 0

1y 2 .
Now remenbering that T|k+q',0" (1)) = (_kg_)_ |k+q?,a" (1)> ene cbtains multiply—
ing (25)'15'y |k+q, c'(1)> (using in this calculation equation 24-b for g(g))

1 k: 2 2 '
zé')(_(_;ﬂL - %) + <keqW[k>8 0+ 80 {< kea(vg ()| g, 12T )| k(DY (2>

- T <alko<iorq (g (2) 8, (13 12)|oz<1>w‘3<z>>}

- 2{<rq(D) Y52y, PE, k(Y 2)> - Z<allo<ktq (g () [#,, 2L, a0 2)>)

x ;cv(l)s8(2)|§l.§2[o(1) 542> = 0

Now we introduce the following effective matrix elements:

<keq|Wk[l> = <krg[W]k> + <ierq (LY (2) |£;2(1-% PL,) [k, 2>

~2 <alk><ierq (D (2) [, 325 au):j;s(z)s (27a)
o
and

<k+q|J* k>=dk+q (1) ¥ (2) I:tlz 12 k(l)wB(2)>-Z<a|k><k+q(1)lb3(2) l#l 2|o¢(1)w,5(2)>
. (270)
Using these definitions, one cbtains fram (26):

S <k+q|Wx|k> s . - 2 <k+q|JI*|k>

. . ' (D8, 3,3 lo(1)s,(2)>
0t T - e 2/2m ' K2/m - (rq)2/2m RS e B

(28)
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It remains to evaluate the spin matrix element in (28); using

<> - + - - .t z .2 )
2§1.s2 5,7 s, + 5, 5, + 287 57 (29)
it turns out that:

2<0" (184 (2) |8,.8,low)s (30)

+
wheresgisdefinedass';.

(2)>= 208 __, S7+S 9

B 2 ,—asz

Suwbstituting (30) in (28) one cbtains finally for the coefficients

g <k+q|wx|i>

a ) = N———
© k7/ 2m- (k+q) 2/ 2m

_ <k+(LLJﬂk> : z 6
o' =T —— {20600,82+§U.’_082} (3D

x%/2m - (k+q)%/2m

Finally the pseudo wave fmctimofspihmainly o reads:

e <keqlurle> <drq|axf>
|6 (L= I ———y—— |k#q,0>= I 5—12085 |k+q,0>+
q#0 k“/2m - (k+q)“/2m q#0 k“/2m-(k+q)“/2m

G .

+S, k+q,-0>} (32)

Carbining equations (32) and (15-c) one cbtains for the "true" conduction
states: |
<k+q|Wk|[k>

W 1> = 2 — (-I_|a><al) |ktq,0>
ko q¥%0 k2/2m - (k+q)2/2m a'l .

<k+q|I*[k> z
-I — ——— {208 (1-z|o><al) |k+q,0>
q#0 k“/2m -~ (k+q)“/2m o

+ 85 (1-2|o><a|) [keq,~0 > (33)
a
QINCLUSION .
The spin-polarization prcblem was thus reduced to a "double" perturbation
prcblem where crystal effects and OCoulomb scattering are discussed within the
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same perturbation theoretic approach. There are however, appart of these con-
ceptual points, some physical insights that one dbtains in paying attention to
the orthogonalization requirements. The perhaps most important consequence of
this pseudo-potential approach is given by the "effective" matrix elements
defined in (27-a, 27-b). In usual perturbation calculations of the spin pola-

- rization, starting fram a free-electron gas 6

, the "exchange coupling"
J(k+g,k) is given by the first term of (27-b). Now, due to orthogonality ef-
fects (involving in particular the magnetic shell I¢B> = |B>) one introduces a
"reduction" of the exchange coupling given by the second term of (27-b). It
should be emphasized that this correction has nothing to do with Coularb
scattering, but only reflects the fact that conduction states near a nucleus
locks as atamic-like functions, and one should extract from the plane waves
some amount of the spherical harmonies already present as core states in
order to calculate the exchange coupling. Finally, we want to remark that same ca
cases occur (fbr instance ndble and transition metals) where appart of deep
coie states one has filled d-bands near the Fermi level. The main consequence
of this (see Harrison 5) is the occurence of s-d mixing; consequently one
expects that the reduction factor will involve also d-d matrix elements of the
Coulanb interaction which are thought to be quite important in discussing these
cases. This point will be discussed in‘ a forthcmﬁ.ng note.

* % %
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