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1 = INTRODUCTION

An unitary field theory is constructed in a Riemaniann
snace R5 which has eylindrical symmetry with respect to a unit
vector field. The field is described by fifteen potentials 7%V

which satisfy in absence of external sources the five

dimensional Einstein's equations G,nz = 0.

It is shown that a four dimensional analysis of this theory
includes three types of force fields, the electromagnetic fleld,
the gravitational field as described by general relativity and

a relativistic scalar field.

The study of five dimensional general covariant field

theory was done before by several authors (see references). How
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every presently we give more importance to the properties of
this scalar field. The usual versions of Kaluza's theory do
not treat with this field since they consider the 5-5 metric
component as a constant by means of an extra condition which

is not essential. The first amthor to consider such scalar
field was Thiry. Our present treatment is equivalent to Thiry's
work. However, presently we give more importance to the
physical point of view than to the mathematical aspects of the

formalisme.

The invariance groups of the theory are discussed in
consistent way by dividing them in two classes of transforma-
tions. A very interesting result is shown regarding these
invariant groups, namely, the gauge group of electrodynamics is
here represented as a point dependent translation along the
fifth direction. This gives a geometric meaning to gauge
transformations and put those transformations in a similar posi

tion with the group of coordinate transformations.

The field equation for the scalar field is derived in a
simple situation of empty spaces with no gravitational field.
The scalar satisfies a massless differential equation of the
Klein-Gordon type with a non-linear term involving the first
derivatives of the field potential. Its interactions with mas
sive particles implies in a variation of the particle mass
which becomes a function of the scalar field. The gravita-

tional interaction can be introduced by rewriting the scalar
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field equation in general covariant form. However, gravitational
metric fields corresponding to waves are to be excluded since the
scalar field does not interact with particles of vanishing rest

mMasSSe

2.- THE THEORY IN GENERAL COORDINATE SYSTEMS

Consider a five dimensional space denoted by the coordinates
;“ and with a metric 'ﬁzp solution of Einstein's field equations
at five dimensions (all greek indices will fun from 1 to 5y and
latin indices from 1 to 4). Into this space we define a system

of parameters x° = xa(gd') 1,

Two kinds of transformation laws can be defined, the usual
transformation of the coordinates, S'u’= §M(ﬁ) and the parameter
transformation x'2 = x'a(xb) which we will call for short as the
p-transformation. Later on we shall identify these parameters
~e the coordinates in four-dimensions where the gravitational
field is defined. The role of the extra coordinates are then to
be identified with the other fields which may be introduced in
such unitary theory. Thus, we require that physical important
quantities are to be covariant under both types of transforma-
tions. Geometric quantities transforming in such way will be
called coordinate~tensors (or simply as tensors) and p-tensors.

A simple example of such quantities is given by

a
a 0%

7% -5EF.’ (1)
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which represent five contravariant p~tensors and at the same time

represent four covariant coordinate vectorse.

The four parameters x? define a set of curves x? = constant
into the five dimensional space. Along all such curves we have
a_qa P=o
dx ? d§
thus, the’nf represent four vectors perpendicular to the curves

x® = constant. A reciprocal field of vectors’rg is defined by,

rr)j‘ vl =62 . (2)
The unit vector field perpendicular to 'r’f at each point of the

space will be called by Ap and will deserve an important
behavior in this theory,

72 =0, (3.1)
'YFVA” M=1. (3.2)
The field AF posess five independent components which are

determined by the five relations (3).

At each point fﬂzof the five~dimensional space the system

of five vectors‘ﬁf, Al define uniquely the five independent
directions, given any vector VH we may therefore write z
vd =g vk (4.1)
= Aﬂ'vF (4.2)
or equivalently,
vR=v2rl+ vab (5)

where the V? and V are given by the relations (4). Multiplying
Eq. (451) by 7f and using (5) we obtain

vP-vaP =7P 'r}f‘ vH
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is a p-tensor of the same order than tg:::. This operation is
called the A-derivative of tg:::. A given p-tensor is said to

be cylindrical with respect to the A-field (or for short A-
cylindrical) if its A~derivative vanishes. For the A-derivative

of the p-metric we obtain,

H_hanBf, | 12
One of the possibilities of €ab to be A-cylindrical is when Ay
is a Killing vector field in the five-dimensional space. It may

happen that gab is A~-cylindrical even if %zdoes not posess such

symmetry (the whole right hand side of (12) vanishes).

The p-derivative of a given function of the coordinates is

defined similarly as the previous case by

@ _ v oL
Ve " d 7a

(13)

V‘a
In general we may write

e +v AP a .

v la ‘o 5P o

=V
oL

For the definition of the covariant derivatives, Christof-

fel symbols and curvature tensors the reader is reffered to the

work given in the reference (1).

5 - IHE SPECIAL COORDINATE SYSTEM

The theory as presented in the previous section in spite of
its generallity as the background of an unitary field theory is
nevertheless too much complicated for practical applications.

However, its is possible to select a set of simple coordinate
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systems and the covariance group of transformations relating
them. Is in this special coordinates that Kaluza's 3 theory is
usually presented. We shall restrict our discussions in all
what follows to those coordinates. They are defined by imposing
that the first four coordinates ;F equal the parameters x%,

x =xa(;'*) =§a .

The group of coordinate transformations which transform a
given special coordinate system into another special coordinate
system will be called special coordinate transformations, and
for short will be indicated by s.c.t. They will be the unique

transformations which will be considered in this paper.

For a better presentation we shall divide the set of s.c.te
into two parfs. As will be clear later on, such division will
allow us to interpret in a obvious fashion two different sym-
metry properties of the formalism. Such division of the
invariance group of this theory was not stressed before, the
author believes that it represents one of the more interesting
features of this formalism. We call the two parts by s.c.t.
type 1 and@ type 2. They are defined as,

gli =§'i(§:j), X'i =X'i(Xj),
50 =5,

;'i =;i, 1= xt

55 =55 + 2506

type 1

type 2

The product of these two transformations is another s.c.t., and
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is the transformation used in the presentation of Kaluza's

theory 4.

We have, in a given special coordinate system,

'r;‘ = 6g , (14+1)
72 =0, (14.2)

which may be represented as,
1
a

7:
K o000/’

where 1 is the unit four by four matrix. From Egs. (3.1) and

(14.2) we get,

A% =0 . (15)
The relation (3.2) here gives simply A5A5 = 1, which together
with the relation (15) gives
A5 =4/755‘ ’ (16)
Tas
A. = re—— (17)
.
55

. 8% Nus
AR = —— by == -
Y55 55

The inverse & -field is here given by
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H_ -
Yo=1 1
The equation (9) giving the metric ny,now reads as

gab+AaAb | A5 Aa

T = ‘ 2
AS A, A5
and its inverse has the form,
gab R gab "
Apl 1
ab ab

5]

In following we give a table of the transformation properties

of the several geometric quantities which deserve importance.

Quantity SeCoTos General Coord.System

Type 1 Type 2 General transformation

fifth component of a

A5, TS invariant invariant
covariant wvector
AS invariant invariant fifth component of a
contravariant vector
TS-..S invariant invariant fifth component of
covariant tensor
vector with invariant first four components
a s s
A™  vanishing equal *to of a contravariant

components zZero vector
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Tap

Ta...b

vector

vector

skew sym-
metric
tensor

symmetric
tensor

symmetric
tensor

symmetric
tensor

tensor

vector

vector

invariant

changes
as

1
Aaan-f’aA

5

changes by

a gauge,

5
1 = -
P, Pa f;a

invariant

invariant

invariant

changes as

invariant

invariant

invariant

changes as

5=¢5 nqi
I°=f ,iT

first four components
of a covariant vector

relation between
components of a vector

"spatial® curl of @,

first 4x 4 contravariant
metric tensor

7;b - A A,

first 4x 4 covariant
metric tensor

components of a tensor

mixed components of a
tensor

changes as is indicated
by the indices of this
quantity

fifth component of a
contravariant vector

In this table we have used the usual notation
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v[a,b] =va,b - vb,a

v(a,b) =va,b +vb,a

The unique quantity constructed with the Aa (but not involving
its derivatives) which displays invariance under transformation

of the type 2 is given in the previous table as,

A 755 A
a 755 5

However, by consequence of (17) this quantity vanishes in all
special coordinate systems. Thus, in special coordinate systems
there 1s no algebraic combination involving the Aa which Lkeeps

itself invariant under the s.c.ts of the type 2.

As it is already obvious, the transformations of the type 1
represent usual coordinate transformations in the four space and
those of the type 2 represent gauge transformations. Here they
are represented as point dependent translations along the fifth

direction.

4 - THE EQUATION OF MOTION OF A TEST PARTICLE

So far we have considered the geometric properties of the
several quantities which can be defined in the theory. Presently
we proceed to introduce the physical meaning of some of these
quantities. This will be done by considering the equation of a
geodesic at five dimensions and comparing this equation with the

path of a test particle under action of gravitation, electro-
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magnetism and also under the action of a given external scalar
field.

We begin by writing the equation of motion for a particle

under the action of electromagnetism and of a scalar field &.

2_a c 2
d™x q dx 22 arv
at> ¢ dat 2 xP at

We mention here an important property of the scalar interaction,
in equation (18) the term (d%/dt)> was included in order to
maintain the Lorentz covariance of the equation, nevertheless,

it posess a significance very important from the physical point

of view: The scalar force acting on the particle weakens as the
particle speed increases, and it changes according to the factor
(1 -v/ ) %, since the quantities M and (d%/dt) appearing in (18)

have the values,

dat
M=M =
o gy
ar . 1
— = (1-vYD)T .

Besides this, the scalar foce goes to zero if the particle speed
approaches the velocity of light. Thus, the scalar field does

not interact with particles moving with the velocity of light.

Another very important property of the scalar interaction is
the following: The mass of the particle interacting with the

scalar field becomes a function of the field,

M, = M () .
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This result can be obtained by studying the structure of the
relativistic scalar interaction 5, One of the more interest-
ing consequences of this result is: The gravitational coupling
constant also becomes a function of the scalar field. Indeed,

the gravitational constant given as a dimensionless number 1is,
Cmg/hc 10740 ,

where Mp is the mass of the proton. If this later is a func-

tion of the scalar field, the above ratio is also function of
6

the scalar .

The first suggestion for a varying gravitational constant
was based on Milne's ideas of cosmology, and was treated by
7

Dyrac ", and more recently was put in field theoretic form by

introducing a scalar field 8. In the framework of an unitary
field theory this scalar field may be introduced very natural
1y, so that we obtain again a theory with varying gravitation

al constant 9. This later case is just what we will obtain in

this paper.

Going back to the Eg. (18), we mention that no gravitation
al action is still involved since this relation bears only the

Lorentz invariance. Thus, the %ab denotes the metric of special

relativity.

Introducing the four-velocity
ax?

7 = —
av
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we write Eq. (18) as,

a
2u q 29
— P == Fie u® gab - — §ba . (20)

2xP M e 2xP
Gravitation is now introduced by writing this relation in general
covariant form,
q 2
ab b - Fbc uC gab _ - gab (21)
’ Me 9x
here gab is the gravitational potential. The semi-colon indicates
the covariant derivative constructed with the Christoffel symbols

associated to gap°

a aua a C 22)
u;b = 'a;s + f};C u (
I*a 1 ar agrb 3grc bgbc

= .-, -+ — - .
be 2 axc axb aXr

After some calculations, we can write Eq. (21) under the form

ag
d be q 2¢
b b
( u )“” = F n = ° (23)
ar cab 2 M,c &b 2x2

Consider now the equation of a geodesic at five dimensions,

AN
~2_ A p T (24)
doZ 5

. where do is the differential of "proper time" at five dimensions,
and the dot means differentiation with respect to o

as? /adg dgp 2 402,
§P = _5_
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Since we want to compare Bgs. (23) and (24), we make the follow-
ing change of parameters in (24),
. aeP av ar
dt do do
where, as before, v is the proper time at four dimensions. A

simple calculation gives

%
av 1 .
do CZ v
55

In this new notation it is possible to write the equation (24)

as
d o 1 ”'fgv TIRY

these equations contain more information than those contained
in (23) since here we have an extra relation when p = 5. This
extra relation will be reduced to a simple result by imposing

that the metric 7, , is A=cylindrical.

IJV
27,y 27

AOL-—__}; = AS ___#V =0 ’ (26)
3; a§5

since A5 is left arbitrary, the requirement of 7}“’ being A-
cylindrical reduces to the imposition tha.’c}5 is not present
in the metric. This result is also true for any other quanti-
ty which is A-cylindrical (we recall that our presentation 1is

restricted entirely to special coordinate systems).

It is important to verify that as consequence of the previous
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symmetry of q%),, the four-dimensional metric g.; is also A-
cylindrical. This follows directly from the fact that the
field Aa by itself is A-cylindrical since this field is just an
algebralc combination of the components of the five-dimensional

metric.
Thus, for p = 5 we get from (25)
o
7501.;\ = g = constant . (27

Taking p = r in equation (25), we find after some calculations,

2g ? 0 2
_d_( sy 10m oy g . ¢ 94 ac 2 1
d/r grsu Z

U uw Tau|m——— ] a— — —
0x 255 0xl 2 2x’ Tss
/
(28)
(we have also used the relation (27)). A comparison of the

relations (23) and (28) gives

q
a Sy S———— = — F, ’ (29)
2 9xt Mo o
a2 1 )

We can identify ?& directly with the electromagnetic potentials
since this four-vector changes under the s.c.t. of type 2
similarly as a electromagnetic potential changes under a gauge
transformation, and its curl remains invariant. With this

choice we get the following value for the constant a,

a
a = —
Moc
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Then, the scalar field is described by <'§§g-), which is an
invariant quantity under both types of transformation of the
S.c.te group. Its couple with the particle is here given by
the above constant (the square of it). The dimension of a? is
that of a distance divided by a mass. We make this constant a
dimensionless quantity by multiplying it by m/r,, where we take

m as the mass of the electron and To the first Bohr radius. We

also consider Mo as equal to m, this gives,

ma;a 2
— = Ol
rO

where o is the fine structure constant. Thus, the order of
magnitude for the coupling of the particle with the scalar field
is here giveﬁ by the square of the electromagnetic coupling, and |
therefore is smaller than this coupling by approximately a factor
of 10”2. Since a long range atractive scalar interaction was
never observed there is_a strong reason for supposing that such
interaction (if it exists) must be very weak, of the order of
the gravitational interaction 10. This possibility is not ruled
out here since we still have the freedom to incorporate any
constant as a multiplicative factor of ¢ in the equation (30).
Thus, the above order of magnitude for the scalar coupling is

not uniquely determined, it may be smaller than the above value

and eventually of the order of magnitude of the gravitational

coupling.

For finishing this section we add the following important
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comment: A five dimensional general covariant field theory has
given us a well prescribed method for introducing in a similar
way three flelds describing long range interactions, and for the
first time it also gavée us a similar interpretation for the two
function groups of theoretical physics, the coordinate
transformation group of general relativity and the gauge group of
electrodynamics. Both groups are here interpreted as associated

to change of the coordinates in the five dimensional space.

5 - THE FIELD EQUATIONS

According to our previous results, we can interpret gap 35

7
the gravitational potential, Yy = aéﬁ as the electromagnetic
1 55 X
potential and ¢ = =— as the scalar potential. In five

(4
55
dimensions they are put together as the several components of

the metric.

The field equations in five dimensions follow from a varia-
tional principle similar to that of general relativity, with a
Lagrangian density

Og = R( Ily}{yl )%;

where R is the five dimensional scalar curvature. This varia-

tional principle is subjected to the conditions
ab - - -

The resulting field equations are those of general relativity

together with the Maxwell equations and the equation for the

scalar.
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Presently we will be interested solely in this last equation,
we will suppose the simple situation where there is no other
field besides . In other words, we have a five dimensional

empty space with the metric,

[+
€ab © &ab ?
735 =0

=1
755‘(#’

which form % y* The inverse matrix is given by the elements,

R
gab = gab
725 = o
155 = &

The components of the five dimensional Riceil tensor and scalar

curvature are given by

oab

Rxp =g %xapb + ¢%15P5 (31)

- °ab ‘
R =g Ry +& R (32)
The five dimensional Einstein tensor is

G - 1/2 %, R (33)
oL,S p / d.fs

which vanishes in our case. Using the symmetry obtained from

..Ra

the fact that the metric is cylindrical with respect to the unit
vector field A, we calculate the components of the five
dimensional Riemann tensor. Some of these components, which are

of interest presently are,
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Rabea = © 2

R .10 f1N\,¢ l\.(l)_i(l>
a5bs Zﬁxa'bxb : $ 4 px@ $ axb b
Rgess = ©

Using these results, we compute the several components of G o and

P

the scalar R. We find as result,

R=206 (34)
G, =d0,~Pg .0 (35)
ab ab €ab
where © and © stand for,
ab >
1 2 1) ¢ 9 <1> ? (1)
ab 2 2x2 2%x° (¢ 4 px? $, xP ¢
= %ab Oab

ALl other components of Gygvanish. From Egs. (34) and (35) we
see that the scalar field ¢ satisfies the equation
_1_()<P 1@..@.()
2xC0xd \®/ 2 22 ot \¥
which has the form of a Klein=Gordon equation for 1/¢ with no |

mass term and with a non-linear term involving the first deriva-

tives of 1/¢, This differential equation may be written as,

gt 0% 3 a0t 2%
2x¢ 9x% 2 2x° 2x4

Which is the best form to be considered.

Since ¢ is real, we treat with a field which does not inter-

act with the electromagnetic field. However, gravitational inter
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actions may be introduced if we restrict those interactions in
order to prevent gravitational waves. As we have seen before,

the field ¢ 'do not interact with particles of vanishing mass.
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